onsemi

SyncFET[™] – N-Channel, POWERTRENCH[®]

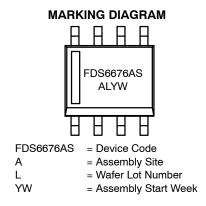
30 V

FDS6676AS, FDS6676AS-G

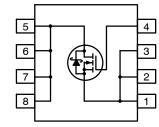
General Description

The FDS6676AS is designed to replace a single SO–8 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30 V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDS6676AS includes an integrated Schottky diode using **onsemi**'s monolithic SyncFET technology.

Features


- 14.5 A, 30 V
 - $R_{DS(ON)}$ Max = 6.0 m Ω at V_{GS} = 10 V
 - $R_{DS(ON)}$ Max = 7.25 m Ω at V_{GS} = 4.5 V
- Includes SyncFET Schottky Body Diode
- Low Gate Charge (45 nC Typical)
- $\bullet\,$ High Performance Trench Technology for Extremely Low $R_{DS(ON)}$ and Fast Switching
- High Power and Current Handling Capability
- These Devices are Pb-Free and are RoHS Compliant

Applications


- DC/DC Converter
- Low Side Notebook

V _{DSS} MAX	R _{DS(on)} MAX	I _D MAX
30 V	6.0 mΩ @ 10 V	14.5 A
	7.25 mΩ @ 4.5 V	

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current	Continuous (Note 1a)	14.5	А
		Pulsed	50	А
PD	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	
		(Note 1c)	1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	50	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	25	°C/W

 R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

a. 50°C/W when mounted on a 1 in² pad of 2 oz copper.

b.	105°C/W when mounted on a .04 in ² pad of 2 oz copper.

°,`,`,`,`,` с.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol Parameter		Test Conditions	Min	Тур	Max	Unit
OFF CHAR	OFF CHARACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA	30	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 10 \text{ mA}$, Referenced to 25°C	-	20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 24 V, V_{GS} = 0 V	-	-	500	μΑ
I _{GSS}	Gate-Body Leakage	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±100	nA

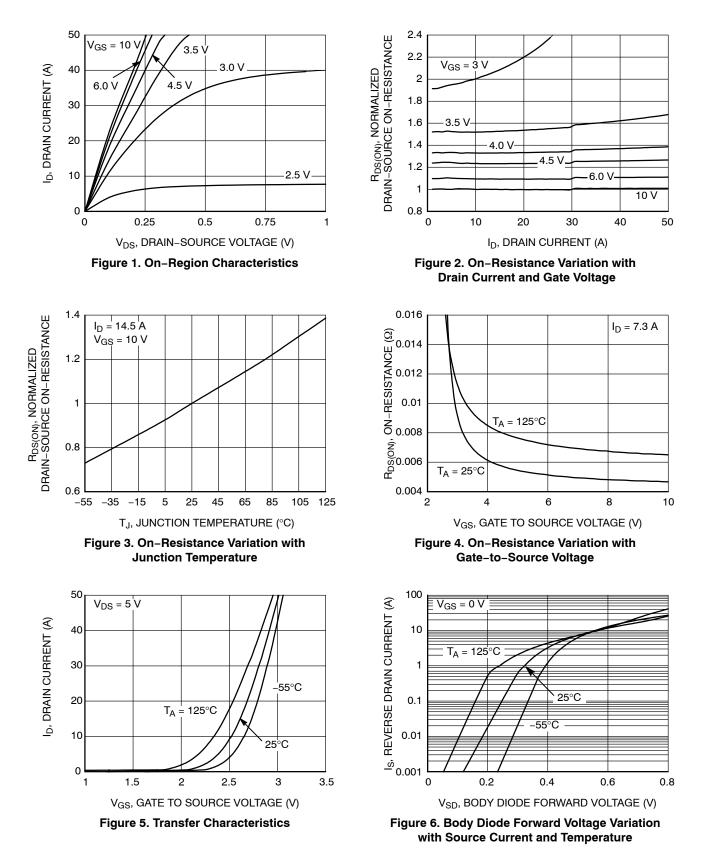
ON CHARACTERISTICS (Note 2)

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	1	1.5	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 10 \text{ mA}$, Referenced to 25°C	-	-4	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 14.5 \text{ A}$	-	4.5	6.0	mΩ
		V_{GS} = 4.5 V, I _D = 13.2 A	-	5.9	7.25	
		V_{GS} = 10 V, I _D = 14.5 A, T _J = 125°C	-	6.7	8.5	1
I _{D(on)}	On-State Drain Current	V_{GS} = 10 V, V_{DS} = 5 V	50	-	-	A
9 FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 14.5 \text{ A}$	-	66	-	S

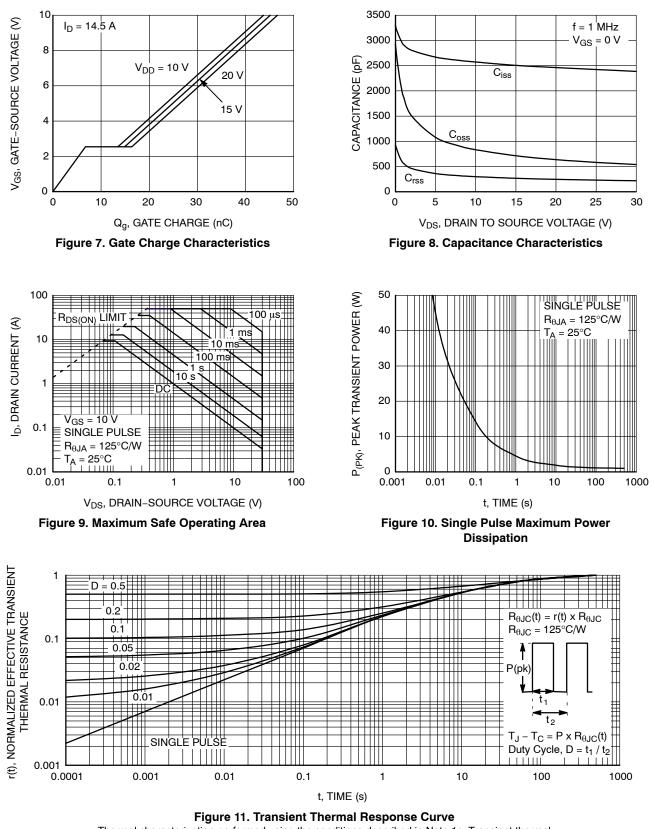
DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 15 V, V_{GS} = 0 V, f = 1.0 MHz	-	2510	-	pF
C _{oss}	Output Capacitance		-	710	-	pF
C _{rss}	Reverse Transfer Capacitance		-	270	-	pF
R _G	Gate Resistance	V_{GS} = 15 mV, f = 1.0 MHz	-	1.6	2.8	Ω

SWITCHING CHARACTERISTICS (Note 2)


t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A}$	-	10	20	ns
t _r	Turn-On Rise Time	$V_{\rm GS}$ = 10 V, $R_{\rm GEN}$ = 6 Ω	-	12	22	ns
t _{d(off)}	Turn-Off Delay Time		-	43	69	ns
t _f	Turn-Off Fall Time		-	29	46	ns
t _{d(on)}	Turn-On Delay Time	$\begin{array}{c} V_{DD} = 15 \; \text{V}, \; \text{I}_{D} = 1 \; \text{A} \\ V_{GS} = 4.5 \; \text{V}, \; \text{R}_{\text{GEN}} = 6 \; \Omega \end{array}$	-	17	31	ns
t _r	Turn-On Rise Time		-	22	35	ns
t _{d(off)}	Turn-Off Delay Time		-	34	54	ns
t _f	Turn-Off Fall Time		-	29	46	ns
Q _{g(TOT)}	Total Gate Charge at Vgs = 10 V	V _{DD} = 15 V, I _D = 14.5 A	-	45	63	nC
Qg	Total Gate Charge at Vgs = 5 V		-	25	35	nC
Q _{gs}	Gate-Source Charge		_	7	-	nC
Q _{gd}	Gate-Drain Charge		-	8	-	nC

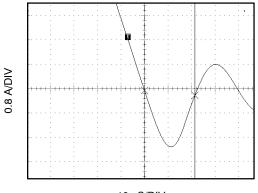
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS


V _{SD}	Drain-Source Diode Forward Voltage	V_{GS} = 0 V, I _S = 3.5 A (Note 2)	-	0.4	0.7	V
		$V_{GS} = 0 V$, $I_S = 7 A$ (Note 2)	-	0.5	-	V
t _{rr}	Diode Reverse Recovery Time	I_F = 14.5 A, d_{iF}/d_t = 300 A/µs (Note 3)	-	27	-	ns
I _{RM}	Diode Reverse Recovery Current		-	1.9	-	А
Q _{rr}	Diode Reverse Recovery Charge		-	26	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.
See "SyncFET Schottky Body Diode Characteristics" below.

TYPICAL CHARACTERISTICS

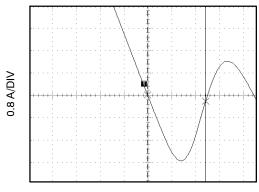
TYPICAL CHARACTERISTICS (continued)



Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TYPICAL CHARACTERISTICS (continued)

SyncFET Schottky Body Diode Characteristics


onsemi's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDS6676AS.

10 nS/DIV

Figure 12. FDS6676AS SyncFET Body Diode Reverse Recovery Characteristics

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6676).

10 nS/DIV

Figure 13. Non–SyncFET (FDS6676) Body Diode Reverse Recovery Characteristics

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

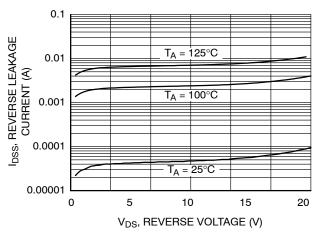


Figure 14. SyncFET Body Diode Reverse Leakage vs. Drain-Source Voltage and Temperature

TYPICAL CHARACTERISTICS (continued)

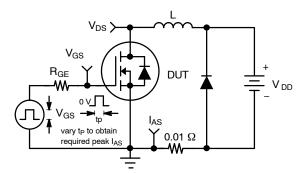


Figure 15. Unclamped Inductive Load Test Circuit

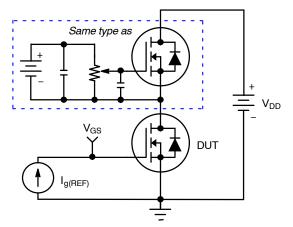


Figure 17. Gate Charge Test Circuit

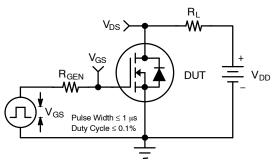
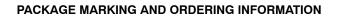



Figure 19. Switching Time Test Circuit

Device Marking

FDS6676AS

FDS6676AS

Device

FDS6676AS

FDS6676AS-G

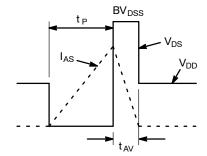


Figure 16. Unclamped Inductive Waveforms

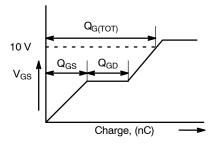


Figure 18. Gate Charge Waveforms

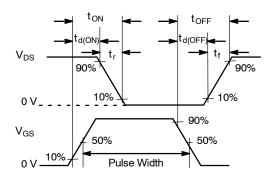


Figure 20. Switching Time Waveforms

Shipping[†]

2500 / Tape & Reel

2500 / Tape & Reel

Tape Width

12 mm

12 mm

+For information on tape a	and reel specificatior	s, including part orientation	on and tape sizes,	please refer to our	Tape and Reel Packaging
Specifications Brochure, E	BRD8011/D.				

Reel Size

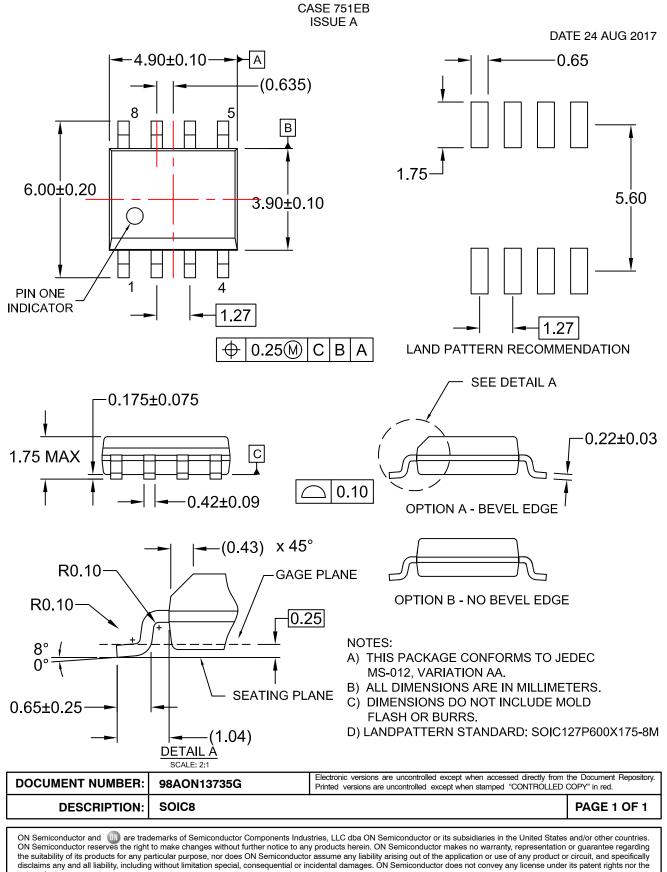
13'

13"

Package Type

SOIC8 (SO-8)

(Pb-Free)


SOIC8 (SO-8)

(Pb-Free)

SyncFET is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SOIC8

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales