

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

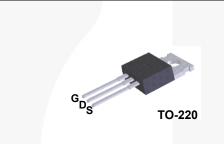
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

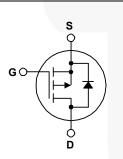
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

January 2016

FQP3P50

P-Channel QFET® MOSFET

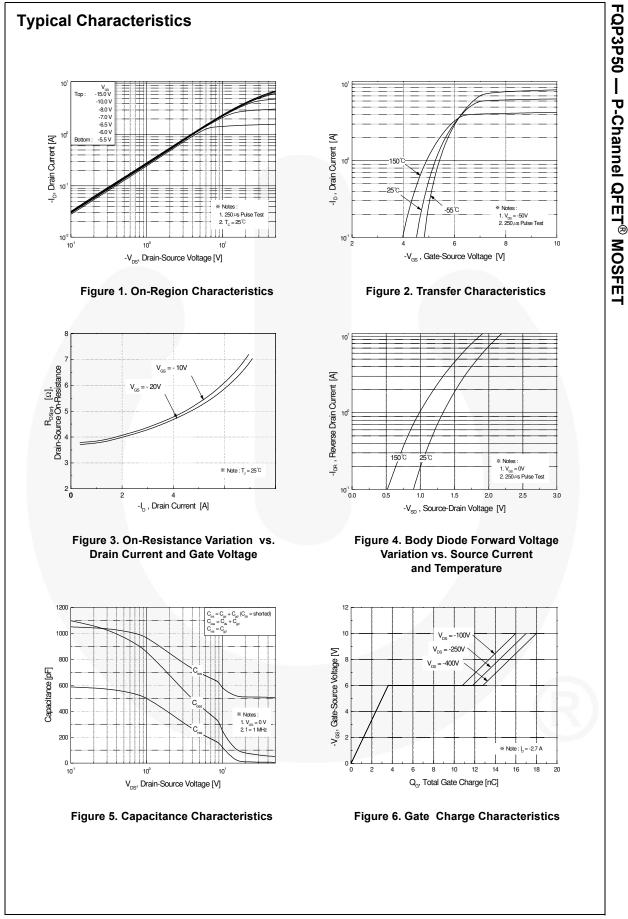

-500 V, -2.7 A, 4.9 Ω

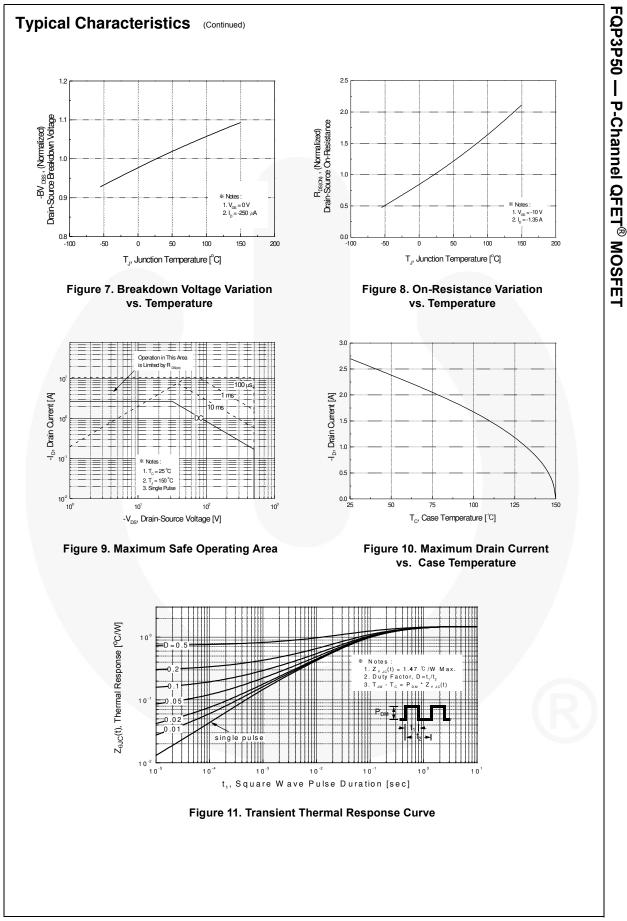

Description

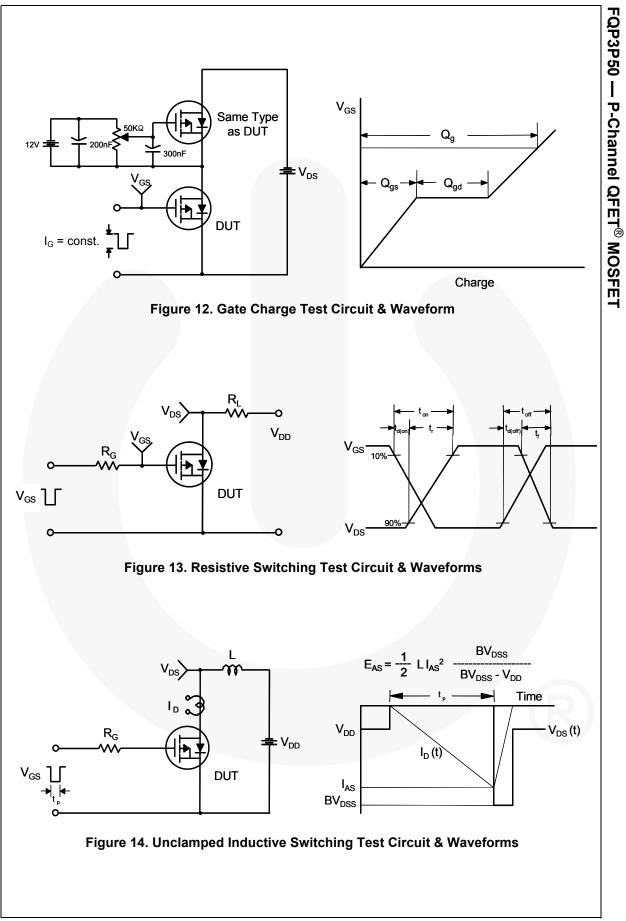
This P-Channel enhancement mode power MOSFET is • -2.7 A, -500 V, $R_{DS(on)}$ = 4.9 Ω (Max.) @ V_{GS} = -10 V, produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state • Low Gate Charge (Typ. 18 nC) resistance, and to provide superior switching performance • Low Crss (Typ 9.5 pF) and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, • 100% Avalanche Tested DC motor control, and variable switching power applications.

