

Si4010/Si4313 DEMO LINK RF EMISSION/IMMUNITY TEST REPORT ACCORDING TO EN 55025 AND GS 95002

1. Introduction

This document contains a complete test report that describes the RF Emission and RF Immunity tests that were performed on a Silicon Labs Si4010-Si4313 demo RF link.

An RF emission and RF immunity test was performed in a third party independent accredited test laboratory to demonstrate, that Silicon Laboratories' Si4010 crystal-less SoC RF transmitter and Si4313 low-cost ISM receiver is capable to constitute an RF link for automotive applications, that meets the requirements of EN 55025 and GS 95002 standards.

The tested equipments were as follows:

- Si4010 Universal Key Fob 434 MHz (S/N 4010-DAPB_434) and
- Si4343 LED receiver board low band pcb ant (S/N 4313-DAPB LB)

The boards are available from Silicon Laboratories as part of the Si4010 Simplified Key Fob Demo Kit 434 MHz (S/N 4010-DASKF_434).

The tested equipments passed all the tests described in detail in the appended test report.

For technical details on the tested ICs, boards, and demo kits visit http://www.silabs.com.

2. Test Report

TEST REPORT

Test Report No.: 4-3476-01-01/11

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom-ict.de e-mail: info@ict.cetecom.de

Accredited Test Laboratory:

The test laboratory is accredited according to: DIN EN ISO/IEC 17025

DAR registration number: DAT-P-176/94-D1

And recognized by the KBA (Germany) and snch (Luxembourg)
KBA-P 00070-97

Applicant

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701/USA Phone: +1 512 416 8500 Fax: +1 512 416 9669

Contact: Ferenc Mernyei
e-mail: FERENC.MERNYEI@SILABS.COM

Phone: +36-1-4534251

Manufacturer

Same as Applicant

Test Standard/s

EN 55025 2003-01 Radio disturbance characteristics for the protection of receivers

used on board vehicles, boats and on devices - Limits and

methods of measurement (IEC/CISPR 25:2002)

GS 95002 01.10.04 Electromagnetic Compatibility (EMC)

Electric, electronic, assemblies, motor vehicles, EMC,

Electromagnetic Compatibility, requirements, test conditions

Test Item 1+2

Kind of test item 1

Remote Keyless Entry

Model name:

4010-DAPB_434 (Si4010 Universal Key Fob 434MHz)

HW hardware status:

v1.3

Kind of test item 2

Remote Keyless Entry

(RX): Model name:

2011-04-29

4313-DAPB_LB

ame: 4313-DAPB_

(Si4313 LED receiver board low band

pcb ant)

HW hardware status: v1.0
Power Supply: 3 V DC

Test performed: Test Report authorised:

SILICAN LARS

Page 1 of 26

1	ıa	ble of contents	
1	Table	of contents	2
2	Gene	ral information	3
	2.1	Notes	3
	2.2	Application details	
3	Test	standard/s:	3
4	Test	Environment (Chamber)	3
5	Test	Laboratories sub-contracted	3
6	Infor	mation about test conditions	4
	6.1	Test item	4
	6.2	EUT: Type, S/N etc. and short descriptions used in this test report	4
	6.3	EUT operating modes	
7	Sumr	nary of measurement results	5
	7.1	Electrical Requirements	5
	7.2	Measurement and test set-up	
	7.3	Measurement uncertainty	6
8	Detai	led test results - Emission	7
	8.1	Radiated Emission with Antenna 30-1000 MHz	7
	8.2	Radiated Emission with Stripline 500 kHz-1000 MHz	9
9	Detai	led test results - Immunity	11
	9.1	Radiated Immunity with Antenna 200-4000 MHz	11
	9.2	Conducted Immunity with BCI 1-400 MHz	14
	9.3	Radiated Immunity with Stripline 100 kHz-400 MHz	18
10	Т	est equipment and ancillaries used for tests	20
Anı	nex A:	Photographs of the test set-up	21
Δnı	nex B.	Photographs of the EUT	25

2011-04-29 Page 2 of 26

2 General information

2.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

2.2 Application details

Date of receipt of order: 2011-04-19
Date of receipt of test item: 2011-04-15
Start of test: 2011-04-15
End of test: 2011-04-15
Person(s) present during the test: Mr. Miklós Lukács

3 Test standard/s:

Test Standard	Version	Test Standard Description
EN 55025	2003-01	Radio disturbance characteristics for the protection of receivers used on board vehicles, boats and on devices - Limits and methods of measurement (IEC/CISPR 25:2002)
GS 95002	01.10.04	Electromagnetic Compatibility (EMC) Electric, electronic, assemblies, motor vehicles, EMC, Electromagnetic Compatibility, requirements, test conditions

4 Test Environment (Chamber)

 $\begin{array}{lll} \mbox{Temperature:} & 20\mbox{°C} - 25\mbox{°C} \\ \mbox{Relative humidity content:} & 30\mbox{ \% - }50\mbox{ \%} \\ \mbox{Air pressure:} & 1020\mbox{ hPa} \\ \mbox{Power supply:} & 230\mbox{ V / }50\mbox{ Hz} \\ \end{array}$

5 Test Laboratories sub-contracted

-/-

2011-04-29 Page 3 of 26

6 Information about test conditions

6.1 Test item

Kind of test item :	Remote Keyless Entry						
Type identification 1 (TX)	4010-DAPB 434						
:	(Si4010 Universal Key Fob 434MHz)						
Type identification 2 (RX)	4313-DAPB LB						
:	(Si4313 LED receiver board low band pcb ant)						
Equipment classification:							
Supply voltage :	3 V DC						
Ports :	Description	Direction					
	DC port (via Battery clip)	Input					
Mounting position:	unknown						
In case of immunity testing (E	MS): Observing or/and recording following fu	ınctions:					
Observing status LED's at the re	eceiver						
Additional information:							
During the test we have tested the transmitter and the receiver together in the chamber. In some cases TX and RX were tested in stand-alone.							

6.2 EUT: Type, S/N etc. and short descriptions used in this test report

short descrip- tion*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	TX	4010-DAPB_434	Demo	v1.3	
EUT B	RX	4313-DAPB_LB	Demo	v1.0	
EUT C					

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

6.3 EUT operating modes

Tests are described in detailed test results

EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	TX/RX active	Transmitting at 433 MHz and receiving
op. 2	TX/RX Stand-by	RX in receiving mode, no transmitter carrier
op. 3	TX alone	Transmitting at 433 MHz. (receiver outside the chamber)
op. 4		

2011-04-29 Page 4 of 26

7 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained

7.1 Electrical Requirements

7.1.1 Emission measurements

Test Phenomenon	Test standard	chapter	Result
Radiated Emission with Antenna	ECE-R10 Rev.03	7 and 8	pass
Radiated Emission with Stripline	GS 95002	7.1.4.1	pass

7.1.2 Immunity measurements

Test Phenomenon	Test standard	chapter	Result
Radiated Immunity with Antenna 200-1000 MHz	GS 95002	7.2.4.2	pass
Radiated Immunity with Antenna 800-4000 MHz	GS 95002	7.2.4.2	pass
Conducted Immunity with BCI Open loop 1-400 MHz	GS 95002	7.2.3	pass
Conducted Immunity with BCI Closed loop 1-400 MHz	ISO 11452-4	8.3.2	pass
Radiated Immunity with Stripline 100 kHz-400 MHz	GS 95002	7.2.4.1	pass

Remarks: None

2011-04-29 Page 5 of 26

7.2 Measurement and test set-up

Note: The test configuration is in accordance with the requirements given in the standards in point $\boldsymbol{3}$

7.3 Measurement uncertainty

The uncertainty of the measurement equipment fulfils CISPR 16 and the related European and national standards.

Measurement uncertainty calculations are on file and available from the test laboratory upon request.

2011-04-29 Page 6 of 26

8 Detailed test results - Emission

8.1 Radiated Emission with Antenna 30-1000 MHz

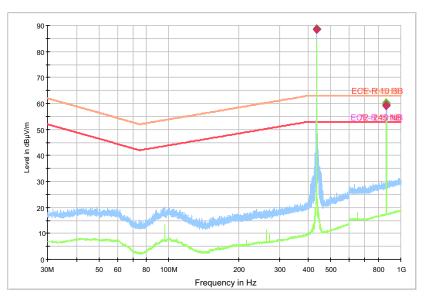
8.1.1 Test results

EMI 30-1000 MHz only TX

EUT Information

EUT Name: Tx: 4010-DAPB_434; Rx: 4313-DAPB_LB

Manufacturer: Silicon Labs
Serial Number: Demo
Hardware Rev: Tx: 1.3; Rx: 1.0


Common Information

Test Description: Radiated Emission - Antenna 30-1000 MHz ver+hor (max)

Operating Conditions: Transmitting 433 MHz

Operator Name: SCN

ESU EMI 55025

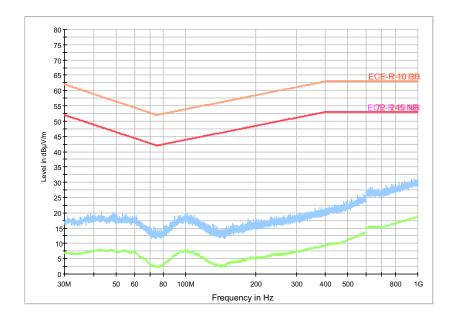
The peaks are the transmitter frequency and the 1st harmonics.

2011-04-29 Page 7 of 26

EMI 30-1000 MHz only RX

EUT Information

Tx: 4010-DAPB_434; Rx: 4313-DAPB_LB EUT Name: Manufacturer: Silicon Labs


Serial Number: Demo Tx: 1.3; Rx: 1.0 Hardware Rev:

Common Information

Test Description: Radiated Emission - Antenna 30-1000 MHz

Operating Conditions:
Operator Name: Receiver in stand-by (RX alone)

SCN

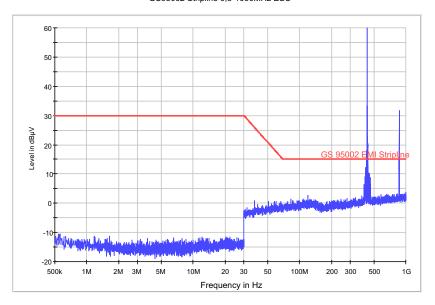
2011-04-29 Page 8 of 26

8.2 Radiated Emission with Stripline 500 kHz-1000 MHz

8.2.1 Test results

EMI Stripline 500k-1000M TX and RX

EUT Information


EUT Name: Tx: 4010-DAPB_434; Rx: 4313-DAPB_LB

Manufacturer: Silicon Labs
Serial Number: Demo
Hardware Rev: Tx: 1.3; Rx: 1.0

Common Information

Test Description: Radiated Emission - Stripline 500kHz-1000 MHz
Operating Conditions: Transmitting 433 MHz and receiving (Tx and Rx together)
Operator Name: SCN

GS95002 Stripline 0,5-1000MHz ESU

The peaks are the transmitter frequency and the 1st harmonics.

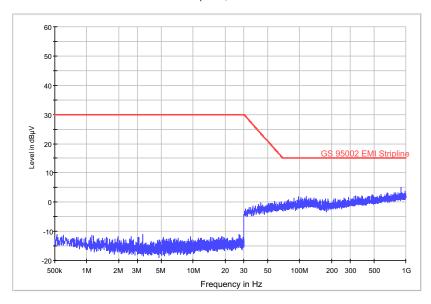
2011-04-29 Page 9 of 26

EMI Stripline 500k-1000M RX

EUT Information

Tx: 4010-DAPB_434; Rx: 4313-DAPB_LB EUT Name:

Silicon Labs Manufacturer: Serial Number: Demo Hardware Rev: Tx: 1.3; Rx: 1.0


Common Information

Test Description: Radiated Emission - Stripline 500kHz-1000 MHz

Operating Conditions:
Operator Name: Receiver in receive mode (RX alone)

