onsemi

ESD Protection Diode Array, 5-Line

SMS05C, SMS12C, SMS15C, SMS24C

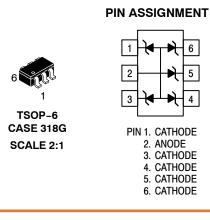
This 5-line surge protection array is designed for application requiring transient voltage protection capability. It is intended for use in over-transient voltage and ESD sensitive equipment such as computers, printers, automotive electronics, networking communication and other applications. This device features a monolithic common anode design which protects five independent lines in a single TSOP-6 package.

Features

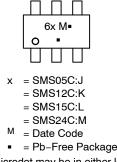
- Protects up to 5 Lines in a Single TSOP-6 Package
- Peak Power Dissipation 350 W (8 \times 20 µs Waveform)
- ESD Rating of Class 3B (Exceeding 8.0 kV) per Human Body Model and Class C (Exceeding 400 V) per Machine Model
- Compliance with IEC 61000–4–2 (ESD) 15 kV (Air), 8.0 kV (Contact)
- Flammability Rating of UL 94 V-0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These are Pb–Free Devices

Applications

- Hand-Held Portable Applications
- Networking and Telecom
- Automotive Electronics
- Serial and Parallel Ports
- Notebooks, Desktops, Servers


Symbol	Rating	Value	Unit					
P _{PK} 1	Peak Power Dissipation 8 \times 20 μs Double Exponential Waveform (Note 1)	350	W					
TJ	Operating Junction Temperature Range	-40 to 150	°C					
T _{STG}	Storage Temperature Range	–55 to 150	°C					
TL	Lead Solder Temperature (10 s)	260	°C					
ESD	Human Body Model (HBM) Machine Model (MM) IEC 61000-4-2 Air (ESD) IEC 61000-4-2 Contact (ESD)	>8000 >400 >15000 >8000	V					

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise specified)


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 3.

TSOP-6 FIVE SURGE PROTECTION 350 W PEAK POWER

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
SMS05CT1G		
SMS12CT1G	TSOP-6	3000 / Tape & Reel
SMS15CT1G	(Pb-Free)	50007 Tape & Neel
SMS24CT1G SZSMS24CT1G		

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SMS05C, SMS12C, SMS15C, SMS24C

SMS05C ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

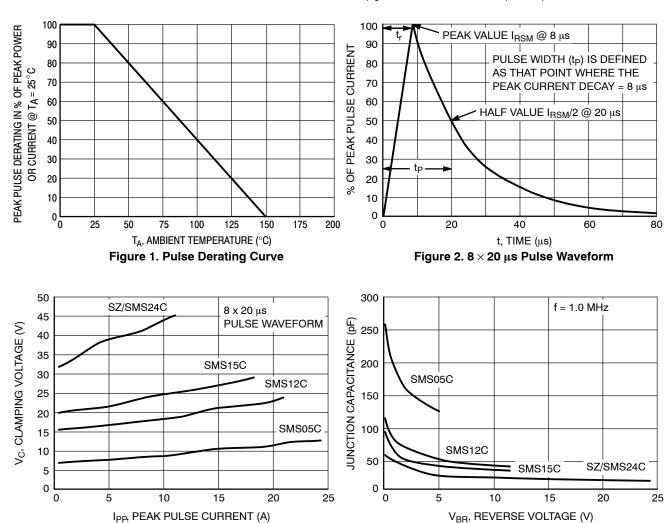
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			5.0	V
Breakdown Voltage	V _{BR}	I _T = 1.0 mA (Note 3)	6.2		7.2	V
Reverse Leakage Current I _R		V _{RWM} = 5.0 V			5.0	μA
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μ s Waveform)			9.8	V
Clamping Voltage V _C		I_{PP} = 24 A (8 \times 20 μ s Waveform)			14.5	V
Maximum Peak Pulse Current I _{PP}		8 \times 20 μ s Waveform			24	А
Capacitance C _J		$V_R = 0 V$, f = 1.0 MHz (Line to GND)		260	400	pF

SMS12C ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			12	V
Breakdown Voltage V		I _T = 1.0 mA (Note 3)	13.3		15	V
Reverse Leakage Current		V _{RWM} = 12 V		0.001	1.0	μA
Clamping Voltage	bing Voltage V_{C} I _{PP} = 5.0 A (8 \times 20 μ s Waveform)				19	V
Clamping Voltage V _C		I_{PP} = 15 A (8 \times 20 μs Waveform)			23	V
Maximum Peak Pulse Current	I _{PP}	8 \times 20 μs Waveform			15	А
Capacitance C _J		V_R = 0 V, f = 1.0 MHz (Line to GND)		120	150	pF

SMS15C ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified) (See Note 4)

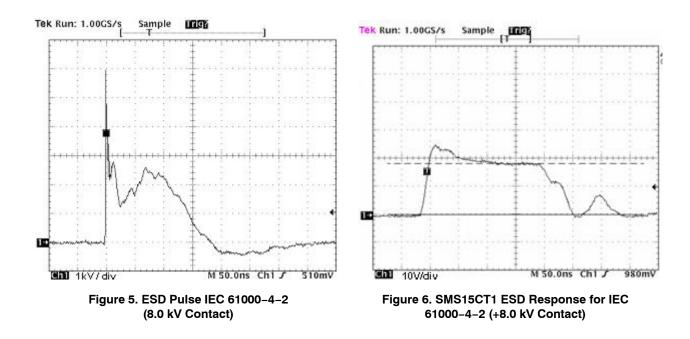
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			15	V
Breakdown Voltage	V _{BR}	V _{BR} I _T = 1.0 mA (Note 3)			19	V
Reverse Leakage Current	I _R	V _{RWM} = 15 V		0.05	1.0	μΑ
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μs Waveform)			24	V
Clamping Voltage	V _C	I_{PP} = 12 A (8 \times 20 μs Waveform)			29	V
Maximum Peak Pulse Current	I _{PP}	8 $ imes$ 20 μ s Waveform			12	А
Capacitance C _J		$V_R = 0 V$, f = 1.0 MHz (Line to GND)		95	125	pF


SZ/SMS24C ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			24	V
Breakdown Voltage	V _{BR}	V _{BR} I _T = 1.0 mA (Note 3)			32	V
Reverse Leakage Current	I _R	V _{RWM} = 24 V		0.001	1.0	μA
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μs Waveform)			40	V
Clamping Voltage	V _C	I_{PP} = 8 A (8 \times 20 μ s Waveform)			44	V
Maximum Peak Pulse Current	I _{PP}	8 \times 20 μs Waveform			8.0	А
Capacitance	CJ	$V_R = 0 V$, f = 1.0 MHz (Line to GND)		60	75	pF

2. Surge protection devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.

3. V_{BR} is measured at pulse test current I_T. 4. Parametrics are the same for the Pb–Free packages, which are suffixed with a "G".


SMS05C, SMS12C, SMS15C, SMS24C

TYPICAL PERFORMANCE CURVES (T₁ = 25°C unless otherwise specified)

Figure 3. Clamping Voltage vs. Peak Pulse Current

SMS05C, SMS12C, SMS15C, SMS24C

TYPICAL COMMON ANODE APPLICATIONS

A 5 surge protection junction common anode design in a TSOP–6 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design

especially when board space is at a premium. A simplified example of SMS05C Series Device applications is illustrated below.

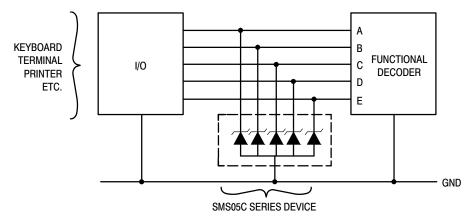
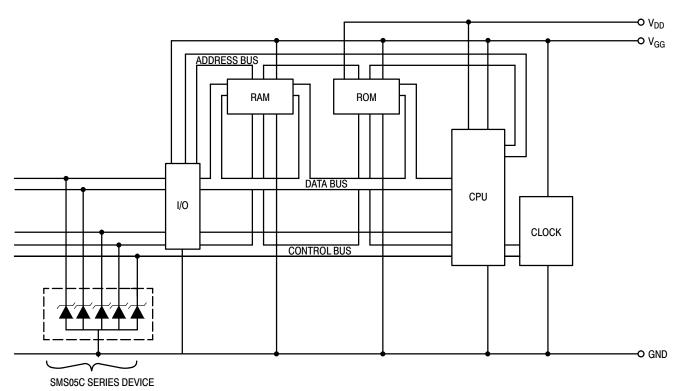



Figure 7. Computer Interface Protection

onsemi

TSOP-6 CASE 318G-02 ISSUE V DATE 12 JUN 2012 SCALE 2:1 NOTES: D 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM 2 Η З. LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D 4 ¥ 12 4 GAUGE E1 Е AND E1 ARE DETERMINED AT DATUM H. 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE. ل الأ 4 MILLIMETERS М NOTE 5 b DIM MIN NOM MAX 0.90 1.10 DETAIL Z Α 1.00 A1 0.01 0.06 0.10 b 0.25 0.38 0.50 с 0.10 0 18 0.26 D 2.90 3.00 3.10 С Е 2.50 2.75 Α 3.00 $|\cap$ 0.05 E1 1.30 1.50 1.70 e L 0.85 0.95 1.05 0.40 0.20 0.60 Δ1 L2 M 0.25 BSC DETAIL Z 0 10° STYLE 3: PIN 1. ENABLE 2. N/C STYLE 2: PIN 1. EMITTER 2 2. BASE 1 STYLE 4: PIN 1. N/C 2. V in STYLE 5: PIN 1. EMITTER 2 2. BASE 2 STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR STYLE 1: PIN 1. DRAIN 2. DRAIN 3. COLLECTOR 1 4. EMITTER 1 3. R BOOST 4. Vz 3. COLLECTOR 1 4. EMITTER 1 3. GATE 4. SOURCE 3. NOT USED 4. GROUND 3. BASE 4. EMITTER 5. ENABLE 6. LOAD 5. COLLECTOR 6. COLLECTOR 5. DRAIN 5. BASE 2 5. V in 5. BASE 1 6. V out 6. COLLECTOR 2 6. COLLECTOR 2 6. DRAIN STYLE 11: STYLE 7 STYLE 8: STYLE 9: STYLE 10: STYLE 12: PIN 1. COLLECTOR PIN 1. Vbus PIN 1. LOW VOLTAGE GATE PIN 1. D(OUT)+ PIN 1. SOURCE 1 2. DRAIN 2 PIN 1. I/O 2. GROUND 2. COLLECTOR 2. D(in) 2. DRAIN 2. GND 3. D(in)+ 4. D(out)+ 3. SOURCE 4. DRAIN 3. D(OUT)-4. D(IN)-3. BASE 3. DRAIN 2 3. I/O 4 N/C 4 I/O 4 SOURCE 2 5. COLLECT 6. EMITTER COLLECTOR 5. D(out) 6. GND 5. DRAIN 6. HIGH VOLTAGE GATE 5. VBUS 6. D(IN)+ 5. GATE 1 6. DRAIN 1/GATE 2 5. VCC 6. I/O STYLE 13: PIN 1. GATE 1 STYLE 14: PIN 1. ANODE STYLE 15: PIN 1. ANODE STYLE 16: PIN 1. ANODE/CATHODE STYLE 17: PIN 1. EMITTER 2. SOURCE 2 2. SOURCE 2. SOURCE 3. GATE 2. BASE 2. BASE 3 EMITTER 3 ANODE/CATHODE 3. GATE 2 3 GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 4. DRAIN 2 4. DRAIN 4 COLLECTOR ANODE CATHODE 5. SOURCE 1 5. N/C 5. ANODE 5. 6. DRAIN 1 6. CATHODE/DRAIN 6. CATHODE CATHODE COLLECTOR 6. 6. GENERIC RECOMMENDED **MARKING DIAGRAM*** SOLDERING FOOTPRINT* 0.60 XXXAYW= XXX M= 0 o 1LI 6X 3.20 IC **STANDARD** 0.95 XXX = Specific Device Code XXX = Specific Device Code А =Assembly Location Μ = Date Code Y = Year = Pb-Free Package W = Work Week 0.95 = Pb-Free Package PITCH DIMENSIONS: MILLIMETERS *This information is generic. Please refer to device data *For additional information on our Pb-Free strategy and soldering sheet for actual part marking. Pb-Free indicator, "G" details, please download the ON Semiconductor Soldering and or microdot "•", may or may not be present. Some Mounting Techniques Reference Manual, SOLDERRM/D. products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER 00468440000

DOCUMENT NUMBER:	98ASB14888C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	TSOP-6		PAGE 1 OF 1				
onsemi and OOSEM) are trademarks of Semiconductor Components Industries 11C dae onsemi or its subsidiaries in the United States and/or other countries onsemi reserves							

onsemi and OI ISCIT II are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales