

Wide Bandwidth Analog Switches

Features

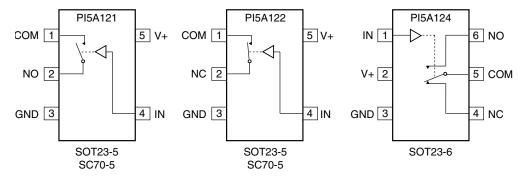
- Single-Supply Operation (+2V to +6V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (6Ω typ. with 5V supply)
 Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3Ω typ.
- Low Charge Injection Reduces Glitch Errors. Q = 4pC typ.
- High Speed. $t_{ON} = 10$ ns typ.
- Wide -3dB Bandwidth: 326 MHz (typ.)
- High-Current Channel Capability: >100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption (0.5µW typ)
- · Small outline transistor package minimizes board area
- Packaging (Pb-free & Green available):
- 5-pin 65-mil wide SOT23 (T) for PI5A121 and PI5A122
- 6-pin 65-mil wide SOT23 (T) for PI5A124
- 5-pin 50-mil wide SC70 (C) for PI5A121/PI5A122

Applications

- Audio, Video Switching, and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- · Mechanical Relay Replacement
- · Cell Phones
- PDAs

Description

The PI5A121/PI5A122/PI5A124 are analog switches designed for single-supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.


The PI5A121 is a single-pole throw (SPST) normally open (NO) switch. The switch is open when IN is LOW. The PI5A122 is a single-pole single-throw (SPST) normally closed (NC) switch.

Each switch conducts current equally well in either direction when on. When off, they block voltages up to V+.

These switches are fully specified with +5V, and +3.3V supplies. With +5V, they guarantee <10 Ω On-Resistance. On-Resistance matching between channels is within 2Ω . On-Resistance flatness is less than 55 Ω over the specified range. These switches also guarantee fast switching speeds (t_{ON} <20ns).

These products are available in 5-pin SC70 and/or 6-pin SOT23 plastic packages for operation over the industrial (-40°C to +85°C) temperature range.

Functional Diagrams, Pin Configurations and Truth Tables

Switches shown for Logic "0" input

IN	PI5A121	PI5A122
0	OFF	ON
1	ON	OFF

	PI5A124			
LOGIC	NC	NO		
0	ON	OFF		
1	OFF	ON		

Absolute Maximum Ratings

Voltages Referenced to Gnd V+0	.5V to +7V
$V_{IN},V_{COM},V_{NC},V_{NO}$ (Note 1)0.5V to or 30mA, whichever occurs first	V _{CC} +2V
Current (any terminal)	±25mA
Peak Current, COM, NO, NC	
(Pulsed at 1ms, 10% duty cycle)	±25mA

Thermal Information

Continuous Power Dissipation	
SOT23-6 (derate 7mW/°C above +70°C)	550mW
Storage Temperature65°C	to +150°C
Lead Temperature (soldering, 10s)	+300°C
Note 1:	
Signals on NC, NO, COM, or IN exceeding V+ or GND are	clamped by

internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V + = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V+	V
On-Resistance	R _{ON}	V+=4.5V,	25 Full		7.2	10 12	
On-Resistance Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +2.5 \text{V}$	25 Full		0.2	2 4	Ω
On-Resistance Flat- ness ⁽⁵⁾	R _{FLAT(ON})	$V+ = 5V,$ $I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 1V, 2.5V, 4V$	25 Full		2.72	3.5	
NO or NC Off Leak- age Current ⁽⁶⁾	I _{NO(OFF)} or I _{NC(OFF)}	$V+ = 5.5V,$ $V_{COM} = 0V,$ $V_{NO} \text{ or } V_{NC} = 4.5V$	25 Full	-80	0.18	80	
COM Off Leakage Current ⁽⁶⁾	I _{COM(OFF)}	$V = 5.5V, V_{COM} = +4.5V,$ V_{NO} or $V_{NC} = \pm 0V$	25 Full	-80	0.20	80	nA
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	V+ = 5.5V, $V_{COM} = +4.5V$ V_{NO} or $V_{NC} = +4.5V$	25 Full	-80	0.20	80	

Electrical Specifications - Single +5V Supply (continued)