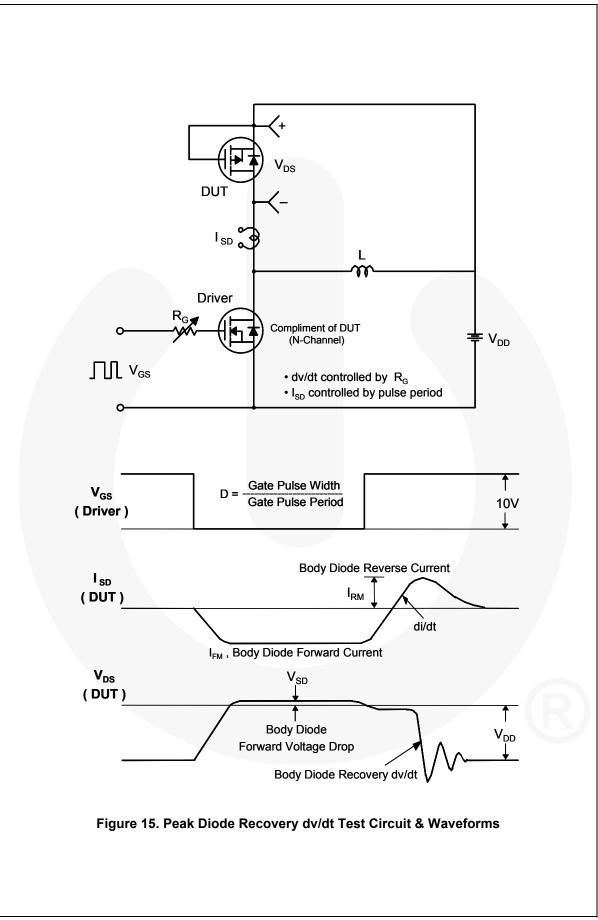
Features

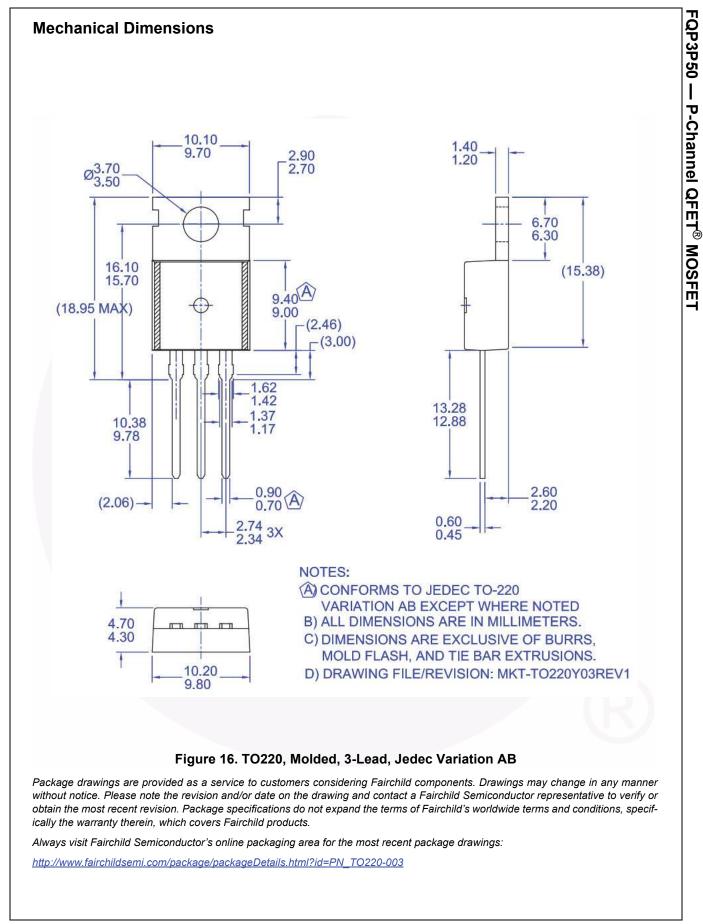
- I_D = -1.35 A


Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


Symbol	Parameter	FQP3P50	Unit
V _{DSS}	Drain-Source Voltage	-500	V
I _D	Drain Current - Continuous (T _C = 25°C)	-2.7	А
	- Continuous (T _C = 100°C)	-1.71	A
I _{DM}	Drain Current - Pulsed (Note	e 1) -10.8	A
V _{GSS}	Gate-Source Voltage	± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note	e 2) 250	mJ
I _{AR}	Avalanche Current (Note	e 1) -2.7	A
E _{AR}	Repetitive Avalanche Energy (Note	e 1) 8.5	mJ
dv/dt	Peak Diode Recovery dv/dt (Note	e 3) -4.5	V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)	85	W
	- Derate above 25°C	0.68	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C
Τ _L	Maximum lead temperature for soldering, 1/8" from case for 5 seconds	300	°C


Thermal Characteristics


Symbol	Parameter	FQP3P50	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	1.47	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W


3P50 FQP3 Characteristi Parame racteristics Drain-Source Breakc	CS	TO-2							Quantity	
Paramo racteristics Drain-Source Breako			20 Tube N/A		۱	N/A	50	50 units		
Paramo racteristics Drain-Source Breako		T _C = 25°C un	less other	wise noted						
Drain-Source Breako				Test Conditions		Min.	Тур.	Max.	Unit	
Drain-Source Breako					I					
		togo	Vee	= 0 V, I _D = -250 μA		-500			V	
Breakdown Voltage 1		•			-500			v		
Coefficient	o 1		$I_D = -250 \ \mu$ A, Referenced to 25°C				0.42		V/°C	
DSS Zero Gate Voltage Drain Current GSSF Gate-Body Leakage Current, Forward		-	= -500 V, V _{GS} = 0 V				-1	μA		
			$V_{DS} = -400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$				-10	μA		
, ,								nA		
Gate-Body Leakage Current, Reverse		Reverse	V _{GS} :	$= 30 \text{ V}, \text{ V}_{\text{DS}} = 0 \text{ V}$				100	nA	
racteristics						1				
Gate Threshold Volta	ige		V _{DS} =	= V _{GS} , I _D = -250 μA		-3.0		-5.0	V	
Static Drain-Source On-Resistance			V _{GS} = -10 V, I _D = -1.35 A			3.9	4.9	Ω		
Forward Transcondu	ctance		V _{DS} =	= -50 V, I _D = -1.35 A			2.35		S	
	5		1							
	apacitance				-	_			pF pF	
· · ·			f = 1.0 MHz			70	90	nE		
neverse fransier Ga					F		0.5	10		
		e					9.5	12	pF	
ng Characteristic		e							pF	
Turn-On Delay Time		же 	V _{DD} :	= -250 V, I _D = -2.7 A,			12	35	pF	
Turn-On Delay Time Turn-On Rise Time		;e	00	= -250 V, I _D = -2.7 A, 25 Ω			12 56	35 120	pF ns ns	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time		;e	00		(Note 4)		12 56 35	35 120 80	pF ns ns ns	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time		;e	R _G =	25 Ω	(Note 4)		12 56 35 45	35 120 80 100	pF ns ns ns ns	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge			R _G =	25 Ω = -400 V, I _D = -2.7 A,	(Note 4)		12 56 35 45 18	35 120 80 100 23	pF ns ns ns ns nC	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge		;e	R _G =	25 Ω	(Note 4)		12 56 35 45 18 3.6	35 120 80 100 23 	pF ns ns ns ns nC nC	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	SS		$R_{G} =$ $V_{DS} =$ $V_{GS} =$	25 Ω = -400 V, I _D = -2.7 A, = -10 V			12 56 35 45 18	35 120 80 100 23	pF ns ns ns ns nC	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	racter	istics a	R _G =	25 Ω = -400 V, I _D = -2.7 A, = -10 V		 	12 56 35 45 18 3.6 9.2	35 120 80 100 23 	pF ns ns ns nC nC nC	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Cha Maximum Continuou	racter	istics an Source Dic	V _{DS} = V _{GS} =	25 Ω = -400 V, I _D = -2.7 A, = -10 V Eximum Ratings ward Current		 	12 56 35 45 18 3.6 9.2	35 120 80 100 23 	pF ns ns ns nC nC nC	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Cha Maximum Continuou Maximum Pulsed Dra	racter s Drain- ain-Sour	istics al Source Did ce Diode F	V _{DS} = V _{GS} = V _{GS} =	25 Ω = -400 V, I _D = -2.7 A, = -10 V Eximum Ratings ward Current I Current		 	12 56 35 45 18 3.6 9.2	35 120 80 100 23 -2.7 -10.8	pF ns ns ns nC nC nC A A	
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Cha Maximum Continuou	racter s Drain- ain-Sour Forward	istics al Source Did ce Diode F	$R_{G} =$ $V_{DS} =$ $V_{GS} =$ nd Ma bde For Forward	25 Ω = -400 V, I _D = -2.7 A, = -10 V Eximum Ratings ward Current		 	12 56 35 45 18 3.6 9.2	35 120 80 100 23 	pF ns ns ns nC nC nC	
	Gate-Body Leakage racteristics Gate Threshold Volta Static Drain-Source On-Resistance Forward Transcondu	Gate-Body Leakage Current, racteristics Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance c Characteristics Input Capacitance Output Capacitance	racteristics Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance c Characteristics Input Capacitance Output Capacitance	Gate-Body Leakage Current, Forward V _{GS} = Gate-Body Leakage Current, Reverse V _{GS} = racteristics V _{DS} = Gate Threshold Voltage V _{DS} = Static Drain-Source V _{GS} = On-Resistance V _{DS} = Forward Transconductance V _{DS} = C Characteristics Input Capacitance VDS = V _{DS} =	Gate-Body Leakage Current, Forward $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Reverse $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ racteristics $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{A}$ Static Drain-Source $V_{GS} = -10 \text{ V}, I_D = -1.35 \text{ A}$ On-Resistance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ Forward Transconductance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ Input Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$	Gate-Body Leakage Current, Forward $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Reverse $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{A}$ Static Drain-Source $V_{GS} = -10 \text{ V}, I_D = -1.35 \text{ A}$ On-Resistance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ Forward Transconductance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ c CharacteristicsInput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$	Gate-Body Leakage Current, Forward $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Reverse $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{ A}$ -3.0Static Drain-Source $V_{GS} = -10 \text{ V}, I_D = -1.35 \text{ A}$ On-Resistance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ Forward Transconductance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ C CharacteristicsInput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$	Gate-Body Leakage Current, Forward $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Reverse $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{ A}$ -3.0Static Drain-Source $V_{GS} = -10 \text{ V}, I_D = -1.35 \text{ A}$ 3.9On-Resistance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ 2.35Forward Transconductance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ 510Input Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 510	Gate-Body Leakage Current, Forward $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ 100Gate-Body Leakage Current, Reverse $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ 100racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250 \mu \text{ A}$ -3.05.0Static Drain-Source $V_{GS} = -10 \text{ V}, I_D = -1.35 \text{ A}$ 3.94.9On-Resistance $V_{DS} = -50 \text{ V}, I_D = -1.35 \text{ A}$ 2.35c CharacteristicsInput Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 510660	

⁼QP3P50 — P-Channel QFET[®] MOSFE⁻

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CroPOWER TM CroSVOLT TM CTL TM Current Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild Semiconductor [®] FACT [®] FastvCore TM FETBench TM FPS TM	F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MicroPat™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MillerDrive™ MotionGrid® MT® MT% MVN® mWSave® OptoHiT™ OPTOLOGIC®	OPTOPLANAR [®] Power Supply WebDesigner [™] PowerXs [™] Programmable Active Droop [™] QFET [®] Qs [™] Quiet Series [™] RapidConfigure [™] Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -8 SuperSOT [™] -8 Su	E GENERAL TinyBoost [®] TinyUcgic [®] TinyLogic [®] TinyOPTO [™] TinyPOWer [™] TinyPOWer [™] TinyPWM [™] TinyPWM [™] TranSiC [™] TriFault Detect [™] TRUECURRENT [®] µSerDes [™] Utra FRFET [™] Utra FRFET [™] VisualMax [™] VoltagePlus [™] XS [™] Xsens [™] 仙童 [®]
--	---	--	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC