

IDT[™] Interprise[™] Integrated Communications Processor 3.3V and 2.5V Devices

Device Overview

The RC32332 device is a member of the IDT[™] Interprise[™] family of integrated communications processors. This product incorporates a high-performance, low-cost 32-bit CPU core with functionality common to a large number of embedded applications. The RC32332 integrates these functions to enable the use of low-cost PC commodity market memory and I/O devices, allowing the aggressive price/performance characteristics of the CPU to be realized quickly into low-cost systems.

The RC32332 device is available with either a 3.3V or 2.5V operating voltage. Differences between the two versions are noted where applicable.

Features

- RC32300 32-bit Microprocessor
 - Up to 150 MHz operation
 - Enhanced MIPS-II Instruction Set Architecture (ISA)
 - Cache prefetch instruction
- Conditional move instruction
- DSP instructions
- Supports big or little endian operation
- MMU with 32 page TLB
- 8KB Instruction Cache, 2-way set associative
- 2KB Data Cache, 2-way set associative

- Cache locking per line
- Programmable on a page basis to implement a write-through no write allocate, write-through write allocate, or write-back algorithms for cache management
- Compatible with a wide variety of operating systems

Local Bus Interface

- Up to 75 MHz operation
- 23-bit address bus
- 32-bit data bus
- Direct control of local memory and peripherals
- Programmable system watch-dog timers
- Big or little endian support
- Interrupt Controller simplifies exception management
- Four general purpose 32-bit timer/counters
- Programmable I/O (PIO)
 - Input/Output/Interrupt source
 - Individually programmable
- SDRAM Controller (32-bit memory only)
- 4 banks, non-interleaved
- Up to 512MB total SDRAM memory supported
- Implements full, direct control of discrete, SODIMM, or DIMM memories
- Supports 16Mb through 512Mb SDRAM device depths
- Automatic refresh generation

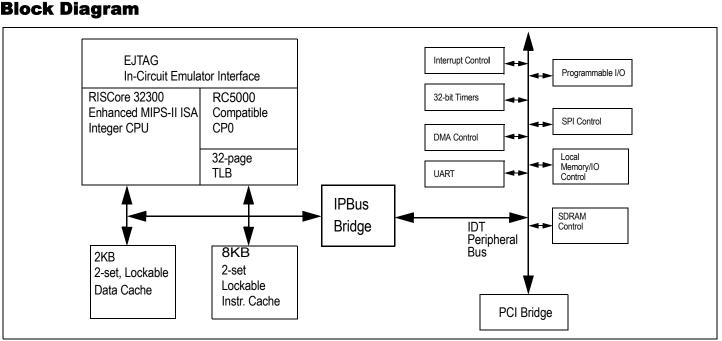


Figure 1 RC32332 Block Diagram

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.

Serial Peripheral Interface (SPI) master mode interface

UART Interface

- 16550 compatible UART
- Baud rate support up to 1.5 Mb/s

Memory & Peripheral Controller

- 6 banks, up to 8MB per bank
- Supports 8-,16-, and 32-bit interfaces
- Supports Flash ROM, SRAM, dual-port memory, and peripheral devices
- Supports external wait-state generation
- 8-bit boot PROM support
- Flexible I/O timing protocols

4 DMA Channels

- 4 general purpose DMA, each with endianess swappers and byte lane data alignment
- Supports scatter/gather, chaining via linked lists of records
- Supports memory-to-memory, memory-to-I/O, memory-to-PCI, PCI-to-PCI, and I/O-to-I/O transfers
- Supports unaligned transfers
- Supports burst transfers
- Programmable DMA bus transactions burst size (up to 16 bytes)

PCI Bus Interface

- 32-bit PCI, up to 50 MHz
- Revision 2.2 compatible
- Target or master
- Host or satellite
- Two slot PCI arbiter
- Serial EEPROM support, for loading configuration registers
- Off-the-shelf development tools
- JTAG Interface (IEEE Std. 1149.1 compatible)
- + 208 QFP Package

- 3.3V or 2.5V core supply with 3.3V I/O supply
- 3.3V core supply is 5V I/O tolerant
- EJTAG in-circuit emulator interface

CPU Execution Core

The RC32332 integrates the RISCore 32300, the same CPU core found in the award-winning RC32364 microprocessor. The RISCore 32300 implements the Enhanced MIPS-II ISA. Thus, it is upwardly compatible with applications written for a wide variety of MIPS architecture processors, and it is kernel compatible with the modern operating systems that support IDT's 64-bit RISController product family. The RISCore 32300 was explicitly defined and designed for integrated processor products such as the RC32332. Key attributes of the execution core found within this product include:

- High-speed, 5-stage scalar pipeline executes to 150MHz. This high performance enables the RC32332 to perform a variety of performance intensive tasks, such as routing, DSP algorithms, etc.
- 32-bit architecture with enhancements of key capabilities. Thus, the RC32332 can execute existing 32-bit programs, while enabling designers to take advantage of recent advances in CPU architecture.
- Count leading-zeroes/ones. These instructions are common to a wide variety of tasks, including modem emulation, voice over IP compression and decompression, etc.
- Cache PREFetch instruction support, including a specialized form intended to help memory coherency. System programmers can allocate and stage the use of memory bandwidth to achieve maximum performance.
- 8KB of 2-way set associative instruction cache

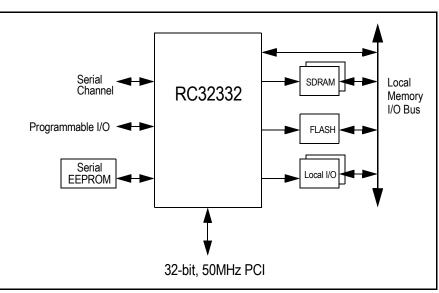


Figure 2 RC32332 Based System Diagram

- 2KB of 2-way set associative data cache, capable of write-back and write-through operation.
- Cache locking per line to speed real-time systems and critical system functions
- On-chip TLB to enable multi-tasking in modern operating systems
- EJTAG interface to enable sophisticated low-cost in-circuit emulation.

Synchronous-DRAM Interface

The RC32332 integrates a SDRAM controller which provides direct control of system SyncDRAM running at speeds to 75MHz.

Key capabilities of the SDRAM controller include:

- Direct control of 4 banks of SDRAM (up to 2 64-bit wide DIMMs)
- On-chip page comparators optimize access latency.
- Speeds to 75MHz
- Programmable address map.
- Supports 16, 64, 128, 256, or 512Mb SDRAM devices
- Automatic refresh generation driven by on-chip timer
- Support for discrete devices, SODIMM, or DIMM modules.

Thus, systems can take advantage of the full range of commodity memory that is available, enabling system optimization for cost, realestate, or other attributes.

Local Memory and I/O Controller

The local memory and I/O controller implements direct control of external memory devices, including the boot ROM as well as other memory areas, and also implements direct control of external peripherals.

The local memory controller is highly flexible, allowing a wide range of devices to be directly controlled by the RC32332 processor. For example, a system can be built using an 8-bit boot ROM, 16-bit FLASH cards (possibly on PCMCIA), a 32-bit SRAM or dual-port memory, and a variety of low-cost peripherals.

Key capabilities include:

- Direct control of EPROM, FLASH, RAM, and dual-port memories
- 6 chip-select outputs, supporting up to 8MB per memory space
- Supports mixture of 8-, 16-, and 32-bit wide memory regions
- Flexible timing protocols allow direct control of a wide variety of devices
- Programmable address map for 2 chip selects
- Automatic wait state generation.

PCI Bus Bridge

In order to leverage the wide availability of low-cost peripherals for the PC market as well as to simplify the design of add-in functions, the RC32332 integrates a full 32-bit PCI bus bridge. Key attributes of this bridge include:

- 50 MHz operation
- PCI revision 2.2 compliant
- Programmable address mappings between CPU/Local memory and PCI memory and I/O
- On-chip PCI arbiter
- Extensive buffering allows PCI to operate concurrently with local memory transfers
- Selectable byte-ordering swapper.

On-Chip DMA Controller

To minimize CPU exception handling and maximize the efficiency of system bandwidth, the RC32332 integrates a very sophisticated 4-channel DMA controller on chip.

The RC32332 DMA controller is capable of:

- Chaining and scatter/gather support through the use of a flexible, linked list of DMA transaction descriptors
- Capable of memory<->memory, memory<->I/O, and PCI<->memory DMA
- Unaligned transfer support
- Byte, halfword, word, quadword DMA support.

On-Chip Peripherals

The RC32332 also integrates peripherals that are common to a wide variety of embedded systems.

- Single 16550 compatible UART.
- SPI master mode interface for direct interface to EEPROM, A/D, etc.
- Interrupt Controller to speed interrupt decode and management
- Four 32-bit on-chip Timer/Counters
- Programmable I/O module

Debug Support

To facilitate rapid time to market, the RC32332 provides extensive support for system debug.

