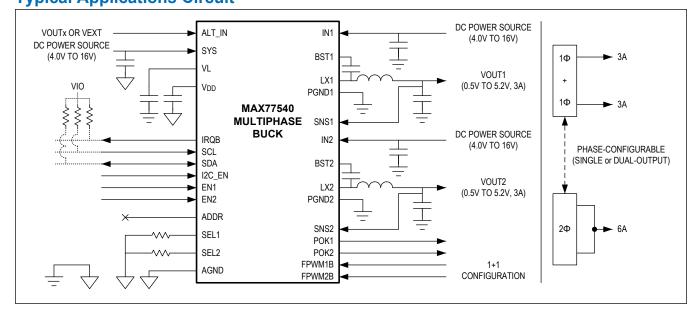


Click here to ask an associate for production status of specific part numbers.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

General Description

The MAX77540 is a high-efficiency step-down converter with two 3A switching phases. It uses an adaptive COT (constant on-time) current-mode control architecture and the two 3A switching phases can be configured as either one (2Φ , 6A) or two (1Φ , 3A each) outputs. Its wide input voltage range enables a direct conversion for sub-1V outputs from 3-cell Li+ batteries, USB PD, and $12V_{DC}$ supply rails. The output voltages are preset with resistors and are further adjustable through an I²C-compatible interface. With 94% peak efficiency, low quiescent current, and compact solution size, the MAX77540 is ideal for battery powered, space-constraint equipment.


Programmable switching frequency, frequency tracking, and spread-spectrum allow easier system optimization for noise-sensitive applications. Dedicated EN, POK, and FP-WMB pins provide options for direct hardware control, while more programmable options, such as soft-start/stop and ramp-up/down slew-rates, are available through I²C. An array of built-in protections insures safe operation under abnormal operating conditions.

Benefits and Features

- 4V to 16V Input Voltage Range
- 0.5V to 5.2V Output Voltage Range
- Resistor Configurable Default VOUT
- Two 3A Bucks (1Φ) or One 6A Buck (2Φ)
- ±0.5% V_{OUT} Accuracy (Default V_{OUT} at 25°C)
- 94% Peak Efficiency (7.6V_{IN}, 3.3V_{OUT}, 1MHz)
- Auto SKIP/PWM and Low-Power Mode
- 98% Max. Duty Cycle Dropout Operation
- Programmable Soft-Start/Stop and Ramp-Up/Down Slew Rates
- Pre-Biased Startup and Active Output Discharge
- Programmable Inductor Peak Current Limits
- 0.5/1.0/1.6MHz Nominal Switching Frequency
- Spread-Spectrum Modulation
- Internal/External Frequency Tracking
- Dedicated EN, POK, and FPWM Pins
- Undervoltage lockout (UVLO), Thermal Shutdown, and Short-Circuit Protection
- High-Speed I²C I/F with 3-Slave Address Options
- 30-WLP (2.51mm x 2.31mm) and 24-FC2QFN (3mm x 3mm) Packages
- Less than 55mm² Total Solution Size

Applications

- 2/3-Cell Li+ and USB-C Power Delivery Systems
- Microprocessors, FPGAs, DSPs, and ASICs
- Networking and PCIe[®]/RAID Cards

Ordering Information appears at end of data sheet.

19-101013; Rev 2; 4/22

© 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2022 Analog Devices, Inc. All rights reserved.

Typical Applications Circuit

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

TABLE OF CONTENTS

General Description
Applications
Benefits and Features
Typical Applications Circuit
Absolute Maximum Ratings
Recommended Operating Conditions
Package Information
30 WLP
24 FC2QFN
Electrical Characteristics—Top-Level
Electrical Characteristics—Dual-Phase Configurable Buck Converter
Electrical Characteristics—I ² C Serial Interface
Typical Operating Characteristics
Bump Configuration
30 WLP
24 FC2QFN
Bump Descriptions
Detailed Description—Top-Level
Dedicated Internal Supplies
Alternative Low-Voltage Input (ALT_IN)
Output Enable Control
Undervoltage Lockout
Thermal Warnings and Thermal Shutdown (T _{SHDN})
Interrupt (IRQB) and Mask
Register Reset Condition
FC2QFN Default Options
Detailed Description—Dual-Phase Configurable Buck Converter
Buck Converter Control Scheme
Buck Operating Modes
SKIP Mode
Low-Power SKIP (LP-SKIP) Mode
Forced-PWM (FPWM) Mode
Dropout Mode
Switching Frequency
Phase Configuration
Default Output Voltage Selection (SELx)
Output Voltage Setting
Soft-Start and Soft-Stop
Dynamic Output Voltage Scaling

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

TABLE OF CONTENTS (CONTINUED)

Output Voltage Active Discharge	36
Bootstrap Refresh	
Frequency Tracking (FTRAK)	36
Spread-Spectrum Modulation	37
Pseudo-Random Pattern	37
Triangular Pattern	38
Inductor Current Limits	39
Power-OK (POK)	39
Fault Protection	40
Detailed Description—I ² C Serial Interface	41
Slave Address	41
Register Map	42
MAX77540 WLP Package	42
Register Details	43
Applications Information—Dual-Phase Configurable Buck Converter	
Inductor Selection.	54
Input Capacitor Selection	54
Output Capacitor Selection	55
General PCB Layout Guidelines	55
Typical Application Circuits	58
1+1 Phase Configuration with I ² C Enabled—WLP	
1+1 Phase Configuration without I ² C—WLP	59
Dual-Phase Configuration with I ² C Enabled—WLP	60
Dual-Phase Configuration without I ² C—WLP	61
1+1 Phase Configuration—FC2QFN	62
Dual-Phase Configuration—FC2QFN	63
Ordering Information	63
Revision History	64

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

LIST OF FIGURES

Figure 1. Alternative Input Switch-Over Circuit	26
Figure 2. Thermal Monitor State Diagram	28
Figure 3. Functional Block Diagram	30
Figure 4. Buck Operating Modes	31
Figure 5. Frequency Tracking	37
Figure 6. Pseudo-Random Modulator Engine	37
Figure 7. 4-Bit Pseudo-Random Modulation Signal Example	38
Figure 8. Triangular Modulator Engine	38
Figure 9. 4-Bit Triangular Modulation Signal Example	39
Figure 10. Fault Protection State Diagram	40
Figure 11. PCB Layout Example - WLP	56
Figure 12. PCB Layout Example - FC2QFN	57

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

LIST OF TABLES

Table 1. V _{DD} and I ² C Enable Truth Table	26
Table 2. Phase Configuration Selection	32
Table 3. Buck Output Sensing Assignment.	32
Table 4. Default V _{OUT1} Selection	33
Table 5. Default V _{OUT2} Selection	34
Table 6. Buck Output Voltage Range	35
Table 7. Mx_FSREN Effect on Buck Behavior	36
Table 8. Bootstrap Refresh Interval Selection	36
Table 9. Mx_FTRAK Enable Truth Table	36
Table 10. I ² C Slave Address Options	41
Table 11. Recommended Inductors	54
Table 12. Recommended Minimum Effective Output Capacitance	55