 $(V+=+5V \pm 10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Logic Input	-	•		-		-	-
Input High Voltage	V_{IH}	Guaranteed logic High Level		2			V
Input Low Voltage	$V_{ m IL}$	Guaranteed logic Low Level				0.8	
Input Current with Voltage High	I _{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	Full	-1	0.005	1	4
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μΑ
Dynamic							
т. О. Т.			25		7	15	ns
Turn-On Time	t _{ON}	$V_{CC} = 5V$, Figure 1	Full			20	
Turn Off Times	t _{OFF}	VCC – 3 v, Figure 1	25		1	7	
Turn-Off Time			Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2			1.6	10	pC
Off Isolation	O _{IRR}	$R_L = 50\Omega$, $C_L = 5pF$, f = 10MHz, Figure 3			-43		dB
Crosstalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$, f = 10MHz, Figure 4	25		-43		
NC or NO Capacitance	C _(OFF)	C 11.11 - Ei 5			5.5		pF
COM Off Capacitance	C _{COM(OFF)}	f = 1kHz, Figure 5			5.5		
COM On Capacitance	C _{COM(ON)}	f = 1kHz, Figure 6			13		
-3dB Bandwidth	BW	$R_L = 50\Omega$, Figure 7	Full		326		MHz
Supply							
Power-Supply Range	V+		P11	2		6	V
Positve Supply Current	I+	$V_{CC} = 5.5V, V_{IN} = 0V \text{ or } V+$	Full			1	μА

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 3.
- 8. Between any two switches. See Figure 4.

Electrical Specifications - Single +3.3V Supply

 $(V + = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max.(1)	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V
On Designation	D	$V+=3V$, $I_{COM}=-30$ mA, V_{NO} or	25		12	18	
On-Resistance	R_{ON}	$V_{NC} = 1.5V$	Full			22	
On-Resistance Match	AD		25		1	1	
Between Channels ⁽⁴⁾	ΔR_{ON}	$V+ = 3.3V$, $I_{COM} = -30mA$,	Full			2	Ω
On-Resistance Flat-	D	V_{NO} or $V_{NC} = 0.8V$, 2.5V	25		0.5	4]
ness ^(3,5)	R _{FLAT(ON)}		Full			5	
Dynamic					-	-	
т. О. Т.	t _{ON}		25		15	25	ns
Turn-On Time		V+=3.3V,	Full			40	
Turn-Off Time	4	V_{NO} or $V_{NC} = 1.5V$, Figure 1	25		1.5	12	
Turn-OII Time	$t_{ m OFF}$		Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		1.3	10	рC
Supply							
Positve Supply Current	I+	$V+=3.6V$, $V_{IN}=0V$ or $V+All$ Channels on or off	Full			1	μΑ
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic high level	Full	2			V
Input Low Voltage	$V_{ m IL}$	Guaranteed logic low level	Full			0.8	
Input High Current	I _{INH}	$V_{IN} = 2.4V$, all others = 0.8V	Full	-1		1	4
Input Low Current	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V	Full	-1		1	μA

Test Circuits/Timing Diagrams

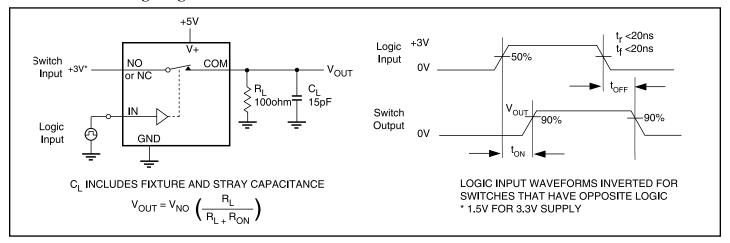


Figure 1. Switching Time

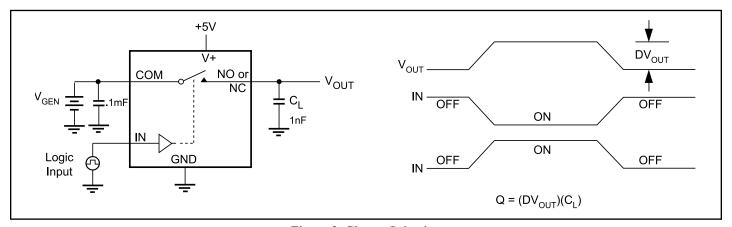


Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

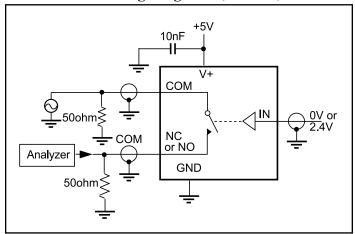


Figure 3. Off Isolation

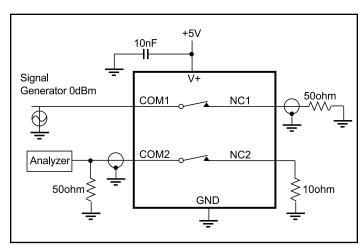


Figure 4. Crosstalk (124 only)

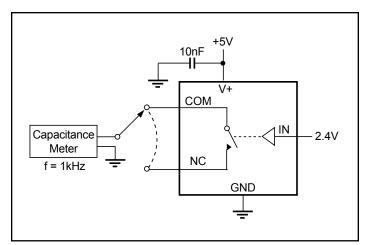


Figure 5. Channel-Off Capacitance

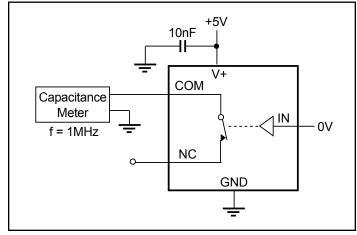
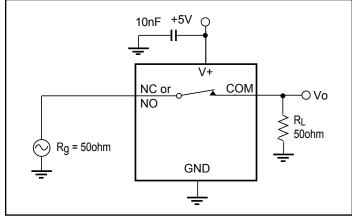
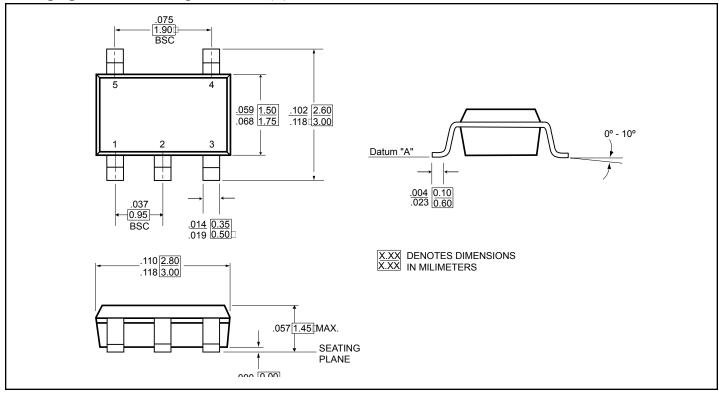
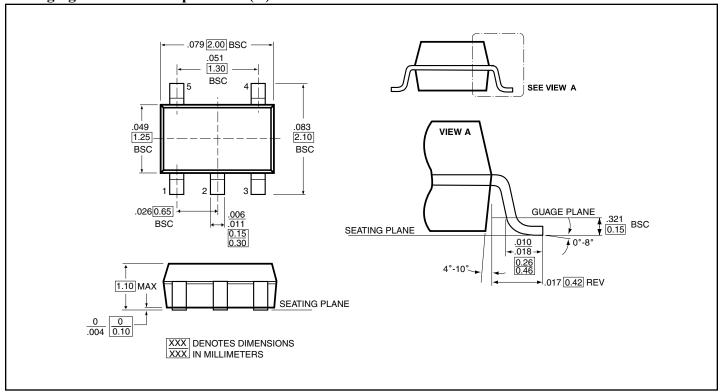


Figure 6. Channel-On Capacitance

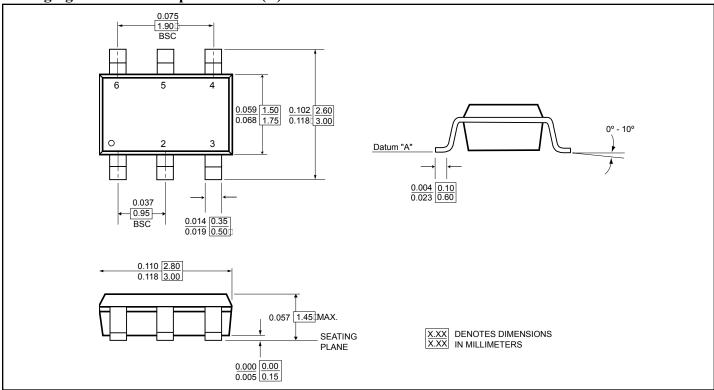



Figure 7. Bandwidth

6


PS8203G 10/19/04

Packaging Mechanical: 5-pin SOT-23 (T)



Packaging Mechanical: 5-pin SC70 (C)

Ordering Information

Ordeing Code	Packaging Code	Package Type	Top Marking
PI5A121TX	T	5-pin, 65-mil wide SOT-23	ZV
PI5A121TEX	T	Pb-free & Green, 5-pin, 65-mil wide SOT-23	Ζ̄V
PI5A121CX	С	5-pin, 50-mil wide SOT-23	ZV
PI5A121CEX	С	Pb-free & Green, 5-pin, 50-mil wide SOT-23	Ζ̄V
PI5A122TX	T	5-pin, 65-mil wide SOT-23	ZU
PI5A122TEX	T	Pb-free & Green, 5-pin, 65-mil wide SOT-23	Z U
PI5A122CX	С	5-pin, 50-mil wide SOT-23	ZU
PI5A122CEX	С	Pb-free & Green, 5-pin, 50-mil wide SOT-23	Z U
PI5A124TX	T	6-pin, 65-mil wide SOT-23	ZT
PI5A124TEX	T	Pb-free & Green, 6-pin, 65-mil wide SOT-23	Ζ̄Τ

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. X = Tape/Reel