

December 1994

54F/74F00

Quad 2-Input NAND Gate

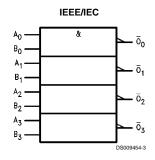
General Description

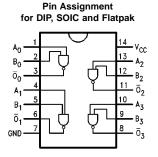
Features

This device contains four independent gates, each of which performs the logic NAND function.

■ Guaranteed 4000V minimum ESD protection

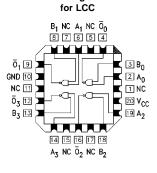
Ordering Code: See Section 0


Commercial	Military	Package	Package Description				
		Number					
74F00PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line				
	54F00DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line				
74F00SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC				
74F00SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ				
	54F00FM (Note 2)	W14B	14-Lead Cerpack				
	54F00LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C				


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol


Connection Diagrams

Pin Assignment

DS009454-2

DS009454-1

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

www.national.com

1

Unit Loading/Fan Out See Section 0 for U.L. definitions

		54F/74F				
Pin Names	Description	U.L.	Input I _{IH} /I _{IL}			
		HIGH/LOW	Output I _{OH} /I _{OL}			
A _n , B _n	Inputs	1.0/1.0	20 μA/-0.6 mA			
<u>o</u> .	Outputs	50/33.3	-1 mA/20 mA			

www.national.com

Absolute Maximum Ratings (Note 3)

Storage Temperature -65°C to +150°C Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +175°C Plastic -55°C to +150°C

 V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 4) -0.5V to +7.0VInput Current (Note 4) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

–0.5V to $V_{\mbox{\scriptsize CC}}$ Standard Output TRI-STATE® Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial 0°C to +70°C

Supply Voltage

Commercial +4.5V to +5.5V

Note 3: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these

Note 4: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

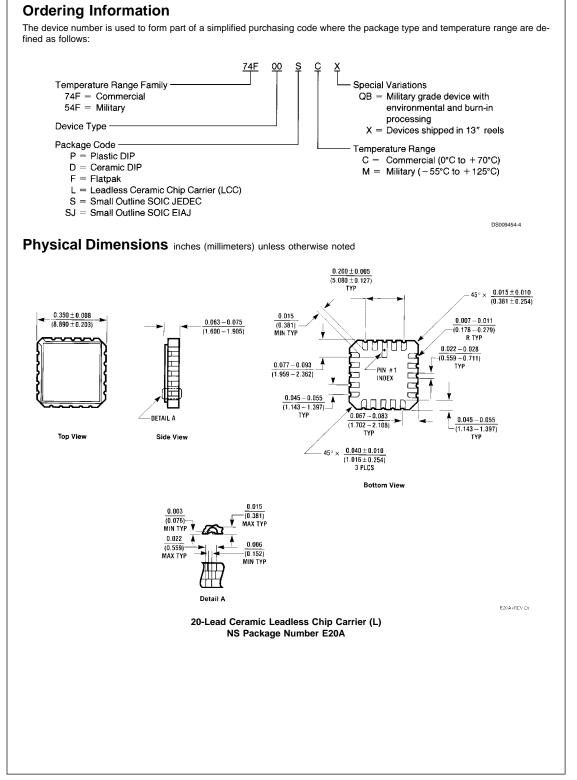
Symbol	I Parameter		54F/74F			Units	V _{cc}	Conditions	
			Min	Тур	Max	1			
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	54F 10% V _{CC}	2.5					I _{OH} = -1 mA	
	Voltage	74F 10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
		74F 5% $V_{\rm CC}$	2.7					I _{OH} = -1 mA	
V _{OL}	Output LOW	54F 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage	74F 10% V _{CC}			0.5			I _{OL} = 20 mA	
I _{IH}	Input HIGH	54F			20.0	μΑ	Max	V _{IN} = 2.7V	
	Current	74F			5.0				
I _{BVI}	Input HIGH Current	54F			100	μΑ	Max	V _{IN} = 7.0V	
	Breakdown Test	74F			7.0				
I _{CEX}	Output HIGH	54F			250	μA	Max	V _{OUT} = V _{CC}	
	Leakage Current	74F			50				
V _{ID}	Input Leakage	74F	4.75			V	0.0	I _{ID} = 1.9 μA	
	Test							All other pins grounded	
I _{OD}	Output Leakage	74F			3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current							All other pins grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current			1.9	2.8	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Currer		6.8	10.2	mA	Max	V _O = LOW		

AC Electrical Characteristics

See Section 0 for Waveforms and Load Configurations

	Parameter	74F T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig.
Symbol										
		Min	Тур	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	2.4	3.7	5.0	2.0	7.0	2.4	6.0	ns	**-**
t _{PHL}	A_n , B_n to \overline{O}_n	1.5	3.2	4.3	1.5	6.5	1.5	5.3		

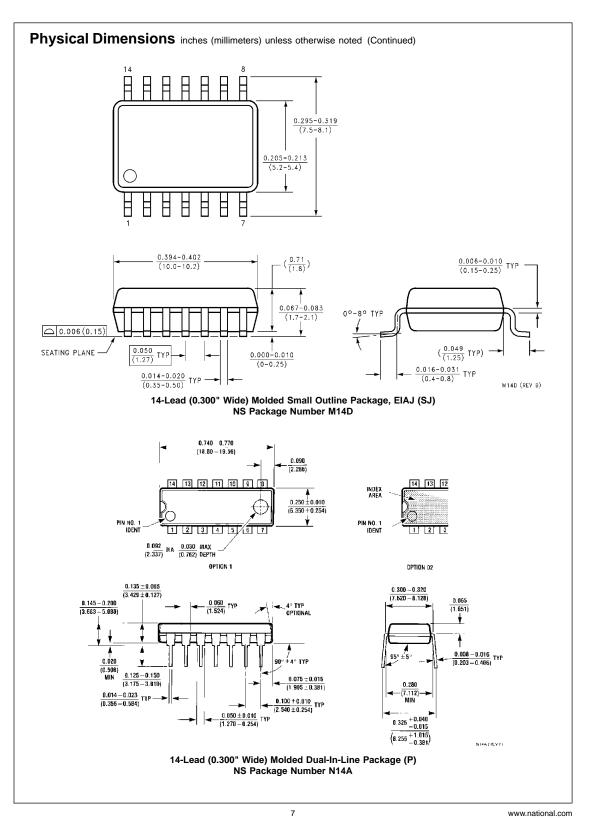
www.national.com


Proof

DSXXX

Extract

1

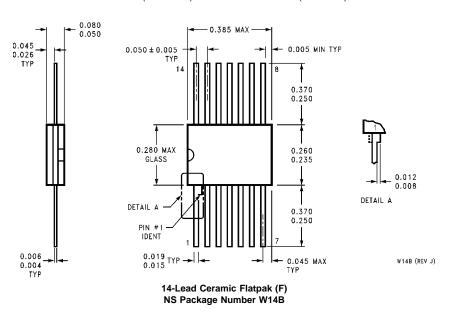


www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.785 (19.939) MAX 14 13 12 11 10 9 8 0.025 (0.635)0.220-0.310 RAD (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.005 0.200 (0.127) MIN GLASS (7.366-8.128) 0.060 ±0.005 (5.080)MAX 0.020-0.060 SEALANT (1.524 ±0.127) 0.180 (0.508-1.524) MAX (4.572)86°94° TYP 0.008-0.012 10° MAX (0.203-0.305) 0.310-0.410 0.018 ± 0.003 0.125-0.200 0.098 (7.874-10.41) (0.457 ±0.076) (3.175-5.080) (2.489) 0.100 ±0.010 MAX BOTH ENDS 0.150 (2.540 ±0.254) (3.81) MIN J14A (REV G) 14-Lead Ceramic Dual-In-Line Package (D) NS Package Number J14A 0.335 - 0.344 (8.509 - 8.738) $\frac{0.228 - 0.244}{(5.791 - 6.198)}$ LEAD NO. 1 0.010 (0.254) MAX $\frac{0.150 - 0.157}{(3.810 - 3.988)}$ $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ 0.010 - 0.020 (0.254 - 0.508) 8° MAX TYP $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ ALL LEADS SEATING PLANE 0.014 0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS $-\frac{0.014 - 0.020}{(0.356 - 0.508)}$ TYP 0.016 - 0.050 0.004 (0.102) ALL LEAD TIPS (0.406 - 1.270) TYP ALL LEADS $-\frac{0.008}{(0.203)}$ TYP MI4A (REV H)

www.national.com

14-Lead (0.150" Wide) Molded Small Outline Package, JEDEC (S)
NS Package Number M14A



PrintDate=1997/08/27 PrintTime=13:03:45 9738 ds009454 Rev. No. 1 cmserv

www.national.com

Proof

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-530 85 86 Email: europe. support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Hong Kong Ltd.

13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.

Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.