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Absolute Maximum Ratings

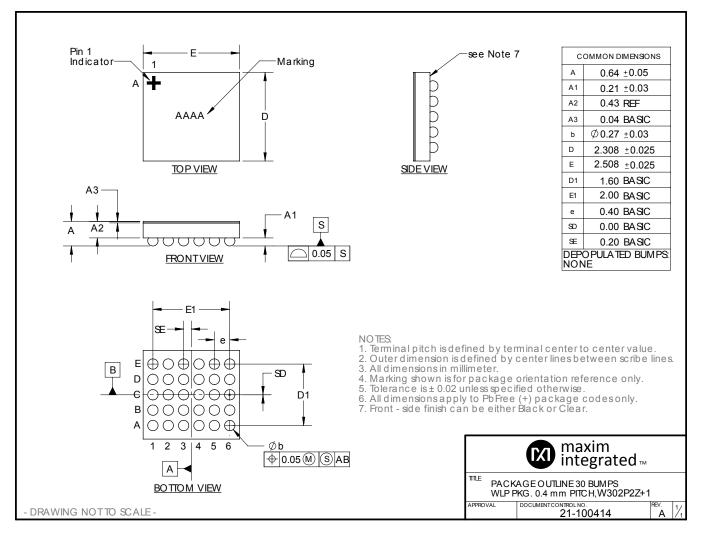
SYS to AGND	BST2 to LX20.3V to +2.2V
ALT_IN to AGND0.3V to +6.0V	SNS1, SNS2 to AGND0.3V to +6.0V
V _{DD} to AGND0.3V to +2.2V	FPWM1B, FPWM2B to AGND0.3V to +6.0V
V _L to PGND0.3V to +2.2V	POK1, POK2 to AGND0.3V to +6.0V
I2C_EN to AGND0.3V to MIN(V _{SYS} + 0.3, +17.6)V	SCL, SDA, IRQB to AGND0.3V to +6.0V
EN1, EN2 to AGND0.3V to MIN(V _{SYS} + 0.3, +17.6)V	ADDR, SEL1, SEL2 to AGND0.3V to MIN(V _{DD} + 0.3, +2.2)V
IN1 to PGND10.3V to +17.6V	PGND1, PGND2 to AGND0.3V to +0.3V
IN2 to PGND20.3V to +17.6V	Continuous Power Dissipation (JESD51-7, T _A = +70°C)
LX1 to PGND10.3V to +17.6V	30 WLP (Derate 20.25mW/°C above +70°C)1620mW
LX1 to PGND1 (less than 10ns) (V _{IN} - 22)V to +22V	24 FC2QFN (Derate 27.29mW/°C above +70°C)2183mW
LX2 to PGND20.3V to +17.6V	Junction Temperature+150°C
LX2 to PGND2 (less than 10ns) (V _{IN} - 22)V to +22V	Storage Temperature Range65°C to +150°C
BST1 to LX10.3V to +2.2V	Soldering Temperature (reflow)+260°C

Note 1: LXx has internal clamp diodes to its corresponding PGNDx and INx. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

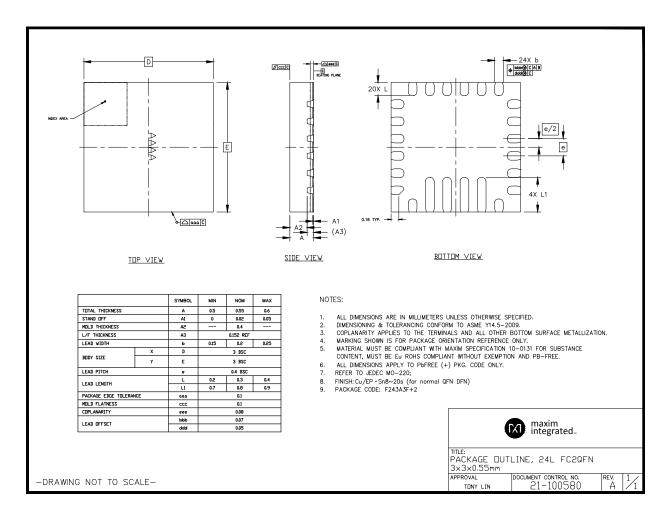
PARAMETER	SYMBOL	CONDITION	TYPICAL RANGE	UNIT
Input Voltage Range	V _{IN}		4 to 16	V
Output Current Range	Ιουτ	For continuous operation at 3A, the junction temperature (T_J) is limited to +115°C. If the junction temperature is higher than +115°C, the expected lifetime at 3A continuous operation is derated.	0 to 3	A
Junction Temperature Range	Тյ		-40 to +125	°C


Note: These limits are not guaranteed.