First and foremost, this product integrates an EJTAG in-circuit emulation module, allowing a low-cost emulator to interoperate with programs executing on the controller. By using an augmented JTAG interface, the RC32332 is able to reuse the same low-cost emulators developed around the RC32364 CPU.

Secondly, the RC32332 implements additional reporting signals intended to simplify the task of system debugging when using a logic analyzer. This product allows the logic analyzer to differentiate transactions initiated by DMA from those initiated by the CPU and further allows CPU transactions to be sorted into instruction fetches vs. data fetches.

Finally, the RC32332 implements a full boundary scan capability, allowing board manufacturing diagnostics and debug.

Packaging

The RC32332 is packaged using a 208 Quad Flat Pack (QFP) package.

Thermal Considerations

The RC32332 consumes less than 2.0 W peak power. The device is guaranteed in an ambient temperature range of 0° to +70° C for commercial temperature devices; -40° to +85° C for industrial temperature devices.

Revision History

November 15, 2000: Initial publication.

December 12, 2000: Changed Max values for cpu_masterclock period in Table 5 and added footnote. In Table 1, added 2nd alternate function for spi_mosi, spi_miso, spi_sck. In Table 11, added "2" in Alt column for pins 186, 187, 188. In RC32332 Alternate Signal Functions table, added pin names in Alt #2 column for pins 186, 187, 188.

January 4, 2001: In Table 6 under Interrupt Handling, changed Tdoh9 to Thld13 and moved the values for Tsu9 from the Max to the Min column.

February 23, 2001: In Table 1, changed alternate function for uart_tx[0] from PIO[3] to PIO[1]. In Table 11, changed the number of alternate pins for Pin 156 from 1 to 2. In Table 12, added PIO[7] to Alt #2 column for Pin 156 and changed PIO[3] to PIO[1] for Pin 207.

March 13, 2001: Changed upper ambient temperature for industrial and commercial uses from +70° C to +85° C.

June 7, 2001: In the Clock Parameters table, added footnote 3 to output_clk category and added NA to Min and Max columns. In Figure 3 (Reset Specification), enhanced signal line for cpu_masterclk. In Local System Interface section of AC Timing Characteristics table, changed values in Min column for last category of signals (Tdoh3) from 1.5 to 2.5 for both speeds. In SDRAM Controller section of same table, changed values in Min column for last category of signals (9 signals) from 1 to 2.5 for both speeds.

September 14, 2001: In the Reset category of Table 6: switched mem_addr[19:17] from Tsu22 and Thld22 to Tsu10 and Thld10; switched mem_addr[22:20] from Tsu10 and Thld10 to Tsu22 and Thld22; moved ejtag_pcst[2:0] from Reset to Debug Interface category under Tsu20 and Thld20.

November 1, 2001: Added Input Voltage Undershoot parameter and 2 footnotes to Table 10. Changed to DH package.

May 2, 2002: Changed from PCI 2.1 to 2.2 compliant. Added 512 MB SDRAM support. Changed upper ambient temperature for commercial uses back from $+85^{\circ}$ C to $+70^{\circ}$ C (changed erroneously from 70 to 85 on March 13, 2001). Added Reset State Status column to Table 1. Revised description of jtag_trst_n in Table 1 and changed this pin to a pull-down instead of a pull-up.

July 3, 2002: This data sheet now describes revision Y silicon and is no longer applicable to revision Z.

July 12, 2002: Added 150MHz speed grade. In Table 6: DMA section, changed Thld9 Min values from 2 to 1; in PIO section, changed Thld9 Min values from 2 to 1. Changed revision Y data sheet from Preliminary to Final.

September 18, 2002: Added cpu_coldreset_n rise time to Table 5, Clock Parameters. Added mem_addr[16] and sdram_addr[16] to Tables 1 and 12. Changed Logic Diagram to include sdram_addr[16].

December 18, 2002: In the Reset section of Table 6, AC Timing Characteristics, setup and hold time categories for cpu_coldreset_n have been deleted.

September 2, 2003: Added 2.5V version of device. Changed tables to include 2.5V values where appropriate. Added a Power Consumption table, Temperature and Voltage table, and Power Curves for the 2.5V device. In the PCI category of Table 6, created separate sections for 3.3V and 2.5V devices and in 2.5V section changed time to 4 ns for pci_cbe_n[3:0], pci_frame_n, pci_trdy_n, and pci_irdy_n. In Table 8, added 3 new categories (Input Pads, PCI Input Pads, and All Pads) and added footnotes 2 and 3. In Table 13, pins 181 and 184 were changed from Vcc Core to Vcc I/O.

March 24, 2004: In Table 1, changed description in Satellite Mode for pci_rst_n. Specified "cold" reset on pages 12 and 13. Changed several values in Table 12, Absolute Maximum Ratings, and changed footnote 1 to that table.

May 4, 2004: Revised values in Table 9, Power Consumption.

Pin Description Table

The following table lists the pins provided on the RC32332. Note that those pin names followed by "_n" are active-low signals. All external pull-ups and pull-downs require 10 k Ω resistor.

Name	Туре	Reset State Status	Drive Strength Capability	Description							
Local System Inte	rface										
mem_data[31:0]	I/O	Z	High	Local system da Primary data bus	ata bus s for memory. I/O and SDI	RAM.					
mem_addr[22:2]	I/O	[22:10] Z [9:2] L	[22:17] Low [16:2] High	each word data,	ovide the Memory or DRA the address increments e ble below indicates how th	ither in linear or s	sub-block ordering, de	epending on the transac			
				Port Width	Pin Signals mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]			
				DMA (32-bit)	mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	n[0]			
				32-bit	mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]			
				16-bit	Byte High Write Enable		Not Used (Driven Low)	Byte Low Write Enable			
				8-bit	Not Used (Driven High)	mem_addr[1]	mem_addr[0]	Byte Write Enable			
				mem_addr[18] A mem_addr[17] A mem_addr[16] A mem_addr[15] A mem_addr[13] A mem_addr[13] A mem_addr[10] A mem_addr[10] A mem_addr[9] Altr mem_addr[6] Altr mem_addr[6] Altr mem_addr[5] Altr mem_addr[4] Altr mem_addr[3] Altr	Iternate function: modebit Iternate function: modebit Iternate function: modebit Iternate function: sdram_a Iternate function: sdram_a Iternate function: sdram_a Iternate function: sdram_a Iternate function: sdram_a ernate function: sdram_a	[8]. [7]. addr[16]. addr[15]. addr[14]. addr[13]. addr[11]. addr[10]. ddr[9]. ddr[9]. ddr[8]. ddr[7]. ddr[6]. ddr[5]. ddr[4]. ddr[3].					
mem_cs_n[5:0]	Output	Н	Low	Memory Chip Se	elect Negated Recomme emory Bank is actively sel	nd an external pu	ıll-up.				
mem_oe_n	Output	Н	High		Enable Negated Recom emory Bank can output its						
mem_we_n[3:0]	Output	Н	High	Signals which by	nable Negated Bus tes are to be written durin ignals for 8-bit or 16-bit w	•	saction. Bits act as B	yte Enable and			

Table 1 Pin Descriptions (Part 1 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
mem_wait_n	Input		_	Memory Wait Negated Requires an external pull-up. SRAM/IOI/IOM modes: Allows external wait-states to be injected during the last cycle before data is sam- pled. DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction. Alternate function: sdram_wait_n.
mem_245_oe_n	Output	Н	Low	Memory FCT245 Output Enable Negated Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a memory or I/O bank.
mem_245_dt_r_n	Output	Z	High	Memory FCT245 Direction Xmit/Rcv Negated Recommend an external pull-up. Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.
output_clk	Output	cpu_mas terclk	High	Output Clock Optional clock output.
PCI Interface	•	•	•	
pci_ad[31:0]	I/O	Z	PCI	PCI Multiplexed Address/Data Bus Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus Master during writes; or the Data is driven by the Bus Slave during reads.
pci_cbe_n[3:0]	I/O	Z	PCI	PCI Multiplexed Command/Byte Enable Bus Command (not negated) Bus driven by the Bus Master during the initial frame_n assertion. Byte Enable Negated Bus driven by the Bus Master during the data phase(s).
pci_par	I/O	Z	PCI	PCI Parity Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven by the Bus Slave during the Read Data phase.
pci_frame_n	I/O	Z	PCI	PCI Frame Negated Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates the last datum.
pci_trdy_n	I/O	Z	PCI	PCI Target Ready Negated Driven by the Bus Slave to indicate the current datum can complete.
pci_irdy_n	I/O	Z	PCI	PCI Initiator Ready Negated Driven by the Bus Master to indicate that the current datum can complete.
pci_stop_n	I/O	Z	PCI	PCI Stop Negated Driven by the Bus Slave to terminate the current bus transaction.
pci_idsel_n	Input		_	PCI Initialization Device Select Uses pci_req_n[2] pin. See the PCI subsection.
pci_perr_n	I/O	Z	PCI	PCI Parity Error Negated Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.
pci_serr_n	I/O Open- collec- tor	Z	PCI	System Error Requires an external pull-up. Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or any other system error.
pci_clk	Input		_	PCI Clock Clock for PCI Bus transactions. Uses the rising edge for all timing references.
pci_rst_n	Input	L	_	PCI Reset Negated Host mode: Resets all PCI related logic. Satellite mode: Resets all PCI related logic and also warm resets the 32332.
pci_devsel_n	I/O	Z	PCI	PCI Device Select Negated Driven by the target to indicate that the target has decoded the present address as a target address.