SCN

GS95002 Stripline 0,5-1000MHz ESU

2011-04-29 Page 10 of 26

9 Detailed test results - Immunity

9.1 Radiated Immunity with Antenna 200-4000 MHz

9.1.1 Test Plan

EUT set-up	TX and RX						
Test method Power adjustment	Substitution Forward pov						
Basic standard	Field strength	Start frequency	Stop frequency		uency tep	Dwell time	Modulation
ISO 11452-2 (ALSE)	200 V/m	200 MHz 400 MHz	400 MHz 1000 MHz		0 MHz 20 MHz	2 s	1 kHz, AM 80%
Operating mode	Antenna typ	pe / position	Function status		Reaction and afte		Result
TX and RX		/ vertical	A			A/A	passed
TX and TX	LogPer /	horizontal	Α			A/A	passed
Basic standard	Field strength	Start frequency	Stop frequency		uency tep	Dwell time	Modulation
ISO 11452-2 (ALSE)	200 V/m	200 MHz 425 MHz 450 MHz	425 MHz 450 MHz 1000 MHz	LIN 5	0 MHz 00 kHz 0 MHz	2 s	OFF (CW)
Operating mode	Antenna typ	pe / position				on during after test	Result
TX and RX	LogPer	/ vertical	A		B/A	passed	
TA and RA	LogPer /	horizontal	Α	A		B/A	passed
TX alone	LogPer	/ vertical				Not carried out	
1X dione	LogPer / I	horizontal	A			B/A	passed
Basic standard	Field strength	Start frequency	Stop frequency		uency tep	Dwell time	Modulation
ISO 11452-2 (ALSE)	200 V/m	800 MHz	4000 MHz	LIN 2	20 MHz	2 s	PULS Mod. 577µs/217Hz
Operating mode	Antenna type / position		Functional I status		Reaction during and after test		Result
TX and RX	Horn /	vertical	Α		A/A		passed
I A allu RA	Horn / horizontal		А			A/A	passed

Remarks:	During the measurements with RX and TX together the receiver stops working in the frequency
	range between 428,5 and 437,5 MHz.
	During the measurement with TX alone (the transmitter signal was coupled via antennas to the
	receiver outside of the chamber) the receiver stops working between 431,5 and 433,5 MHz.

9.1.2 Reaction of EUT:

- A normal performance within the specification limits
- B temporary degradation or loss of function or performance which is self-recoverable
- C temporary degradation or loss of function or performance which requires operator intervention or system reset
- D degradation or loss of function which is not recoverable due to damage of equipment (components) or software, or loss of data

2011-04-29 Page 11 of 26

9.1.3 Test Set-up

According to EMC basic standard ISO 11452-2

Example test set-up — Log-periodic-antenna

Dimensions in millimetres ≥1 000 200 ±10 10 2 ≥\$00 1 000 ±10 100 ±10 S# 85 유 슔

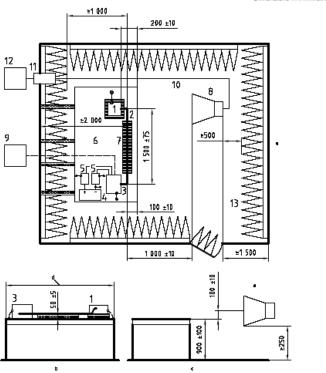
- DUT (grounded locally if required in 6 test plan)
- test harness
- load simulator (placement and $(\epsilon_f \leqslant 1.4)$ ground: connection according to 7.5) 8 log-periodic antenna
- power supply (location optional)
- artificial network (AN)
- Upper view (horizontal polarisation).
- Front view.
- Side view.
- See 7.1.
- Vertical polarization.

- 10 high quality double-shielded coaxial cable (50 Ω)
- 11 bulkhead connector
- 12 RF signal generator and amplifier
- 13 RF absorber material

2011-04-29 Page 12 of 26

ground plane (bonded to shielded enclosure)

low relative permittivity support $(\varepsilon_{\Gamma} \leqslant 1.4)$


9 stimulation and monitoring system

Example test set-up for frequencies above 1 GHz — Horn antenna

Dimensions in millimetres

- DUT (grounded locally if required in test plan) test harness load simulator (placement and ground: connection according to 7.5)

- power supply (location optional) artificial network (AN) ground plane (bonded to shielded enclosure)
- Upper view (horizontal polarisation). Front view.
- Side view.
- See 7.1.
- Vertical polarization.

- low relative permittivity support ($\varepsilon_r \leqslant 1.4$)

- horn antenna
 stimulation and monitoring system
 in high quality double-shielded coaxial cable (50 Ω)
 high quality double-shielded coaxial cable (50 Ω)

 keep and the standard and amplifier
 RF signal generator and amplifier

2011-04-29 Page 13 of 26

9.2 Conducted Immunity with BCI 1-400 MHz

9.2.1 Test Plan

EUT set-up	TX and RX								
Test method Power adjustment		Substitution method Forward power							
Basic standard	Field strength	Start Stop Frequency frequency step Dwell time				Modulation			
ISO 11452-4 (BCI)	200 mA	1 MHz 10 MHz 200 MHz	10 MHz 200 MHz 400 MHz		MHz MHz MHz	2 s	1 kHz, AM 80%		
Operating mode	Pos	ition			Reaction during and after test		Result		
Receiving	150	mm	А		A/A		passed		
Test method Power adjustment	Closed-loop method with power limitation Forward power								
Basic standard	Field strength	Start frequency	Stop frequency		ency ep	Dwell time	Modulation		
ISO 11452-4 (BCI)	200 mA	1 MHz 100 MHz	100 MHz 400 MHz	LOG 5% LOG 2%		2 s	1 kHz, AM 80%		
Operating mode	Position		Functional status		Reaction during and after test		Result		
Receiving	900mm	900mm / 50 mm		А		B/A	passed		

Remarks: During closed loop method the LED4 stops flashing between 26,3 and 27 MHz

9.2.2 Reaction of EUT:

- A normal performance within the specification limits
- B temporary degradation or loss of function or performance which is self-recoverable
- C temporary degradation or loss of function or performance which requires operator intervention or system reset
- D degradation or loss of function which is not recoverable due to damage of equipment (components) or software, or loss of data

2011-04-29 Page 14 of 26

9.2.3 Test Set-up

According to EMC basic standard ISO 11452-4

BCI test set-up — Substitution method

Dimensions in millimetres ≥500 ±100 В 4 ≥200 12-≥1500 1000±100

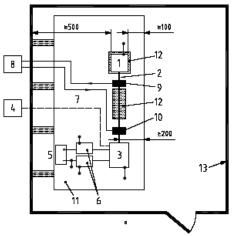
- DUT (grounded if required in test plan)
- test harness load simulator (placement and ground: connection according to 7.5)
- stimulation and monitoring system
- power supply
- artificial network (AN)

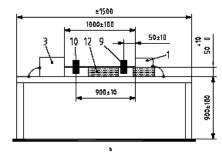
- optical fibres
- high-frequency equipment
- injection probe
- 10 ground plane (bonded to shielded enclosure)

900±100

- 11 low relative permittivity support $(\epsilon_{\!_{T}} \leqslant 1.4)$
- 12 Shielded enclosure

The current measurement probe, optional-for this test, is not represented. See 8.3.1.3.


^a Upper view. ^b Side view. ^c See 7.6.1.


2011-04-29 Page 15 of 26

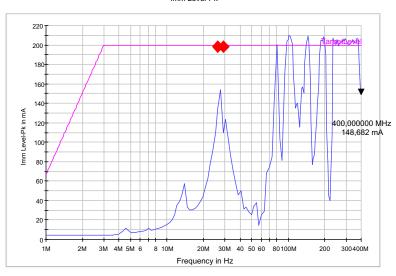
BCI configuration — Closed-loop method with power limitation

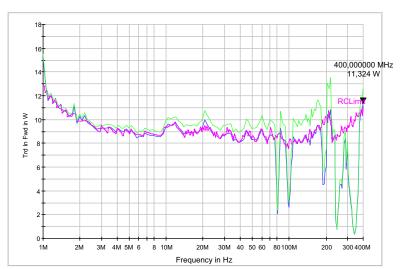
Dimensions in millimetres

- Key
 1 DUT (grounded if required in test plan)
- test harness load simulator (placement and ground: connection according to 7.5)
- stimulation and monitoring system power supply
- Upper view
- Side view.

- 6 artificial network (AN)
- optical fibres
- 8 high-frequency equipment 9 current measurement probe
- 10 injection probe
- 11 ground plane (bonded to shielded enclosure)
- 12 low relative permittivity support (c₁ ≤ 1,4) 13 Shielded enclosure

2011-04-29 Page 16 of 26




9.2.4 Measurement results

EMS BCI 1-400M 200mA CL AM TX and RX active

Imm Level-Pk

Trd In Fwd

Result Table_NOGO

Frequency (MHz)	Imm Level-Pk (mA)	Trd In Fwd (W)	Amp In (dBm)	Gen Out (dBm)	Comment	Modulation				
26.283490	134.137	8.572	-15.6	-14.5						
28.977547	109.733	8.717	-16.1	-15.0	LED 4 flashing cont.	AM;1kHz;80%				

2011-04-29 Page 17 of 26

9.3 Radiated Immunity with Stripline 100 kHz-400 MHz

9.3.1 Test Plan

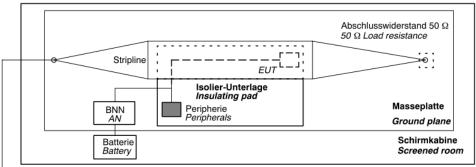
EUT set-up	TX and RX						
Test method Power adjustment	Substitution Forward pov						
Basic standard	Field strength	Start frequency	Stop frequency		iency ep	Dwell time	Modulation
ISO 11452-5 (Stripline)	200 V/m	100 kHz 200 MHz	200 MHz 400 MHz	log	5%	2 s	1 kHz, AM 80%
Operating mode	EUT p	osition	Function status		Reaction during and after test		Result
TX and RX active	Under septum		А			A/A	passed
TX and RX Stand-by	Under	septum	А		A/A	passed	
Basic standard	Field strength	Start frequency	Stop frequency		iency ep	Dwell time	Modulation
ISO 11452-5 (Stripline)	200 V/m	100 kHz 200 MHz	200 MHz 400 MHz	log	5%	2 s	OFF (CW)
Operating mode	EUT p	osition	Functional status				Result
TX and RX active	Under septum		А		A/A		passed
TX and RX Stand-by	Under	septum	А		A/A		passed

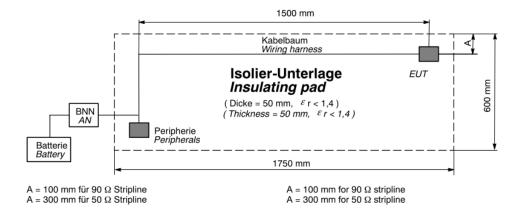
Remarks:	

9.3.2 Reaction of EUT:

- A normal performance within the specification limits
- B temporary degradation or loss of function or performance which is self-recoverable
- C temporary degradation or loss of function or performance which requires operator intervention or system reset
- D degradation or loss of function which is not recoverable due to damage of equipment (components) or software, or loss of data

2011-04-29 Page 18 of 26




9.3.3 Test Set-up

According to EMC basic standard

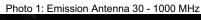
ISO 11452-5 (BMW Standard GS 95002

- a) Koaxialltg. zum Messempf./Spektrumanalysator / Coaxial cable to measuring receiver / spectrum analyser
- b) zum Leistungsverstärker / to power amplifier
- c) zum Mobiltelefon mit Testkarte / to mobile phone fitted with test card

2011-04-29 Page 19 of 26

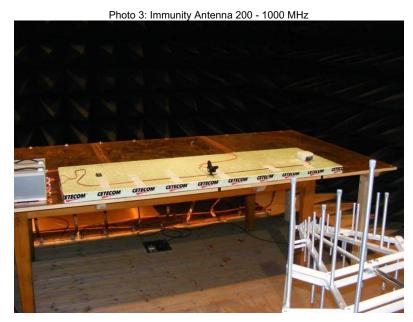
10 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.


No.	Instrument/Ancillary	Manufacturer	Туре	Serial-No.	Internal identification		
	Radiated immunity – annex I						
D-1	Signal Generator	Rohde & Schwarz	SMHU52	860 292/019	300002232		
D-2	Function Generator	Rohde & Schwarz	AFGU	832063/002	300002037		
D-3	Function Generator	Rohde & Schwarz	AFGU	862490/032	300001201		
D-4	Log per antenna	Schwarzbeck	STLP 9128C	033	300003213		
D-5	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120E	212	300003214		
D-6	RF-Amplifier 0.01-220 MHz	Amplifier Research	250L	13163	300002180		
D-7	Directional Coupler Unit	Rohde & Schwarz	DCU	316 790/005	300002242		
D-8	RF-Amplifier 200-1000 MHz	Bonn	BLWA 2010-1000/700D	076820A	300003782		
D-9	RF-Amplifier 0,8-4 GHz	Bonn	BLMA 0840-200/100D	076820B	300003783		
D-10	Switch Unit 1	Rohde & Schwarz	RSU 15	316 790/001	300002241		
D-11	Switch Unit 2	Rohde & Schwarz	RSU 11	316 790/001	300002220		
D-12	Power Meter	Rohde & Schwarz	NRV	830 007/002	300002323		
D-13	Power Sensor A	Rohde & Schwarz	NRV-Z4	829 714/011	300002323.01		
D-14	Power Sensor B	Rohde & Schwarz	NRV-Z4	829 714/012	300002323.02		
D-15	Relay Interface	ICS	4874B	112904	300002189		
D-16	Cabling Unit	Rohde & Schwarz	CU	316 790/001	300002166		
D-17	Pneumatic Manipulator	Heiden	2004-300	001402	300002199		
D-18	Switch Control Unit	Hewlett Packard	3488A				
D-19	GPIB-Extender	National Instruments	GPIB-110	10688	300002205		
D-20	GPIB-Extender	National Instruments	GPIB-110	10700	300002206		
D-21	Video Camera	TDK RF-Solutions	VC-04		300003260		
D-22	Camera Control Unit	TDK RF-Solutions	SI-300	140021	300003260		
D-23	Attenuator 30dB/500W	Tennline	8325	1530	40000		
D-24	Stripline	Stimpfel	Stripline 150cm / 90 Ω		300003224		
D-25	Bulk Current Injection Probe (BCI)	FCC	F-130A-1	14	300003224		
D-26	RF Current Probe	FCC	F-55	77	300003225		
D-27	Calibration fixture	FCC	FCC-BCICF-1		300000537		
D-28	Power Meter	Rohde & Schwarz	URV5	833658/004	300002233		
D-29	DC Power Supply	Agilent	N5767A	US26C4305J	300003840		
D-30	Function Generator	Rohde & Schwarz	AFGU	862490/032	300001201		
D-31	Audio Amplifier	Crown	Macro Tech 5002 VZ	8001641218	300004094		
D-32	Shunt	Schwarzbeck	Shunt 9570	9570118	300004107		
D-33	Coil	Schwarzbeck	FESP 5133-7/41	043	300004106		
	Radiated emission – annex E						
D-100	EMI Test Receiver	Rohde & Schwarz	ESU 8	100217	300003912		
D-101	Log per antenna	Schwarzbeck	VULB 9163	216	300003288		
D-102	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120E	212	300003214		
D-103	Artificial Mains Network	Schwarzbeck	NNBM 8125	8125401	300000567		
D-104	Artificial Mains Network	Schwarzbeck	NNBM 8125	8125399	300000945		

2011-04-29 Page 20 of 26

Annex A: Photographs of the test set-up



2011-04-29 Page 21 of 26

2011-04-29 Page 22 of 26

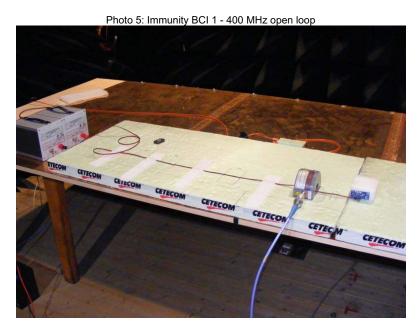
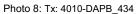


Photo 6: Immunity BCI 1 - 400 MHz closed loop

2011-04-29 Page 23 of 26



2011-04-29 Page 24 of 26

Annex B: Photographs of the EUT

2011-04-29 Page 25 of 26

Photo 10: Rx: 4313-DAPB_LB

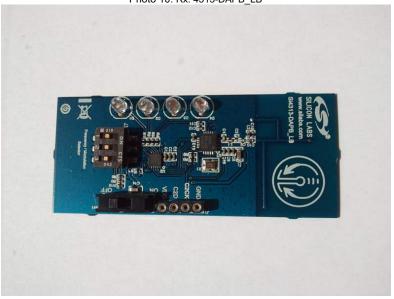
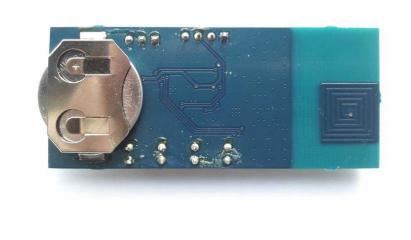



Photo 11: Rx: 4313-DAPB_LB

2011-04-29 Page 26 of 26

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA