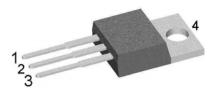
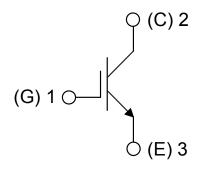
**XPT IGBT** 

preliminary

1200 V  $V_{CES}$ 


38A

V<sub>CE(sat)</sub> = 1.8V


Single IGBT

Part number

IXA20I1200PB



Backside: collector



### Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
  - short circuit rated for 10 µsec.
  - very low gate charge
- low EMI
- square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

### Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipmentSwitched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

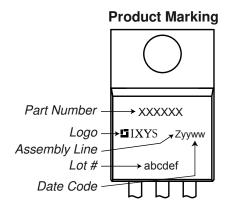
### Package: TO-220

- · Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0





preliminary


| IGBT                 |                                      |   |                                                          |                                 | 1    | Ratings | 3    |      |
|----------------------|--------------------------------------|---|----------------------------------------------------------|---------------------------------|------|---------|------|------|
| Symbol               | Definition                           |   | Conditions                                               |                                 | min. | typ.    | max. | Unit |
| V <sub>CES</sub>     | collector emitter voltage            |   |                                                          | $T_{VJ} = 25^{\circ}C$          |      |         | 1200 | V    |
| V <sub>GES</sub>     | max. DC gate voltage                 |   |                                                          |                                 |      |         | ±20  | V    |
| $V_{GEM}$            | max. transient gate emitter voltage  |   |                                                          |                                 |      |         | ±30  | V    |
| I <sub>C25</sub>     | collector current                    |   |                                                          | $T_{\rm C} = 25^{\circ}{\rm C}$ |      |         | 38   | Α    |
| I <sub>C80</sub>     |                                      |   |                                                          | $T_{c} = 80^{\circ}C$           |      |         | 22   | Α    |
| P <sub>tot</sub>     | total power dissipation              |   |                                                          | $T_C = 25^{\circ}C$             |      |         | 165  | W    |
| V <sub>CE(sat)</sub> | collector emitter saturation voltage |   | $I_{C}$ = 15A; $V_{GE}$ = 15 V                           | $T_{VJ} = 25^{\circ}C$          |      | 1.8     | 2.1  | V    |
|                      |                                      |   |                                                          | $T_{VJ} = 125$ °C               |      | 2.1     |      | V    |
| $V_{GE(th)}$         | gate emitter threshold voltage       |   | $I_C$ = 0.6mA; $V_{GE}$ = $V_{CE}$                       | $T_{VJ} = 25^{\circ}C$          | 5.4  | 5.9     | 6.5  | V    |
| I <sub>CES</sub>     | collector emitter leakage current    |   | $V_{CE} = V_{CES}$ ; $V_{GE} = 0 \text{ V}$              | $T_{VJ} = 25^{\circ}C$          |      |         | 0.1  | mA   |
|                      |                                      |   |                                                          | $T_{VJ} = 125$ °C               |      | 0.1     |      | mΑ   |
| I <sub>GES</sub>     | gate emitter leakage current         |   | $V_{GE} = \pm 20 \text{ V}$                              |                                 |      |         | 500  | nA   |
| $Q_{G(on)}$          | total gate charge                    |   | $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$ | 15 A                            |      | 47      |      | nC   |
| t <sub>d(on)</sub>   | turn-on delay time                   | ) |                                                          |                                 |      | 70      |      | ns   |
| tr                   | current rise time                    |   | 2.1.28.1.1                                               | T 40500                         |      | 40      |      | ns   |
| $t_{d(off)}$         | turn-off delay time                  |   | inductive load                                           | $T_{VJ} = 125^{\circ}C$         |      | 250     |      | ns   |
| t <sub>f</sub>       | current fall time                    | ۲ | $V_{CE} = 600 \text{ V}; I_{C} = 15 \text{ A}$           |                                 |      | 100     |      | ns   |
| E <sub>on</sub>      | turn-on energy per pulse             |   | $V_{GE} = \pm 15 \text{ V}; R_G = 56 \Omega$             |                                 |      | 1.65    |      | mJ   |
| E <sub>off</sub>     | turn-off energy per pulse            | J |                                                          |                                 |      | 1.7     |      | mJ   |
| RBSOA                | reverse bias safe operating area     | 7 | $V_{GE} = \pm 15 \text{ V}; R_{G} = 56 \Omega$           | T <sub>VJ</sub> = 125°C         |      |         |      | <br> |
| I <sub>CM</sub>      |                                      |   | $V_{CEmax} = 1200 V$                                     |                                 |      |         | 45   | Α    |
| SCSOA                | short circuit safe operating area    | 7 | V <sub>CEmax</sub> = 900 V                               |                                 |      |         |      | <br> |
| tsc                  | short circuit duration               | } | $V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$      | $T_{VJ} = 125$ °C               |      |         | 10   | μs   |
| I <sub>sc</sub>      | short circuit current                | J | $R_G$ = 56 $\Omega$ ; non-repetitive                     |                                 |      | 60      |      | Α    |
| R <sub>thJC</sub>    | thermal resistance junction to case  |   |                                                          |                                 |      |         | 0.76 | K/W  |
| R <sub>thCH</sub>    | thermal resistance case to heatsink  |   |                                                          |                                 |      | 0.50    |      | K/W  |



# IXA20I1200PB

preliminary

| Package TO-220   |                              |              | Ratings |      |      |      |
|------------------|------------------------------|--------------|---------|------|------|------|
| Symbol           | Definition                   | Conditions   | min.    | typ. | max. | Unit |
| I <sub>RMS</sub> | RMS current                  | per terminal |         |      | 35   | Α    |
| T <sub>VJ</sub>  | virtual junction temperature |              | -40     |      | 150  | °C   |
| T <sub>op</sub>  | operation temperature        |              | -40     |      | 125  | °C   |
| T <sub>stg</sub> | storage temperature          |              | -40     |      | 150  | °C   |
| Weight           |                              |              |         | 2    |      | g    |
| M <sub>D</sub>   | mounting torque              |              | 0.4     |      | 0.6  | Nm   |
| F <sub>c</sub>   | mounting force with clip     |              | 20      |      | 60   | N    |



#### Part number

I = IGBT

X = XPT IGBTA = Gen 1 / std

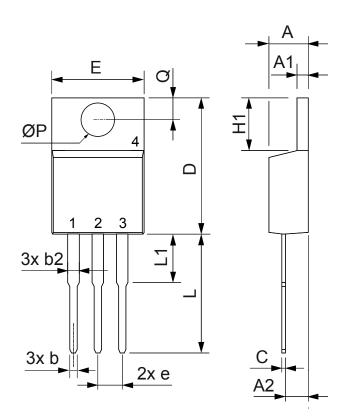
20 = Current Rating [A]

I = Single IGBT

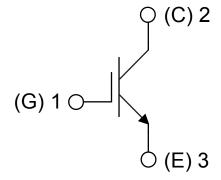
1200 = Reverse Voltage [V] PB = TO-220AB (3)

| O  | rdering | Part Number  | Marking on Product | Delivery Mode | Quantity | Code No. |
|----|---------|--------------|--------------------|---------------|----------|----------|
| St | tandard | IXA20I1200PB | IXA20I1200PB       | Tube          | 50       | 507929   |

| Similar Part  | Package      | Voltage class |
|---------------|--------------|---------------|
| IXA20IF1200HB | TO-247AD (3) | 1200          |


| Equiva              | lent Circuits for Simulation | * on die level | T <sub>VJ</sub> = 150 °C |
|---------------------|------------------------------|----------------|--------------------------|
| $I \rightarrow V_0$ | )—[R <sub>0</sub> ]—         | IGBT           |                          |
| V <sub>0 max</sub>  | threshold voltage            | 1.1            | V                        |
| R <sub>0 max</sub>  | slope resistance *           | 86             | $m\Omega$                |






preliminary

## Outlines TO-220



| Dim. | Millimeter |       | Inches |       |  |
|------|------------|-------|--------|-------|--|
|      | Min.       | Max.  | Min.   | Max.  |  |
| Α    | 4.32       | 4.82  | 0.170  | 0.190 |  |
| A1   | 1.14       | 1.39  | 0.045  | 0.055 |  |
| A2   | 2.29       | 2.79  | 0.090  | 0.110 |  |
| b    | 0.64       | 1.01  | 0.025  | 0.040 |  |
| b2   | 1.15       | 1.65  | 0.045  | 0.065 |  |
| С    | 0.35       | 0.56  | 0.014  | 0.022 |  |
| D    | 14.73      | 16.00 | 0.580  | 0.630 |  |
| E    | 9.91       | 10.66 | 0.390  | 0.420 |  |
| е    | 2.54       | BSC   | 0.100  | BSC   |  |
| H1   | 5.85       | 6.85  | 0.230  | 0.270 |  |
| L    | 12.70      | 13.97 | 0.500  | 0.550 |  |
| L1   | 2.79       | 5.84  | 0.110  | 0.230 |  |
| ØP   | 3.54       | 4.08  | 0.139  | 0.161 |  |
| Q    | 2.54       | 3.18  | 0.100  | 0.125 |  |