Table 1 Pin Descriptions (Part 2 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
pci_req_n[2]	Input	Z	_	PCI Bus Request #2 Negated Requires an external pull-up. Host mode: pci_req_n[2] is an input indicating a request from an external device. Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write. Alternate function: pci_idsel (satellite).
pci_req_n[0]	I/O	Z	High	PCI Bus Request #0 Negated Requires an external pull-up for burst mode. Host mode: pci_req_n[0] is an input indicating a request from an external device. Satellite mode: pci_req_n[0] is an output indicating a request from this device.
pci_gnt_n[2]	Output	Z ¹	High	PCI Bus Grant #2 Negated Recommend an external pull-up. Host mode: pci_gnt_n[2] is an output indicating a grant to an external device. Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. External pull-up is required. Alternate function: pci_inta_n (satellite).
pci_gnt_n[1] (can only be used as alternate function)	I/O	X for 1 pci clock then H ²	High	PCI Bus Grant #1 Negated Recommend external pull-up. Host mode: not used as pci_gnt_n[1]. Must be used as alternate function PIO[7]. Satellite mode: Not used as pci_gnt_n[1]. Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Registers in the RC32332 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset time. 1st Alternate function: pci_eeprom_cs (satellite). 2nd Alternate function: PIO[7].
pci_gnt_n[0]	I/O	Z	High	PCI Bus Grant #0 Negated Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pull- up. Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Requires external pull-up.
pci_inta_n	Output Open- collec- tor	Z	PCI	PCI Interrupt #A Negated Uses pci_gnt_n[2]. See the PCI subsection.
pci_lock_n	Input		—	PCI Lock Negated Driven by the Bus Master to indicate that an exclusive operation is occurring.

 2 H in host mode, L in satellite non-boot and boot modes. X = unknown.

SDRAM Control Interface

sdram_addr_12	Output	L	High	SDRAM Address Bit 12 and Precharge All SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and "pre- charge all" signal during refresh, read and write command.
sdram_ras_n	Output	Н	High	SDRAM RAS Negated SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.
sdram_cas_n	Output	Η	High	SDRAM CAS Negated SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks.
sdram_we_n	Output	Н	High	SDRAM WE Negated SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks.
sdram_cke	Output	Н	High	SDRAM Clock Enable SDRAM mode: Provides clock enable to all SDRAM banks.
sdram_cs_n[3:0]	Output	Н	High	SDRAM Chip Select Negated Bus Recommend an external pull-up. SDRAM mode: Provides chip select to each SDRAM bank. SODIMM mode: Provides upper select byte enables [7:4].
sdram_s_n[1:0]	Output	Н	High	SDRAM SODIMM Select Negated Bus SDRAM mode: Not used. SDRAM SODIMM mode: Upper and lower chip selects.

Table 1 Pin Descriptions (Part 3 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
sdram_bemask_n [3:0]	Output	Н	High	SDRAM Byte Enable Mask Negated Bus (DQM) SDRAM mode: Provides byte enables for each byte lane of all DRAM banks. SODIMM mode: Provides lower select byte enables [3:0].
sdram_245_oe_n	Output	Н	Low	SDRAM FCT245 Output Enable Negated Recommend an external pull-up. SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to any DRAM bank.
sdram_245_dt_r_n	Output	Z	High	SDRAM FCT245 Direction Transmit/Receive Recommend an external pull-up. Uses cpu_dt_r_n. See CPU Core Specific Signals below.
On-Chip Peripheral	s			
dma_ready_n[0]	I/O	Z	Low	DMA Ready Negated Bus Requires an external pull-up. Ready mode: Input pin for general purpose DMA channel 0 that can initiate the next datum in the current DMA descriptor frame. Done mode: Input pin for general purpose DMA channel 0 that can terminate the current DMA descriptor frame. dma_ready_n[0] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[0].
pio[7:0]	I/O	See related pins	Low	Programmable Input/Output General purpose pins that can each can be configured as a general purpose input or general purpose output. These pins are multiplexed with other pin functions: pci_gnt_n[1] (pci_eeprom_cs), spi_mosi, spi_sck, spi_ss_n, spi_miso, uart_rx[0], uart_tx[0], dma_ready_n[0]. Note that pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time. The others default to inputs.
uart_rx[0]	I/O	Z	Low	UART Receive Data Bus UART mode: UART channel receive data. uart_rx[0] Alternate function: PIO[2].
uart_tx[0]	I/O	Z	Low	UART Transmit Data Bus Recommend an external pull-up. UART mode: UART channel send data. Note that this pin defaults to an input at reset time and must be programmed via the PIO interface before being used as a UART output. uart_tx[0] Alternate function: PIO[1].
spi_mosi	I/O	L	Low	SPI Data Output Serial mode: Output pin from RC32332 as an Input to a Serial Chip for the Serial data input stream. In PCI satellite mode, acts as an Output pin from RC32332 that connects as an Input to a Serial Chip for the Serial data input stream for loading PCI Configuration Registers in the RC32332 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[6]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_mdo.
spi_miso	I/O	Z	Low	SPI Data Input Serial mode: Input pin to RC32332 from the Output of a Serial Chip for the Serial data output stream. In PCI satellite mode, acts as an Input pin from RC32332 that connects as an output to a Serial Chip for the Serial data output stream for loading PCI Configuration Registers in the RC32332 Reset Initialization Vector PCI boot mode. Defaults to input direction at reset time. 1st Alternate function: PIO[3]. 2nd Alternate function: pci_eeprom_mdi.
spi_sck	I/O	L	Low	SPI Clock Serial mode: Output pin for Serial Clock. In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the RC323332 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[5]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_sk.

Table 1 Pin Descriptions (Part 4 of 6)

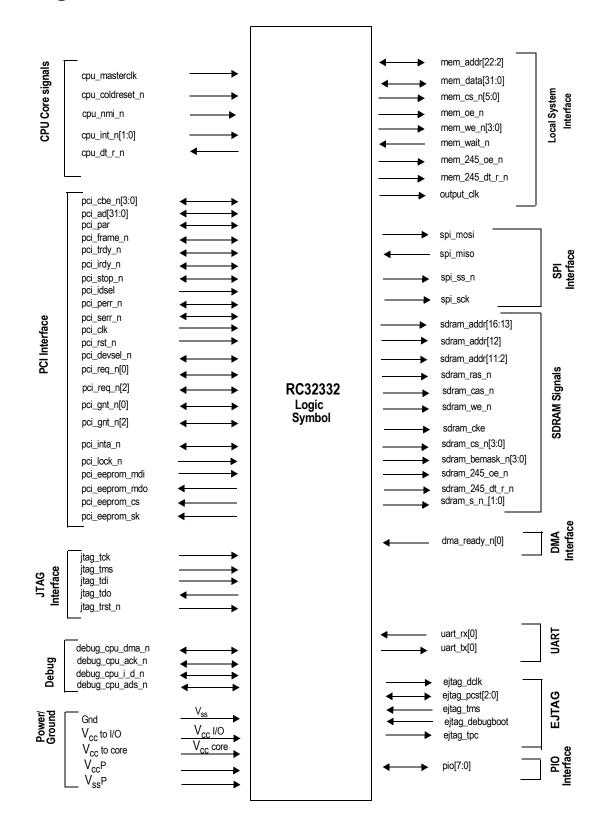

Name	Туре	Reset State Status	Drive Strength Capability	Description
spi_ss_n	I/O	Н	Low	SPI Chip Select Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device. Alternate function: PIO[4]. Defaults to the output direction at reset time.
CPU Core Specific	Signals			
cpu_nmi_n	Input		_	CPU Non-Maskable Interrupt Requires an external pull-up. This interrupt input is active low to the CPU.
cpu_masterclk	Input		_	CPU Master System Clock Provides the basic system clock.
cpu_int_n[1:0]	Input		_	CPU Interrupt Requires an external pull-up. These interrupt inputs are active low to the CPU.
cpu_coldreset_n	Input	L	_	CPU Cold Reset This active-low signal is asserted to the RC32332 after V_{cc} becomes valid on the initial power-up. The Reset initialization vectors for the RC32332 are latched by cold reset.
cpu_dt_r_n	Output	Z	_	CPU Direction Transmit/Receive This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during read operations. 1st Alternate function: mem_245_dt_r_n. 2nd Alternate function: sdram_245_dt_r_n.
JTAG Interface Sig	nals		•	·
jtag_tck	Input		_	JTAG Test Clock Requires an external pull-down. An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of the system and the processor clock with nominal 50% duty cycle.
jtag_tdi, ejtag_dint_n	Input		_	JTAG Test Data In Requires an external pull-up. On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register, depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG). This pin is also used as the ejtag_dint_n signal in the EJTAG mode.
jtag_tdo, ejtag_tpc	Output	Z	High	JTAG Test Data Out The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non- sequential program counter at the processor clock or at a division of processor clock. This pin is also used as the ejtag_tpc signal in the EJTAG mode.
jtag_tms	Input		_	JTAG Test Mode Select Requires an external pull-up. The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation. jtag_tms is sampled on the rising edge of the jtag_tck.
jtag_trst_n	Input	L	_	JTAG Test Reset When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven low (pulled down) or the jtag_tms/ejtag_tms signals must be pulled up and jtag_clk actively clocked.
ejtag_dclk	Output	Z	-	EJTAG Test Clock Processor Clock. During Real Time Mode, this signal is used to capture address and data from the ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.

Table 1 Pin Descriptions (Part 5 of 6)

Name	Туре	Reset State Status	Drive Strength Capability	Description
ejtag_pcst[2:0]	I/O	Z	Low	EJTAG PC Trace Status Information 111 (STL) Pipe line Stall 110 (JMP) Branch/Jump forms with PC output 101 (BRT) Branch/Jump forms with no PC output 100 (EXP) Exception generated with an exception vector code output 011 (SEQ) Sequential performance 010 (TST) Trace is outputted at pipeline stall time 001 (TSQ) Trace trigger output at performance time 000 (DBM) Run Debug Mode Alternate function: modebit[2:0].
ejtag_debugboot	Input		_	EJTAG DebugBoot Requires an external pull-down. The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe without having the external memory working. This input signal is level sensitive and is not latched inter- nally. This signal will also set the JtagBrk bit in the JTAG_Control_Register[12].
ejtag_tms	Input		_	EJTAG Test Mode Select Requires an external pull-up. The ejtag_tms is sampled on the rising edge of jtag_tck.
Debug Signals				
debug_cpu_dma_n	I/O	Z	Low	Debug CPU versus DMA Negated De-assertion high during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transac- tion was generated from the CPU. Assertion low during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was generated from DMA. Alternate function: modebit[6].
debug_cpu_ack_n	I/O	Z	Low	Debug CPU Acknowledge Negated Indicates either a data acknowledge to the CPU or DMA. Alternate function: modebit[4].
debug_cpu_ads_n	I/O	Z	Low	Debug CPU Address/Data Strobe Negated Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus has the current block address. Alternate function: modebit[5].
debug_cpu_i_d_n	I/O	Z	Low	Debug CPU Instruction versus Data Negated Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU or DMA data transaction. De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU instruction transaction. Alternate function: modebit[3].

Table 1 Pin Descriptions (Part 6 of 6)

Logic Diagram — RC32332

Mode Bit Settings to Configure Controller on Reset

The following table lists the mode bit settings to configure the controller on cold reset.

Pin	Mode Bit	Description	Value	Mode Setting
ejtag_pcst[2:0]	2:0 MSB (2)	Clock Multiplier	0	Multiply by 2
		MasterClock is multiplied internally to gener- ate PClock	1	Multiply by 3
		ale PCIOCK	2	Multiply by 4
			3	Reserved
			4	Reserved
			5	Reserved
			6	Reserved
			7	Reserved
debug_cpu_i_d_n	3	EndBit	0	Little-endian ordering
			1	Big-endian ordering
debug_cpu_ack_n	4	Reserved	0	
debug_cpu_ads_n	5	Reserved	0	
debug_cpu_dma_n	6	TmrIntEn	0	Enables timer interrupt
		Enables/Disables the timer interrupt on Int*[5]	1	Disables timer interrupt
mem_addr[17]	7	Reserved for future use	1	
mem_addr[19:18]	9:8 MSB (9)	Boot-Prom Width specifies the memory port	00	8 bits
		width of the memory space which contains the	01	16 bits
		boot prom.	10	32 bits
			11	Reserved

Table 2 Boot-Mode Configuration Settings

reset_boot_mode Settings

By using the non-boot mode cold reset initialization mode the user can change the internal register addresses from base 1800_0000 to base 1900_0000, as required. The RC32332 cold reset-boot mode initialization setting values and mode descriptions are listed below.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[22:21]	1:0 MSB (1)	Tri-state memory bus and EEPROM bus during coldreset_n assertion	11	Tri-state_bus_mode
		Reserved	10	
		PCI-boot mode (pci_host_mode must be in satellite mode) RC32332 will reset either from a cold reset or from a PCI reset. Boot code is provided via PCI.	01	PCI_boot_mode
		Standard-boot mode Boot from the RC32332's memory controller (typical system).	00	standard_boot_mode

Table 3 RC32332 reset_boot_mode Initialization Settings

pci_host_mode Settings

During cold reset initialization, the RC32332's PCI interface can be set to the Satellite or Host mode settings. When set to the Host mode, the CPU must configure the RC32332's PCI configuration registers, including the read-only registers. If the RC32332's PCI is in the PCI-boot mode Satellite mode, read-only configuration registers are loaded by the serial EEPROM.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[20]	PCI host mode	PCI is in satellite mode	1	PCI_satellite
		PCI is in host mode (typical system)	0	PCI_host

Table 4 RC32332 pci_host_mode Initialization Settings

Clock Parameters — RC32332

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

<u>2.5V version</u>: V_{cc} Core = +2.5V±5%; V_{cc} I/O = +3.3V±5%

Parameter	Symbol	Test Conditions		RC32332 100MHz		2332 MHz	RC32332 150MHz		Units
			Min	Max	Min	Max	Min	Max	
cpu_masterclock HIGH	t _{MCHIGH}	Transition ≤ 2ns	8	—	6.75	-	6	—	ns
cpu_masterclock LOW	t _{MCLOW}	Transition ≤ 2ns	8	—	6.75		6	—	ns
cpu_masterclock period ¹ - 3.3V ver.	t _{MCP}	_	20	66.6	15	66.6	13.33	66.6	ns
cpu_masterclock period ¹ - 2.5V ver.	t _{MCP}	—	20	40.0	15	40.0	13.33	40.0	ns
cpu_masterclock Rise & Fall Time ²	$t_{\rm MCRise,}t_{\rm MCFall}$	—		3	—	3		3	ns
cpu_masterclock Jitter	t _{JITTER}	—		<u>+</u> 250	—	<u>+</u> 250	_	<u>+</u> 200	ps
pci_clk Rise & Fall Time	t _{PCRise} , t _{PCFall}	PCI 2.2		1.6	—	1.6	_	1.6	ns
pci_clk Period ¹	t _{PCP}		20	—	20		20	—	ns
jtag_tck Rise & Fall Time	t _{JCRise} , t _{JCFall}	—	-	5	—	5	_	5	ns
ejtag_dck period	t _{DCK} , t ₁₁		10	—	10	_	10	—	ns
jtag_tck clock period	t _{TCK,} t ₃		100	—	100	-	100	—	ns
ejtag_dclk High, Low Time	t _{DCK High} , t ₉ t _{DCK Low} , t ₁₀		4	_	4	_	4	_	ns
ejtag_dclk Rise, Fall Time	t _{DCK Rise} , t9 t _{DCK Fall} , t ₁₀		_	1	_	1	_	1	ns
output_clk ³	t _{DO} 21		N/A	N/A	N/A	N/A	N/A	N/A	-
cpu_coldreset_n Asserted during power-up		power-on sequence	120	_	120	_	120	-	ms
cpu_coldreset_n Rise Time	t _{CRRise}		—	5	—	5	—	5	ns

Table 5 Clock Parameters - RC32332

^{1.} cpu_masterclock frequency should never be below pci_clk frequency if PCI interface is used.

 $^{\rm 2.}$ Rise and Fall times are measured between 10% and 90%.

3. Output_clk should not be used in a system. Only the cpu_masterclock or its derivative must be used to drive all the subsystems with designs based on the RC32334/RC32332. Refer to the RC32334/RC32332 Device Errata for more information.

Reset Specification

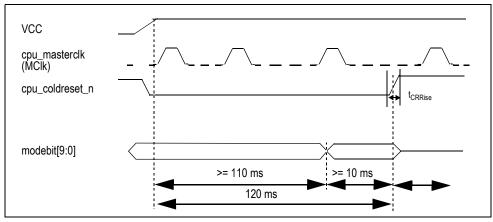


Figure 3 Mode Configuration Interface Cold Reset Sequence

AC Timing Characteristics — RC32332

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

<u>2.5V version</u>: V_{cc} Core = +2.5V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

			100	MHz ¹	133	MHz ¹	150	MHz ¹		User Manual
Signal	Symbol	Reference Edge	Min	Max	Min	Max	Min	Max	Units	Timing Diagram Reference
Local System Interface		•								·
mem_data[31:0] (data phase)	Tsu2	cpu_masterclk rising	6	_	5	-	4.8	—	ns	Chapter 9, Figures
mem_data[31:0] (data phase)	Thld2	cpu_masterclk rising	1.5	-	1.5	-	1.5	-	ns	9.2 and 9.3
cpu_dt_r_n	Tdo3	cpu_masterclk rising	—	15	—	12	—	10	ns	
mem_data[31:0]	Tdo4	cpu_masterclk rising	—	12	_	10	_	9.3	ns	
mem_data[31:0] output hold time	Tdoh1	cpu_masterclk rising	1	—	1	-	1	_	ns	
mem_data[31:0] (tristate disable time)	Tdz	cpu_masterclk rising	-	12 ²	—	10 ²	_	9.3 ²	ns	Chapter 10, Figures 10.6
mem_data[31:0] (tristate to data time)	Tzd	cpu_masterclk rising	_	12 ²	_	10 ²	_	9.3 ²	ns	through 10.8
mem_wait_n	Tsu6	cpu_masterclk rising	9	—	7	—	6	_	ns	
mem_wait_n	Thld8	cpu_masterclk rising	1	—	1	—	1	—	ns	
mem_addr[22:2]	Tdo5	cpu_masterclk rising	—	12	—	9	_	8	ns	
mem_cs_n[5:0]	Tdo6	cpu_masterclk rising	_	12	—	9	—	8	ns	
mem_oe_n, mem_245_oe_n	Tdo7	cpu_masterclk rising	—	12	—	9	_	8	ns	
mem_we_n[3:0]	Tdo7a	cpu_masterclk rising	—	15	—	12	_	10	ns	
mem_245_dt_r_n	Tdo8	cpu_masterclk rising	_	15	—	12	—	10	ns	
mem_addr[25:2] mem_cs_n[5:0] mem_oe_n, mem_we_n[3:0], mem_245_dt_r_n, mem_245_oe_n	Tdoh3	cpu_masterclk rising	1.5	_	1.5	_	1.5	_	ns	
PCI for 3.3V Device ³										
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n	Tsu	pci_clk rising	3	_	3	_	3	_	ns	
pci_idsel, pci_req_n[2], pci_req_n[1], pci_req_n[0], pci_gnt_n[0], pci_inta_n	Tsu	pci_clk rising	5	_	5	_	5	_	ns	
pci_gnt_n[0]	Tsu	pci_clk rising	5	—	5	_	5	_	ns	
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n ⁴	Thld	pci_clk rising	0	_	0		0	_	ns	

Table 6 AC Timing Characteristics - RC32332 (Part 1 of 4)

			100	/Hz ¹	133	MHz ¹	150	MHz ¹	Units ns ns ns ns ns ns	User Manual
Signal	Symbol	Reference Edge	Min	Max	Min	Max	Min	Max	Units	Timing Diagram Reference
pci_idsel, pci_req_n[2], pci_req_n[1], pci_req_n[0], pci_gnt_n[0], pci_inta_n	Thld	pci_clk rising	0	_	0	-	0	-	ns	
pci_eeprom_mdi	Tsu	pci_clk rising, pci_eeprom_sk falling	15	—	12	—	10	—	ns	
pci_eeprom_mdi	Thld	pci_clk rising, pci_eeprom_sk falling	15	_	12	—	10	_	ns	
pci_eeprom_mdo, pci-eeprom_cs	Tdo	pci_clk rising, pci_eeprom_sk falling	_	15	_	12	_	10	ns	
pci_eeprom_sk	Tdo	pci_clk rising	—	15	—	12	-	10	ns	
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
pci_req_n[0], pci_gnt_[2], pci_gnt_n[1], pci_gnt_n[0], pci_inta_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
PCI for 2.5V Device ³										
pci_ad[31:0], pci_par, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n ⁴	Tsu	pci_clk rising	3	_	3	-	3	-	ns	
pci_cbe_n[3:0], pci_frame_n, pci_trdy_n, pci_irdy_n	Tsu	pci_clk rising	4	—	4	—	4	—	ns	
pci_idsel, pci_req_n[2], pci_req_n[0], pci_gnt_n[0], pci_inta_n	Tsu	pci_clk rising	5	—	5	-	5	-	ns	
pci_gnt_n[0]	Tsu	pci_clk rising	5	—	5	-	5	-	ns	
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n, pci_lock_n ⁴	Thld	pci_clk rising	0	—	0	_	0	_	ns	
pci_idsel, pci_req_n[2], pci_req_n[0], pci_gnt_n[0], pci_inta_n	Thld	pci_clk rising	0	_	0	-	0	-	ns	
pci_eeprom_mdi	Tsu	pci_clk rising, pci_eeprom_sk falling	15	—	12	—	10	—	ns	
pci_eeprom_mdi	Thld	pci_clk rising, pci_eeprom_sk falling	15	—	12	—	10	—	ns	
pci_eeprom_mdo, pci-eeprom_cs	Tdo	pci_clk rising, pci_eeprom_sk falling	_	15	_	12	_	10	ns	
pci_eeprom_sk	Tdo	pci_clk rising	—	15	—	12		10	ns	

Table 6 AC Timing Characteristics - RC32332 (Part 2 of 4)

			100	MHz ¹	133	MHz ¹	150	MHz ¹		User Manual
Signal	Symbol	Reference Edge	Min	Max	Min	Max	Min	Max	Units	Timing Diagram Reference
pci_ad[31:0], pci_cbe_n[3:0], pci_par, pci_frame_n, pci_trdy_n, pci_irdy_n, pci_stop_n, pci_perr_n, pci_serr_n, pci_devsel_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
pci_req_n[0], pci_gnt_[2], pci_gnt_n[1], pci_gnt_n[0], pci_inta_n	Tdo	pci_clk rising	2	7.5	2	7.5	2	7.5	ns	
SDRAM Controller			•					•		
sdram_245_dt_r_n	Tdo8	cpu_masterclk rising	—	15	_	12	—	10	ns	Chapter 11,
sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0], sdram_cke	Tdo9	cpu_masterclk rising	_	12	_	9	_	8	ns	Figures 11.4 and 11.5
sdram_addr_12	Tdo10	cpu_masterclk rising	—	12	_	9	_	8	ns	
sdram_245_oe_n	Tdo11	cpu_masterclk rising	_	12	—	9	_	8	ns	
sdram_245_dt_r_n	Tdoh4	cpu_masterclk rising	1	_	1	—	1	_	ns	
sdram_ras_n, sdram_cas_n, sdram_we_n, sdram_cs_n[3:0], sdram_s_n[1:0], sdram_bemask_n[3:0] sdram_cke, sdram_addr_12, sdram_245_oe_n	Tdoh4	cpu_masterclk rising	2.5	_	2.5	_	2.5	_	ns	
DMA						1				
dma_ready_n[0], dma_done_n[0]	Tsu7	cpu_masterclk rising	9	_	7	—	6	—	ns	
dma_ready_n[0], dma_done_n[0]	Thld9	cpu_masterclk rising	1	_	1	-	1	-	ns	Chapter 13, Figure 13.4
Interrupt Handling										
cpu_int_n[1:0], cpu_nmi_n	Tsu9	cpu_masterclk rising	9	—	7	—	6	—	ns	Chapter 14,
cpu_int_n[1:0], cpu_nmi_n	Thld13	cpu_masterclk rising	1	—	1	—	1	—	ns	Figure 14.12
PIO										·
PIO[7:0]	Tsu7	cpu_masterclk rising	9	_	7	_	6	_	ns	Chapter 15,
PIO[7:0]	Thld9	cpu_masterclk rising	1	_	1	—	1	—	ns	Figures 15.9 and 15.10
PIO[7:6], PIO[4:0]	Tdo16	cpu_masterclk rising	—	15	_	12	—	10	ns	10.10
PIO[5]	Tdo19	cpu_masterclk rising	—	15	—	12	—	10	ns	1
PIO[7:6], PIO[4:0]	Tdoh7	cpu_masterclk rising	1	-	1	_	1	_	ns]
PIO[5]	Tdoh7	cpu_masterclk rising	1	-	1	-	1	-	ns	1
UARTs			•		•		•			
uart_rx[0], uart_tx[0]	Tsu7	cpu_masterclk rising	15	_	12	_	10	_	ns	
uart_rx[0], uart_tx[0]	Thld9	cpu_masterclk rising	15	-	12	_	10	_	ns	Chapter 17, Figure 17.16
uart_rx[0], uart_tx[0]	Tdo16	cpu_masterclk rising	—	15	—	12	—	10	ns	
uart_rx[0], uart_tx[0]	Tdoh8	cpu_masterclk rising	1	_	1	—	1	_	ns	1

Table 6 AC Timing Characteristics - RC32332 (Part 3 of 4)

			100	MHz ¹	1331	/Hz ¹	150	MHz ¹		User Manual
Signal	Symbol	Reference Edge	Min	Max	Min	Max	Min	Max	Units	Timing Diagram Reference
Reset	•									
mem_addr[19:17]	Tsu10	cpu_coldreset_n rising	10	—	10		10	_	ms	Chapter 19,
mem_addr[19:17]	Thld10	cpu_coldreset_n rising	1	—	1	—	1	_	ns	Figures 19.8 and 19.9
mem_addr[22:20]	Tsu22	cpu_masterclk rising	9	_	7	—	6	—	ns	10.0
mem_addr[22:20]	Thld22	cpu_masterclk rising	1	_	1	_	1	—	ns	
Debug Interface										
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0]	Tsu20	cpu_coldreset_n rising	10	_	10	_	10	_	ms	
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0]	Thld20	cpu_coldreset_n rising	1	-	1	_	1	_	ns	Chapter 19, Figure 19.9 and Chapter 9, Figure 9.2
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n	Tdo20	cpu_masterclk rising	_	15	_	12	_	10	ns	
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n	Tdoh20	cpu_masterclk rising	1	_	1	_	1	_	ns	
JTAG Interface										
jtag_tms, jtag_tdi, jtag_trst_n	t ₅	jtag_tck rising	10	—	10	_	10	-	ns	
jtag_tms, jtag_tdi, jtag_trst_n	t ₆	jtag_tck rising	10	—	10	_	10	-	ns	See Figure 4 below.
jtag_tdo	t ₄	jtag_tck falling	—	10	—	10		10	ns	
EJTAG Interface								•		
ejtag_tms, ejtag_debugboot	t ₅	jtag_tclk rising	4	—	4	—	4	—	ns	
ejtag_tms, ejtag_debugboot	t ₆	jtag_clk rising	2	—	2	—	2	—	ns	
jtag_tdo Output Delay Time	t _{TDODO,} t ₄	jtag_tck falling	—	6	—	6		6	ns	
jtag_tdi Input Setup Time	t _{TDIS,} t ₅	jtag_tck rising	4	—	4	—	4	_	ns	See Figure 4 below.
jtag_tdi Input Hold Time	t _{TDIH} , t ₆	jtag_tck rising	2	-	2	_	2	—	ns	
jtag_trst_n Low Time	t _{TRSTLow} , t ₁₂	—	100	—	100	_	100	—	ns	
jtag_trst_n Removal Time	t _{TRSTR} , t ₁₃	jtag_tck rising	3	—	3	_	3	—	ns	
ejtag_tpc Output Delay Time	t _{TPCDO} , t ₈	ejtag_dclk rising	-1	3	-1	3	-1	3	ns	
ejtag_pcst Output Delay Time	t _{PCSTDO} , t ₇	ejtag_dclk rising	-1	3	-1	3	-1	3	ns	

Table 6 AC Timing Characteristics - RC32332 (Part 4 of 4)

^{1.} At all pipeline frequencies.

^{2.} Guaranteed by design.

 $^{\rm 3.}$ This PCI interface conforms to the PCI Local Bus Specification, Rev 2.2 at 33MHz.

^{4.} pci_rst_n is tested per PCI 2.2 as an asynchronous signal.

Standard EJTAG Timing — RC32332

Figure 4 represents the timing diagram for the EJTAG interface signals.

The standard JTAG connector is a 10-pin connector providing 5 signals and 5 ground pins. For Standard EJTAG, a 24-pin connector has been chosen providing 12 signals and 12 ground pins. This guarantees elimination of noise problems by incorporating signal-ground type arrangement. Refer to the RC32334/RC32332 User Reference Manual for connector pinout and mechanical specifications.

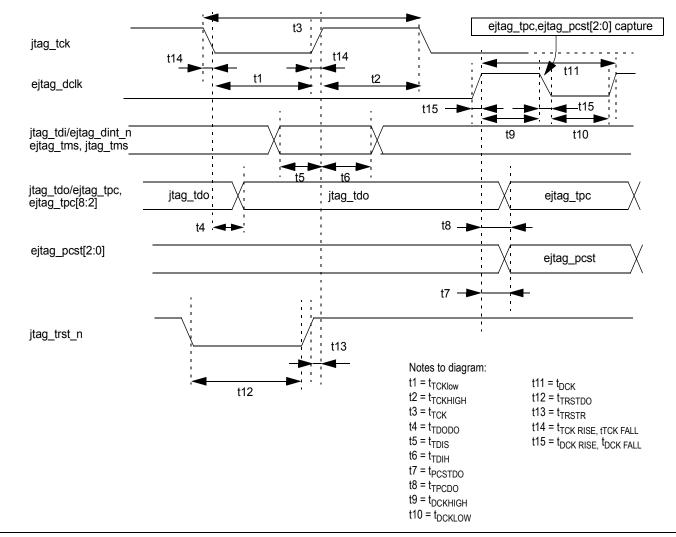


Figure 4 Standard EJTAG Timing

Output Loading for AC Testing

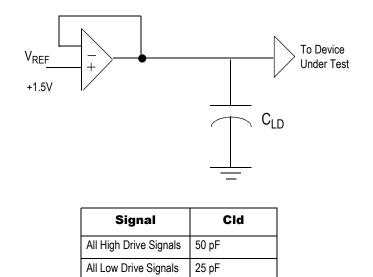


Figure 5 Output Loading for AC Testing

Note: PCI pins have been correlated to PCI 2.2.

Recommended Operation Temperature and Supply Voltage

3.3V Device

Grade	Ambient Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C Ambient	0V	3.3V±5%	3.3V±5%	3.3V±5%

Table 7 Temperature and Voltage — 3.3V Device

2.5V Device

Grade	Ambient Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	2.5V±5%	2.5V±5%
Industrial	-40°C to +85°C Ambient	0V	3.3V±5%	2.5V±5%	2.5V±5%

Table 8 Temperature and Voltage — 2.5V Device

DC Electrical Characteristics — RC32332

Ta Commercial = 0°C to +70°C; Ta Industrial = -40°C to +85°C

<u>3.3V version</u>: V_{cc} Core = +3.3V±5%; V_{cc} I/O = +3.3V±5%

<u>2.5V version</u>: V_{cc} Core = +2.5V \pm 5%; V_{cc} I/O = +3.3V \pm 5%

	Parameter	RC32	2332 ¹	Pin Numbers	Conditions
	i ululiotoi	Minimum	Maximum		Conditions
Input Pads	V _{IL}	_	0.8V	52, 64, 95, 160, 161, 164, 166-169, 176, 191	—
	V _{IH}	2.0V	_	-	
LOW Drive	V _{OL}	208		I _{OUT} = 6mA	
Output Pads	V _{OH}	V _{cc} - 0.4V	_	208	I _{OUT} = 8mA
	V _{IL}	_	0.8V		
	V _{IH}	2.0V	_	-	
HIGH	V _{OL}	_	0.4V	1- 5, 8, 13-15, 18-25, 28-35, 38-40, 49-51, 53- 57, 60, 61, 63, 65-	I _{OUT} = 7mA
Drive Out- put Pads	V _{OH}	V _{cc} - 0.4V	_	67,70-76, 79, 80, 83-87, 90-94, 153, 154, 156, 158, 165, 194, 201, 204, 205, 206	
	V _{IL} — 0.8V				
	V _{IH}	2.0V	_	-	
PCI Drive	V _{IL}	_	_	123, 155, 157, 159	Per PCI 2.2
Input Pads	V _{IH}	_	_	-	
PCI Drive	V _{OL}	_	_	96, 97, 100-109, 112-119, 122, 124-129, 132-139, 142-149, 152	Per PCI 2.2
Output Pads	V _{OH}	_	—		
	V _{IL}	_	_	-	
	V _{IH}	_	—		
All Pads	C _{IN}	_	10pF	All input pads except 155 and 156	_
	C _{IN} ²	5pf	12pF	155	Per PCI 2.2
	C _{IN} ³		8pF	156	Per PCI 2.2
	C _{OUT}	_	10pF	All output pads	_
	I/O _{LEAK}	_	10µA	All non-internal pull-up pins	Input/Output Leakag
	I/O _{LEAK}	_	50µA	All internal pull-up pins	Input/Output Leakag
					l

Table 9 DC Electrical Characteristics - RC32332

^{1.} At all pipeline frequencies.

^{2.} Applies only to pad 155.

^{3.} Applies only to pad 156.

Capacitive Load Deration — RC32332

Refer to the IDT document 79RC32332 IBIS Model located on the company's web site.

Power Consumption

3.3V Device

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

Р	Parameter		MHz	133	MHz	150	MHz	Unit	Conditions
		Typical	Max.	Typical	Max.	Typical	Max.		
I _{CC}	Normal mode	360	480	480	630	550	700	mA	C _L = (See Figure 5, Output Loading
	Standby mode ¹	250	370	330	480	390	540	mA	for AC Testing) T _a = 25ºC
Power	Normal mode	1.2	1.7	1.5	2.2	1.7	2.4	W	V_{cc} Core = 3.46V (for max. values)
Dissipation	Standby mode ¹	0.83	1.3	1.1	1.7	1.3	1.9	W	V_{cc} I/O = 3.46V (for max. values) V_{cc} Core = 3.3V (for typical values) V_{cc} I/O = 3.3V (for typical values)

Table 10 Power Consumption — 3.3V Device

^{1.} RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

2.5V Device

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

P	Parameter		MHz	133	MHz	150	MHz	Unit Conditions		
		Typical	Max.	Typical	Max.	Typical	Max.			
I _{CC} I/O	Normal mode	24	81	32	93	35	104	mA	C _L = (See Figure 5, Output Loading	
	Standby mode ¹	2	81	2	93 2 104 mA	mA	for AC Testing) T _a = 25ºC			
I _{CC} core	Normal mode	232	301	298	392	333	438	mA	V_{cc}^{u} Core = 2.625V (for max. values)	
	Standby mode ¹	120	269	151	319	168	345	mA	V _{cc} I/O = 3.46V (for max. values) V _{cc} Core = 2.5V (for typical values)	
Power	Normal mode	0.66	1.07	0.85	1.35	0.95	1.51	W	V_{cc} I/O = 3.3V (for typical values)	
Dissipation	Standby mode ¹	0.31	0.94	0.38	1.10	0.43	1.21	W		

Table 11 Power Consumption — 2.5V Device

¹ RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

Power Ramp-up

3.3V Device

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

2.5V Device

The 2.5V core supply (and 2.5V $V_{cc}P$ supply) can be fully powered without the 3.3V I/O supply. However, the 3.3V I/O supply cannot exceed the 2.5V core supply by more than 1 volt during power up. A sustained large power difference could potentially damage the part. Inputs should not be driven until the part is fully powered. Specifically, the input high voltages should not be applied until the 3.3V I/O supply is powered.

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

Power Curves

The following four graphs contain the simulated power curves that show power consumption at various bus frequencies. Figures 6 and 7 apply to the 3.3V device, while Figures 8 and 9 apply to the 2.5V device.

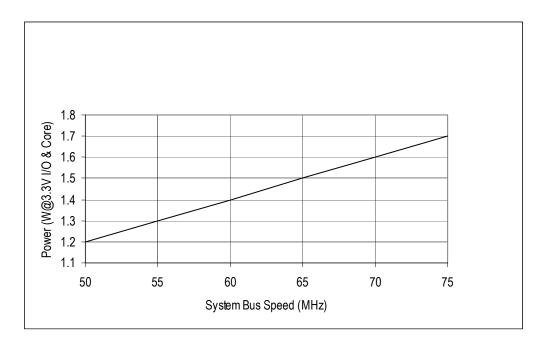


Figure 6 Typical Power Usage — RC32V332 Device

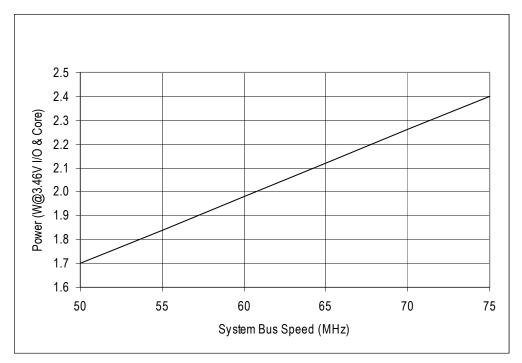


Figure 7 Maximum Power Usage — RC32V332 Device

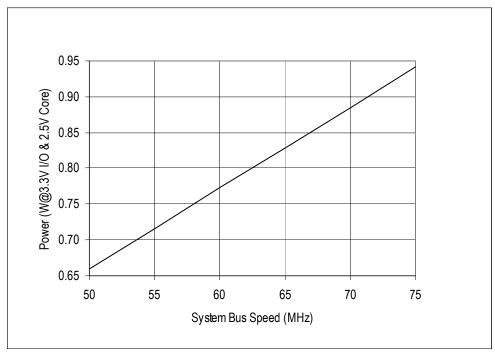


Figure 8 Typical Power Usage — RC32T332 Device

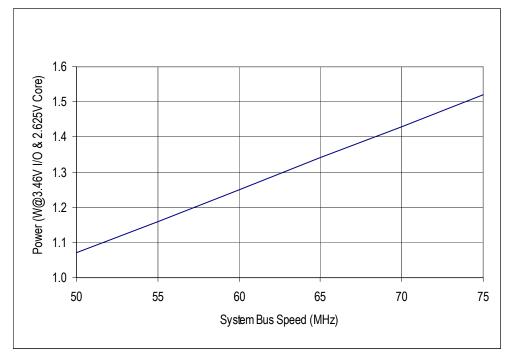


Figure 9 Maximum Power Usage — RC32T332 Device

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} Core 3.3V Device	Supply Voltage	-0.3	4.0	V
V _{cc} Core 2.5V Device	Supply Voltage	-0.3	3.0	V
V _{cc} I/O	I/O Supply Voltage	-0.3	4.0	V
Vi 3.3V Device	Input Voltage	-0.3	5.5	V
Vi 2.5V Device	Input Voltage	-0.3	V _{cc} I/O+0.3	V
Vimin	Input Voltage - undershoot ²	-0.6	—	V
Tstg	Storage Temperature	-40	125	degrees C

Table 12 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 7. Absolute maximum ratings are stress ratings only, and functional operation is not guaranteed beyond recommended operating voltages and temperatures. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

^{2.} All PCI pads are fully compatible with PCI Specification version 2.2.

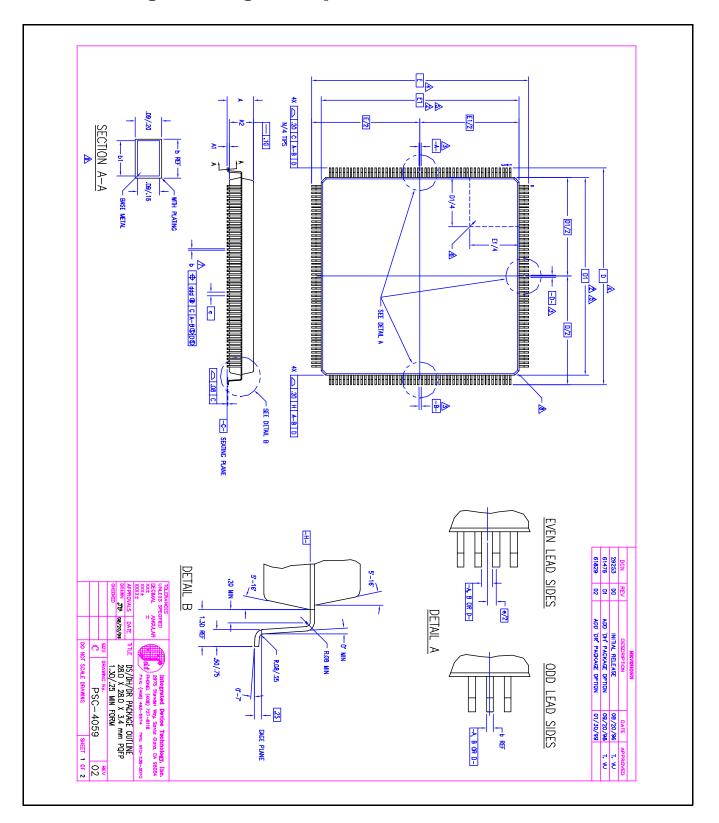
Package Pin-out — 208-PQFP for RC32332

The following table lists the pin numbers and signal names for the RC32332. Signal names ending with an _n are active when low.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
1	sdram_245_oe_n		53	mem_data[12]		105	pci_ad[7]		157	pci_req_n[2]	1
2	sdram_we_n		54	mem_data[19]		106	pci_cbe_n[0]		158	pci_gnt_n[2]	1
3	sdram_cas_n		55	mem_data[13]		107	pci_ad[8]		159	pci_rst_n	
4	sdram_bemask_n[0]		56	mem_data[18]		108	pci_ad[9]		160	cpu_int_n[0]	
5	sdram_bemask_n[1]		57	mem_data[14]		109	pci_ad[10]		161	cpu_int_n[1]	
6	V _{ss}		58	V _{ss}		110	V _{ss}		162	V _{ss}	
7	V _{cc} I/O		59	V _{cc} I/O		111	V _{cc} I/O		163	V _{cc} I/O	
8	sdram_cs_n[0]		60	mem_data[17]		112	pci_ad[11]		164	jtag_tdi	
9	sdram_cs_n[1]		61	mem_data[16]		113	pci_ad[12]		165	jtag_tdo	
10	sdram_ras_n		62	V _{cc} core		114	pci_ad[13]		166	jtag_tms	
11	sdram_s_n[0]		63	mem_data[15]		115	pci_ad[14]		167	ejtag_tms	
12	sdram_s_n[1]		64	cpu_masterclk		116	pci_ad[15]		168	jtag_tck	
13	mem_addr[2]	1	65	mem_data[31]		117	pci_cbe_n[1]		169	jtag_trst_n	
14	mem_addr[3]	1	66	mem_data[0]		118	pci_par		170	ejtag_pcst[0]	1
15	mem_addr[4]	1	67	mem_data[30]		119	pci_serr_n		171	ejtag_pcst[1]	1
16	V _{ss}		68	V _{ss}		120	V _{ss}		172	V _{ss}	
17	V _{cc} I/O		69	V _{cc} I/O		121	V _{cc} I/O		173	V _{cc} I/O	
18	mem_addr[5]	1	70	mem_data[1]		122	pci_perr_n		174	ejtag_pcst[2]	1
19	mem_addr[6]	1	71	mem_data[29]		123	pci_lock_n		175	ejtag_dclk	

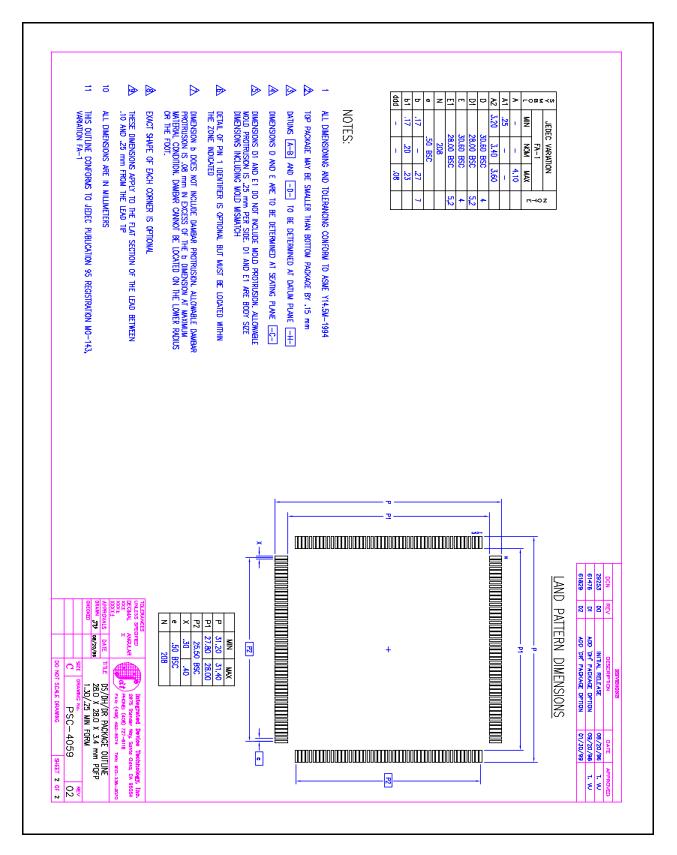
Table 13 RC32332 208-pin QFP Package Pin-Out (Part 1 of 2)

Pin	Function	Alt									
20	mem_addr[7]	1	72	mem_data[2]		124	pci_stop_n		176	ejtag_debugboot	
21	mem_addr[8]	1	73	mem_data[28]		125	pci_devsel_n		177	debug_cpu_i_d_n	1
22	mem_addr[9]	1	74	mem_data[3]		126	pci_trdy_n		178	debug_cpu_ads_n	1
23	mem_addr[10]	1	75	mem_data[27]		127	pci_irdy_n		179	debug_cpu_ack_n	1
24	mem_addr[11]	1	76	mem_data[4]		128	pci_frame_n		180	debug_cpu_dma_n	1
25	output_clk		77	V _{cc} p		129	pci_cbe_n[2]		181	V _{cc} I/O	
26	V _{ss}		78	V _{ss} p		130	V _{ss}		182	V _{ss}	
27	V _{cc} core		79	mem_data[26]		131	V _{cc} core		183	V _{cc} core	
28	mem_addr_12		80	mem_data[5]		132	pci_ad[16]		184	V _{cc} I/O	
29	sdram_addr_12		81	V _{ss}		133	pci_ad[17]		185	spi_ss_n	1
30	sdram_cke		82	V _{cc} core		134	pci_ad[18]		186	spi_sck	2
31	sdram_cs_n[2]		83	cpu_dt_r_n	2	135	pci_ad[19]		187	spi_miso	2
32	sdram_cs_n[3]		84	mem_data[25]		136	pci_ad[20]		188	spi_mosi	2
33	sdram_bemask_n[2]		85	mem_data[6]		137	pci_ad[21]		189	dma_ready_n[0]	2
34	sdram_bemask_n[3]		86	mem_data[24]		138	pci_ad[22]		190	mem_245_oe_n	
35	mem_addr[13]		87	mem_data[7]		139	pci_ad[23]		191	mem_wait_n	2
36	V _{ss}		88	V _{ss}		140	V _{ss}		192	V _{ss}	
37	V _{cc} I/O		89	V _{cc} I/O		141	V _{cc} I/O		193	V _{cc} I/O	
38	mem_addr[14]		90	mem_data[23]		142	pci_cbe_n[3]		194	mem_oe_n	
39	mem_addr[15]	1	91	mem_data[8]		143	pci_ad[24]		195	mem_cs_n[0]	
40	mem_addr[16]	1	92	mem_data[22]		144	pci_ad[25]		196	mem_cs_n[1]	
41	mem_addr[17]	1	93	mem_data[9]		145	pci_ad[26]		197	mem_cs_n[2]	
42	mem_addr[18]	1	94	mem_data[21]		146	pci_ad[27]		198	mem_cs_n[3]	
43	mem_addr[19]	1	95	cpu_nmi_n		147	pci_ad[28]		199	mem_cs_n[4]	
44	mem_addr[20]	1	96	pci_ad[0]		148	pci_ad[29]		200	mem_cs_n[5]	
45	mem_addr[21]	1	97	pci_ad[1]		149	pci_ad[30]		201	mem_we_n[0]	
46	V _{ss}		98	V _{ss}		150	V _{ss}		202	V _{ss}	
47	V _{cc} I/O		99	V _{cc} I/O		151	V _{cc} I/O		203	V _{cc} I/O	
48	mem_addr[22]	1	100	pci_ad[2]		152	pci_ad[31]		204	mem_we_n[1]	
49	mem_data[10]		101	pci_ad[3]		153	pci_req_n[0]		205	mem_we_n[2]	1
50	mem_data[11]		102	pci_ad[4]		154	pci_gnt_n[0]		206	mem_we_n[3]	1
51	mem_data[20]		103	pci_ad[5]		155	pci_clk		207	uart_tx[0]	1
52	cpu_coldreset_n		104	pci_ad[6]		156	pci_gnt_n[1]	2	208	uart_rx[0]	1

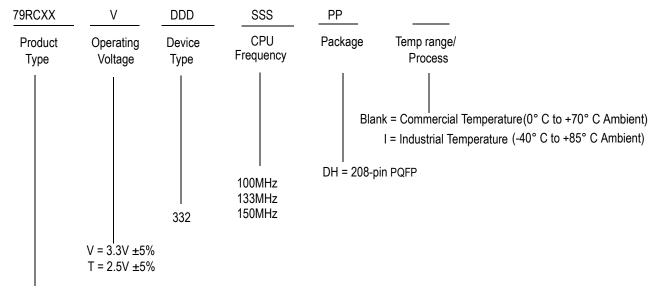

Table 13 RC32332 208-pin QFP Package Pin-Out (Part 2 of 2)

RC32332 Alternate Signal Functions

Pin	Alt #1	Alt #2	Pin	Alt #1	Alt #2	Pin	Alt #1	Alt #2
13	sdram_addr[2]		40	sdram_addr[16]		174	modebit[2]	
14	sdram_addr[3]		41	modebit[7]		177	modebit[3]	
15	sdram_addr[4]		42	modebit[8]		178	modebit[5]	
18	sdram_addr[5]		43	modebit[9]		179	modebit[4]	
19	sdram_addr[6]		44	reset_pci_host_mode		180	modebit[6]	
20	sdram_addr[7]		45	reset_boot_mode[0]		185	PIO[4]	
21	sdram_addr[8]		48	reset_boot_mode[1]		186	PIO[5]	pci_eeprom_sk
22	sdram_addr[9]		83	mem_245_dt_r_n	sdram_245_dt_r_n	187	PIO[3]	pci_eeprom_mdi
23	sdram_addr[10]		156	pci_eeprom_cs (satellite)	PIO[7]	188	PIO[6]	pci_eeprom_mdo
24	sdram_addr[11]		157	pci_idsel (satellite)		189	PIO[0]	dma_done_n[0]
35	sdram_addr[13]		158	pci_inta_n (satellite)		191	sdram_wait_n	mem_wait_n
38	sdram_addr[14]		170	modebit[0]		207	PIO[1]	
39	sdram_addr[15]		171	modebit[1]		208	PIO[2]	


Table 14 RC32332 Alternate Signal Functions

RC32332 Package Drawing — 208-pin PQFP



RC32332 Package Drawing — Page Two

IDT 79RC32332

Ordering Information

79RC32 = 32-bit family product

Valid Combinations

3.3V Device

79RC32V332 - 100DH, 133DH, 150DH	Commercial
79RC32V332 - 100DHI, 133DHI, 150DHI	Industrial
2.5V Device	
79RC32T332 - 100DH, 133DH, 150DH	Commercial
79RC32T332 - 100DHI, 133DHI, 150DHI	Industrial

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>