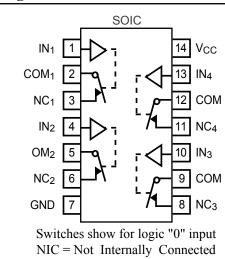


Precision Wide-Bandwidth Analog Switch


Features

- Rail-To-Rail operation
- Pin-compatible with 3125 Bus Switch & 74 series 125
- Single-Supply operation: 2V to 6V
- Low On-Resistance: 8Ω typical @ 5V
- Tight match between channels: 0.9Ω typical
- R_{ON} flatness: 3Ω typical
- Low power consumption: 0.5µ-ohm typical
- High Speed, T_{ON} = 8ns typical
- High-current channel capability: >100mA
- Wide bandwidth: >200 MHz
- Packaging (Pb-free & Green available):
 -14-pin SOIC (W)
 -16-pin QSOP (Q)

Applications

- Instrumentation, ATE
- · Audio Switching and Routing
- Telecommunications Systems
- Data Communications
- Battery-Powered Systems
- · Replaces Mechanical Relays

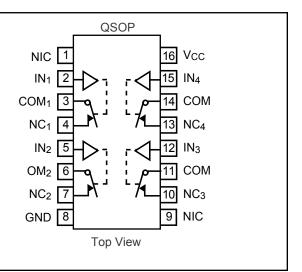
Pin Configurations

Truth Table

Logic	Switch
0	ON
1	OFF

Description

Pericom Semiconducto's PI5A101 is an all-purpose analog switch designed for single-supply operation from +2V to +6V. This switch is ideal for audio, video, and data switching and routing.


The PI5A101 is a quad SPST (single-pole, single-throw) NC (normally closed) function.

When on, each switch conducts current equally well in either direction. When off, they block voltages up to the power-supply rails.

The PI5A101 is fully specified with +5V and +3.3V supplies. With +5V the R_{ON} is 8 Ω typical, making it ideal for replacing mechanical relays in data communications, test equipment, and instrumentation applications. Matching between channels is better than 2 Ω . R_{ON} flatness is better than 4 Ω over the specified range.

These analog switches also offer wide bandwidth (>200 MHz high speed (T_{ON} >15ns), and low charge injection (Q >10pC).

The PI5A101 is available in the narrow-body 14-pin small SOIC and 16-pin QSOP packages for operation over the industrial $(-40^{\circ}C \text{ to } +85^{\circ}C)$ temperature range.

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch				_	-	-	_
Analog Signal Range ⁽³⁾	VANALOG		Full	0		V _{CC}	v
On-Resistance	Pour		25		8	10	
OII-RESISTANCE	R _{ON}	$V_{CC} = 4.5 V_{2}$	Full			18	Ω
On-Resistance	4.D	$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +2.5 \text{V}$	25		0.9	2	
Match Between Channels ⁽⁴⁾	ΔR_{ON}		Full			4	
On-Resistance		$V_{\rm CC} = 5V,$	25		3	4	
Flatness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = -30 \text{mA},$ V _{NO} or V _{NC} = 1V, 2.5V, 4V	Full			5	1
NO or NC Off Leak-	r NC Off Leak- $I_{NO(OFF)}$ or $V_{CC} = 5.5V$,		25		0.05		
age Current ⁽⁶⁾	I _{NC(OFF)}	$V_{COM} = 0V,$ V_{NO} or $V_{NC} = 4.5V$	Full	-80		80	
COM Off Leakage		$V_{\rm CC} = 5.5 V_{\rm c}$	25		0.05		nA
Current ⁽⁶⁾	I _{COM(OFF)}	$V_{COM} = \pm 4.5 V,$ V_{NO} or $V_{NC} = \pm 0 V$	Full	-80		80	
COM On Leakage		$V_{\rm CC} = 5.5 V,$	25		0.07		
Current ⁽⁶⁾	I _{COM(ON)}	$V_{COM} = +4.5V$ V_{NO} or $V_{NC} = +4.5V$	Full	-80		80]
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic High Level		2			N/
Input Low Voltage	V _{IL}	Guaranteed logic Low Level					V
Input Current with Voltage High	I _{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	Full			0.8	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μA

Electrical Specifications - Single +5V Supply ($V_{CC} = +5V \pm 10\%$, GND = 0V, $V_{INH} = 2.4V$, $V_{INL} = 0.8V$)

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Dynamic							
Turn-On Time		25		8	15		
Tum-On Time	t _{ON}	$V_{} = 5V_{}$ and forms 1	Full			20	ns
Turn-Off Time	topp	$V_{CC} = 5V$, see figure 1	25		3.5	7	
Tum-On Time	t _{OFF}		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0V,$ Figure 2			7	10	pC
Off Isolation	O _{IRR}	$R_{L} = 50\Omega, C_{L} = 5pF, f = 10MHz,$ see figure 3 $R_{L} = 50\Omega, C_{L} = 5pF, f = 10MHz,$ see figure 4 f = 1kHz, see figure 5	25		-55		dB
Crosstalk ⁽⁸⁾	I _{COM(OFF)}				-92		
NC or NO Capacitance	C _(OFF)		1		8		
COM Off Capacitance	C _{COM(OFF)}]		8		pF
COM On Capacitance	C _{COM(ON)}	f = 1 kHz, see figure 6			14		
3-dB Bandwidth	BW	$R_{L} = 10k\Omega$	E 11		230		MHz
Distortion ⁽⁹⁾	D		- Full		0.03		%
Supply							
Power-Supple Range	V _{CC}			2		6	V
Positve Supply Current	I _{CC}	$V_{CC} = 3.6V, V_{IN} = 0V \text{ or } V+,$ All Channels on or off	Full			1	μΑ

Electrical Specifications - Single +5V Supply ($V_{CC} = +5V \pm 10\%$, GND = 0V, $V_{INH} = 2.4V$, $V_{INL} = 0.8V$) (continued)

Absolute Maximum Ratings

Voltages Referenced to GND
V _{CC} 0.5V to +7V
$V_{IN}, V_{COM}, V_{NC}^{(1)}$ 0.5V to V_{CC} +2V
or 30mA, whichever occurs first
Current (any terminal except COM, NO, NC)
Current: COM, NO, NC (pulsed at 1ms, 10% duty cycle) 120mA

Thermal Information

Continuous Power Dissipation
-
Narrow SO & QSOP (derate 8.7mW/°C above +70°C)650mW
Storage Temperature
Lead Temperature (soldering, 10s)+300°C

Notes

1. Signals on NC, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only
rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not
implied.

Temp.(°C) Min.⁽¹⁾ Typ.⁽²⁾ Max.⁽¹⁾ Parameter Symbol Conditions Units **Analog Switch** Analog Signal Range⁽³⁾ Full 0 V_{CC} V VANALOG 25 7.2 18 **On-Resistance** RON $V_{CC} = 3V$, 28 Full $I_{COM} = -30 m A$, 25 2 0.2 On-Resistance Match Be- V_{NO} or $V_{NC} = 1.5V$ ΔR_{ON} Ω tween Channels⁽⁴⁾ 4 Full $V_{\rm CC} = 3.3 V_{\rm c}$ 25 2.72 10 On-Resistance $Flatness^{(3,5)}$ $I_{COM} = -30 mA$, R_{FLAT(ON)} Full 12 V_{NO} or $V_{NC} = 0.8V, 2.5V$ **Dynamic** 25 7 25 Turn-On Time ton $V_{CC} = 3.3 V_{,}$ 40 Full V_{NO} or $V_{NC} = 1.5V$, ns 25 1 12 see figure 1 Turn-Off Time toff Full 20 $C_L = 1nF$, $V_{GEN} = 0V$, Charge Injection⁽³⁾ 0 25 1.6 10 pC $R_{GEN} = 0\Omega$, Figure 2 Supply $V_{CC} = 3.6V, V_{IN} = 0V \text{ or } V_{CC}$ Full Positve Supply Current 1 ICC μA All Channels on or off

Electrical Specifications-Single +3.3V Supply ($V_{CC} = +3.3V \pm 10\%$, GND = 0V, $V_{INH} = 2.4V$, $V_{INL} = 0.8V$)

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

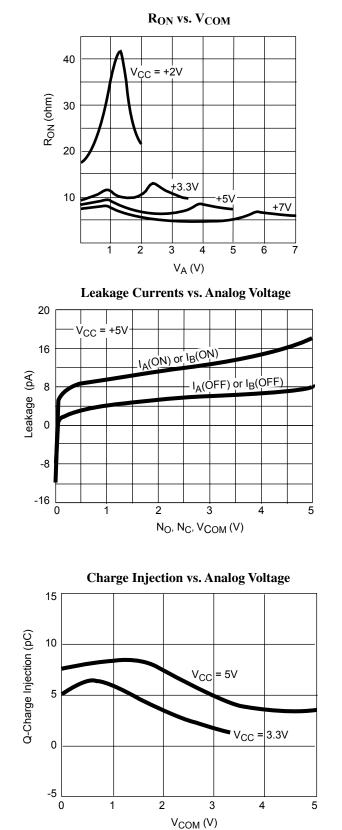
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

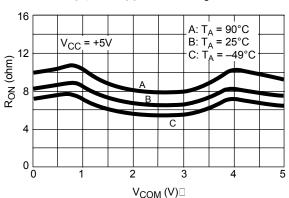
3. Guaranteed by design

4. $\Delta R_{ON} = R_{ON} MAX - R_{ON} MIN$

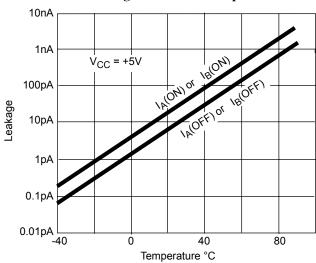
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.


7. Off Isolation = $20\log_{10} V_B / V_A$. See Figure 3.

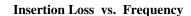

8. Between any two switches. See Figure 4.

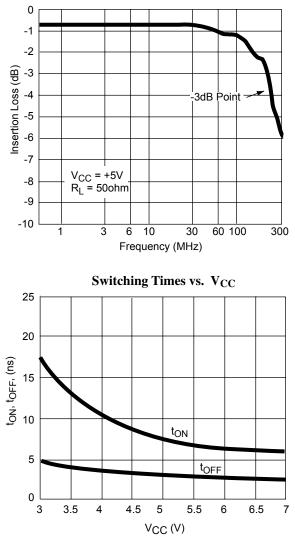
9. $D = R_{FLAT(ON)}/R_L$.


Typical Operating Characteristics ($T_A = +25^{\circ}C$, unless otherwise noted)

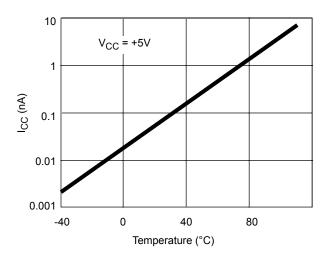


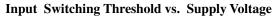
 $R_{ON}\,$ vs. $V_{COM}\,$ and Temperature

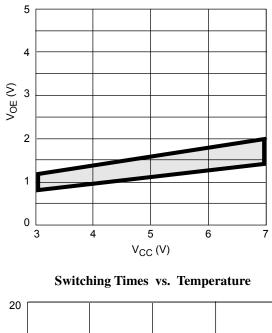

Leakage Current vs. Temperature

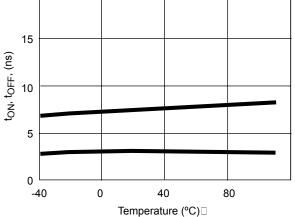


Crosstalk and Off-Isolation vs. Frequency

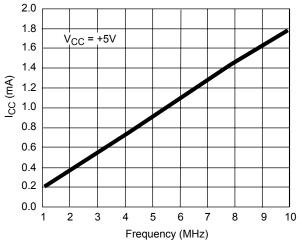








Supply Current vs. Temperature



Supply Current vs. Input Switching Frequency

Test Circuits/Timing Diagrams

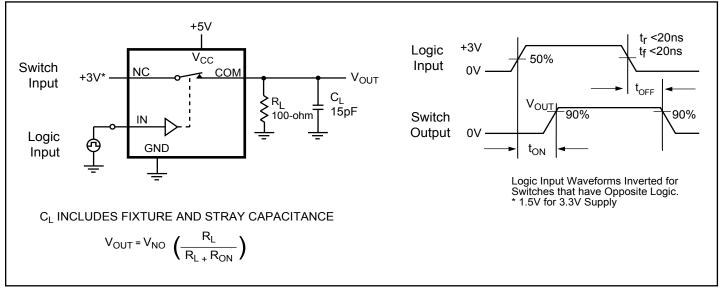


Figure 1. Switching Time

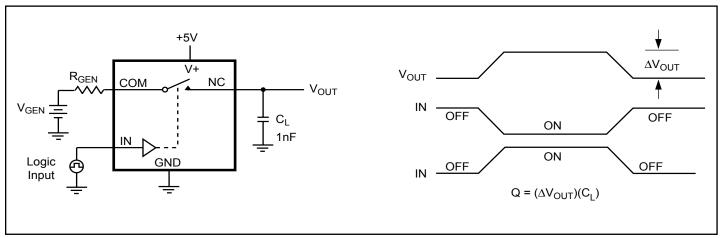


Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

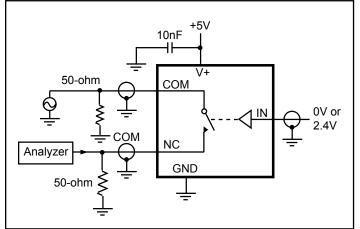


Figure 3. Off Isolation

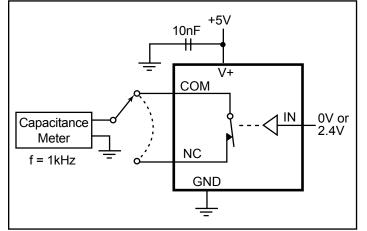


Figure 5. Channel-Off Capacitance

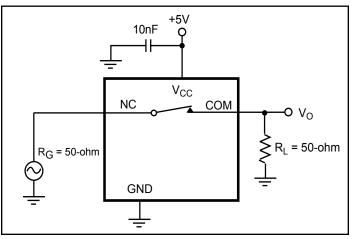


Figure 7. Bandwidth

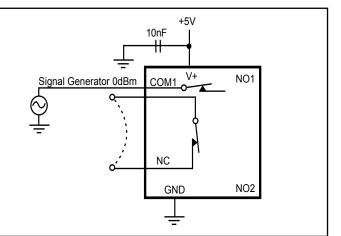
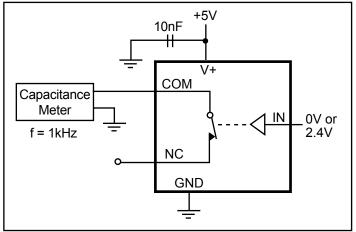
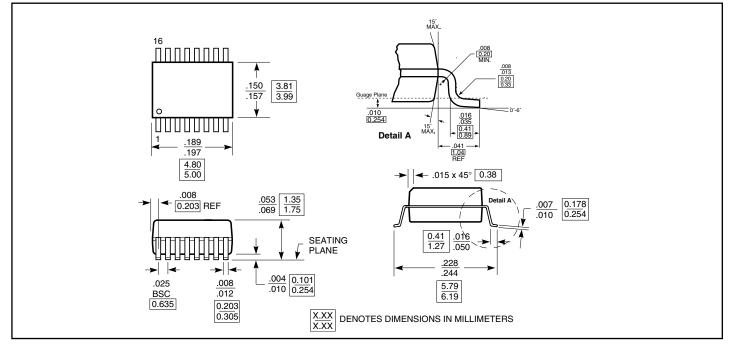
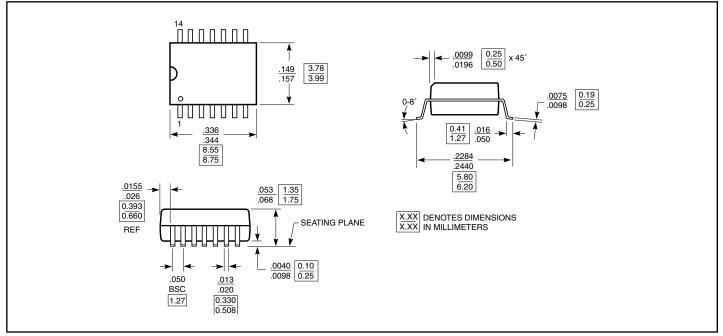


Figure 4. Crosstalk


Figure 6. Channel-On Capacitance

Packaging Mechanical: 16-Pin, QSOP (Q)

Packaging Mechanical: 14-Pin, SOIC (W)

Ordering Information

Ordeing Code	Package Code	Package Description
PI5A101Q	Q	16-pin, QSOP
PI5A101QE	Q	Pb-free & Green, 16-pin, QSOP
PI5A101W	W	14-pin SOIC
PI5A101WE	W	Pb-free & Green, 14-pin SOIC

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com