Package Information

30 WLP

Package Code	W302P2Z+1
Outline Number	<u>21-100414</u>
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	49.38°C/W


16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

24 FC2QFN

Package Code	F243A3F+2
Outline Number	<u>21-100580</u>
Land Pattern Number	<u>90-100211</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	36.64°C/W

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Electrical Characteristics—Top-Level

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V, V_{OUT1} = 3.3V, V_{OUT2} = 5.0V$, Single-phase Configuration (1 Φ + 1 Φ), $V_{I2C}_{EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT VOLTAGE AND SUPPLY CURRENT						
SYS Voltage Range	V _{SYS}		4		16	V
SYS Undervoltage	V _{UVLO_R}	V _{SYS} rising	3.8	3.9	4.0	V
Lockout (UVLO)	V _{UVLO_F}	V _{SYS} falling	3.5	3.7	3.8	V
Power-On Reset (POR) Threshold (Note 7)	V _{POR}	V _{SYS} falling		1.7		V

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Electrical Characteristics—Top-Level (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V, V_{OUT1} = 3.3V, V_{OUT2} = 5.0V$, Single-phase Configuration (1 Φ + 1 Φ), $V_{I2C}_{EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Shutdown Supply	ISHDN	V _{I2C_EN} = V _{ENx} =	T _A = -40°C to +85°C		1.5	5.5	μA
Current (Note 3)	GHER	0V -	T _A = +125°C			15	
Standby Supply Current (Note 3, Note 8)	I _{STBY}	V _{ALT_IN} = 0V, EN_FTMON = 0, all	T _A = -40°C to +85°C		25	50	μA
		Bucks are disabled	T _A = +125°C			70	
Quiescent Supply Current with External ALT_IN (Note 3, Note 8)	IQ	V _{ALT_IN} = V _{EXT} = 3. V _{OUT} (TARGET), both enabled, SKIP or LP	.3V, V _{OUT} > b Buck phases are b-SKIP mode, no load		10	20	μA
Quiescent Supply		V _{ALT_IN} = 0V, V _{OUT} > V _{OUT} (TARGET), no load	Only one Buck phase is enabled		215	300	
Current in LP-SKIP Mode (Note 3, Note 8)	IQ_LP-SKIP		Both Buck phases are enabled		310	400	μA
Quiescent Supply Current in SKIP Mode		V _{ALT_IN} = 0V, V _{OUT} >	Only one Buck phase is enabled		260	350	
(Note 3)	'Q_SKIP	IQ_SKIP VOUT (TARGET), no load Both Buck phases are enabled		400	500	μA	
INTERNAL BIAS SUPPL	Y	-					
V _L Regulator Voltage	VL	(Note 4)			1.8		V
V _{DD} Regulator Voltage	V _{DD}	(Note 4)	(Note 4)		1.8		V
V _{DD} Undervoltage Lockout (UVLO)	VDD_UVLO_F	(Note 4)			1.55		V
ALT_IN Switch-Over Threshold (Note 8)	V _{SWO}	V_{ALT_IN} Rising, 100mV hysteresis, V _L & V _{DD} input switches from SYS to ALT_IN above this threshold (WLP package only)		2.7	2.8	2.9	v
ALT_IN Valid Voltage Range (Note 8)	V _{ALT_IN}			V _{SWO}		5.5	V
ALT_IN Shutdown Supply Current (Note 8)	ISHDN_ALT_IN	$V_{I2C_{EN}} = V_{ENx} = 0V, V_{ALT_{IN}} = 3.3V$			0.2		μA
THERMAL PROTECTION	1						
Thermal Warning 1 (Note 8)	T _{J120}	T _J rising, 15°C hyste	eresis		+120		°C
Thermal Warning 2 (Note 8)	T _{J140}	T _J rising, 15°C hyste	T _J rising, 15°C hysteresis		+140		°C
Thermal Shutdown (T _{SHDN})	T _{SHDN}	T _J rising, 15°C hysteresis (Note 8)			+165		°C
LOGIC INPUT AND OUT	PUT						
ADDR Input Logic High Threshold (Note 8)	VIH_ADDR			0.8 x V _{DD}			V
ADDR Input Logic Low Threshold (Note 8)	V _{IL_ADDR}					0.2 x V _{DD}	V
FPWMxB Input Logic High Threshold	V _{IH_FPWMxB}			1.44			V

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Electrical Characteristics—Top-Level (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V, V_{OUT1} = 3.3V, V_{OUT2} = 5.0V$, Single-phase Configuration (1 Φ + 1 Φ), $V_{I2C}_{EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
FPWMxB Input Logic Low Threshold	V _{IL_FPWMxB}					0.54	V
I2C_EN, ENx Input Logic High Threshold	V _{IH_EN}			1.1			V
I2C_EN, ENx Input Logic Low Threshold	V _{IL_EN}					0.4	V
IRQB Output Logic Low Threshold (Note 8)	V _{OL_IRQB}	Sinking 2mA				0.4	V
POKx Output Logic Low Threshold	V _{OL_POK}	Sinking 2mA				0.4	V
ADDR Leakage Current		V _{DD} = 1.8V,	T _A = +25°C	-1	±0.001	+1	
(Note 8)	ILKG_ADDR	V _{ADDR} = 0V and 1.8V	T _A = +85°C		±0.01		μA
I2C_EN, ENx Leakage		V _{SYS} = 16V, V _{ENx}	T _A = +25°C		±0.1		
Current	ILKG_EN	= 0V and 16V	T _A = +85°C		±0.5		μA
IRQB Leakage Current (Note 8)	I _{LKG_IRQB}	IRQB set to Hi-Z (i.e., No Interrupt Pending), $V_{IRQB} = 0V$ and 5.5V		-1		+1	μΑ
POKx Leakage Current	ILKG_POK	POKx = High (Hi-Z), +85°C	V _{POKx} = 5.5V, T _A =			1	μΑ

Note 2: The MAX77540 is tested under pulsed load conditions such that $T_J \approx T_A$. Limits over the operating temperature range ($T_J = -40^{\circ}$ C to $+125^{\circ}$ C) are guaranteed by design and characterization using statistical process control methods. Note that the maximum ambient temperature consistent with this specification is determined by specific operating conditions, board layout, rated package thermal impedance, and other environmental factors.

Note 3: Supply Current = $I_{SYS} + I_{IN1} + I_{IN2}$

Note 4: See the <u>Dedicated Internal Supplies</u> section.

Electrical Characteristics—Dual-Phase Configurable Buck Converter

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V$, Single-phase Configuration (1 Φ +1 Φ), $V_{OUT1} = 3.3V$, $V_{OUT2} = 5.0V$, $V_{I2C}_{EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT SUPPLY						
Input Voltage Range	V _{INx}		4		16	V
DC OUTPUT VOLTAGE	AND ACCURAC	Y				
		Low-range (Mx_RNG[1:0] = 0x0)	0.5		1.2	
Output Voltage Range	V _{OUT_RNG}	Mid-range (Mx_RNG[1:0] = 0x1)	1		2.4	V
		High-range (Mx_RNG[1:0] = 0x2)	2		5.2	
Line Regulation		1 Φ , FPWM Mode, V _{INx} = 4V to 16V, V _{OUT} = Default, I _{OUT} = 0A	-0.1		+0.1	%/V
Load Regulation		1Φ, FPWM Mode, I _{OUT} = 0A to 3A (Note 7)		0.1		%/A

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Electrical Characteristics—Dual-Phase Configurable Buck Converter (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V$, Single-phase Configuration (1 Φ +1 Φ), $V_{OUT1} = 3.3V$, $V_{OUT2} = 5.0V$, $V_{I2C_EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
			V _{OUT} < 0.6V	-2.5		+2.5	
		1Φ, FPWM Mode, V _{INx} = 4V to 16V, I _{OUT} = 0A	0.6V ≤ V _{OUT} < 4.0V	-1.5		+1.5	%
DC Output Voltage Accuracy	V _{OUT_ACC}		4.0V ≤ V _{OUT} ≤ 5.2V	-1.0		+1.0	
			V _{OUT} = Factory Default, T _A = +25°C	-0.5		+0.5	
POWER STAGE							_
		Mx_ILIM[1:0] = 0x0		1.10	1.50	1.90	
High-Side MOSFET	I=	$Mx_{ILIM[1:0]} = 0x1$		1.85	2.25	2.65	A
Peak Current Limit	IPLIM	Mx_ILIM[1:0] = 0x2		2.55	3.00	3.45	
		Mx_ILIM[1:0] = 0x3		4.05	4.50	4.95	
Low-Side MOSFET Valley Current Limit	I _{VLIM}	Tracks I _{PLIM}			I _{PLIM} - 1		A
Low-Side MOSFET Negative Current Limit	I _{NLIM}	FPWM Mode		-3.6	-2.9	-2.2	A
Low-Side MOSFET Zero-Crossing Current Threshold	I _{ZX}	SKIP or LP-SKIP Mode			150		mA
High-Side MOSFET On- Resistance	R _{ON_HS}	1Φ, I _{LXx} = 190mA			50	100	mΩ
Low-Side MOSFET On- Resistance	R _{ON_LS}	1Ф, I _{LXx} = -190mA			32	64	mΩ
		FPWM Mode, No Load, No External Clock, T _A = +25°C	Mx_FREQ[1:0] = 0x0		0.5		
Nominal Switching Frequency	F _{SW}		Mx_FREQ[1:0] = 0x1		1		MHz
		(Note 5)	Mx_FREQ[1:0] = 0x2 or 0x3 (Note 8)		1.6		
Maximum Duty Cycle	D _{MAX}	Dropout Region (V _O regulation target)	UT falls below its	97	98		%
LX Active Discharge Resistance	R _{AD1}	1 Φ , Buck Output disabled, Active Discharge enabled (Mx_ADIS1 = 1), Resistance from corresponding LX _X to PGNDx (Note 8)			1		Ω
	R _{AD100}	1Φ, Buck Output dis Discharge enabled (Resistance from cor PGNDx	Mx_ADIS100 = 1),		100		
		$1\Phi, V_{LXx} = 0V$ and	T _A = +25°C		0.6	4.5	
LX Leakage Current	ILKG_LX	16V	T _A = -40°C to +85°C		1		μA

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Electrical Characteristics—Dual-Phase Configurable Buck Converter (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V$, Single-phase Configuration (1 Φ +1 Φ), $V_{OUT1} = 3.3V$, $V_{OUT2} = 5.0V$, $V_{I2C_EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
SLEW RATE AND TIMIN	G							
		SSTRT_SR[2:0] = 0	x0		0.15			
		SSTRT_SR[2:0] = 02	SSTRT_SR[2:0] = 0x1 0.625			1		
		SSTRT_SR[2:0] = 0x2		1.25		-		
Soft-Start Slew Rate		SSTRT_SR[2:0] = 02	x3	2.5				
(Note 6)	∆V _{OUT} /∆t	SSTRT_SR[2:0] = 02	x4		5		− mV/µs	
		SSTRT_SR[2:0] = 02	x5		10			
		SSTRT_SR[2:0] = 02	x6		20		1	
		SSTRT_SR[2:0] = 02	x7		40			
		SSTOP_SR[2:0] = 0	x0		-0.15			
		SSTOP_SR[2:0] = 0	x1		-0.625			
		SSTOP_SR[2:0] = 0	x2		-1.25			
Soft-Stop Slew Rate		SSTOP_SR[2:0] = 0	x3		-2.5			
(Note 6)	$\Delta V_{OUT} / \Delta t$	SSTOP_SR[2:0] = 0	x4		-5		- mV/μs	
		SSTOP_SR[2:0] = 0x5 -10		-10				
		SSTOP_SR[2:0] = 0x6 -20						
		SSTOP_SR[2:0] = 0	x7		-40		7	
		Mx_RU_SR[2:0] = 0	x0		0.15			
		Mx_RU_SR[2:0] = 0x1		0.625				
		Mx_RU_SR[2:0] = 0x2		1.25		- - mV/µs		
Ramp-Up Slew Rate		Mx_RU_SR[2:0] = 0x3		2.5				
(Note 6, Note 8)	∆V _{OUT} /∆t	Mx_RU_SR[2:0] = 0x4		5				
		Mx_RU_SR[2:0] = 0x5		10				
		Mx_RU_SR[2:0] = 0	x6	20		-		
		Mx_RU_SR[2:0] = 0x7		40				
		Mx_RD_SR[2:0] = 0	x0		-0.15			
		Mx_RD_SR[2:0] = 0	x1		-0.625			
		Mx_RD_SR[2:0] = 0	x2		-1.25			
Ramp-Down Slew Rate		Mx_RD_SR[2:0] = 0	x3		-2.5			
(Note 6, Note 8)	∆V _{OUT} /∆t	Mx_RD_SR[2:0] = 0	x4		-5		− mV/µs	
		Mx_RD_SR[2:0] = 0	x5		-10		1	
		Mx_RD_SR[2:0] = 0x6			-20		1	
		Mx_RD_SR[2:0] = 0x7			-40		1	
Slew-Rate Accuracy		REFDAC slew-rate a	accuracy	-5		+5	%	
		Delay from rising	V _{DD} is pre-enabled		100	140		
Turn-On Delay	t _{DLY}	edge of ENx signal to V _{OUTx} ramping start-off	V _{DD} is not pre- enabled		435	535	μs	

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Electrical Characteristics—Dual-Phase Configurable Buck Converter (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 12V$, Single-phase Configuration (1 Φ +1 Φ), $V_{OUT1} = 3.3V$, $V_{OUT2} = 5.0V$, $V_{I2C}_{EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FREQUENCY TRACKING	G					
External Frequency Tracking Lockable Range (Note 6)	FFTRAK	Expressed as a percentage of the nominal frequency set by Mx_FREQ[1:0]	95		105	%
SPREAD-SPECTRUM (N	lote 8)					
		Mx_SS_FREQ[1:0] = 0x0		1		
Modulation Frequency	F	Mx_SS_FREQ[1:0] = 0x1		3		1
(Note 6)	Fss_mod	Mx_SS_FREQ[1:0] = 0x2	5		- kHz	
		Mx_SS_FREQ[1:0] = 0x3	7			
		Mx_SS_ENV[1:0] = 0x1	±8			
Modulation Envelope	ΔF _{SS}	Mx_SS_ENV[1:0] = 0x2	±12		%	
		Mx_SS_ENV[1:0] = 0x3		±16		1
POWER-OK AND SHOR	T-CIRCUIT PRO	TECTION				
Power-OK Rising Threshold	V _{POK_R}	Expressed as a percentage of V_{OUT}	77	82	87	%
Power-OK Falling Threshold	V _{POK_F}	Expressed as a percentage of V _{OUT}	73	78	83	%
Short-Circuit Detection Threshold	V _{SCP}	V _{OUT} Falling, Expressed as a percentage of target V _{OUT}		20		%
		POK_TO[1:0] = 0x1	25			
Power-OK Fault Timeout (Note 6)	^t РОК_ТО	POK_TO[1:0] = 0x2	50		ms	
		POK_TO[1:0] = 0x3		100		1

Note 5: Switching frequency is not set by a clock oscillator. F_{SW} varies depending on input voltage, output voltage, load, and spread-spectrum settings.

Note 6: Guaranteed by design. Production tested through scan.

Note 7: Not production tested. Design guidance only.

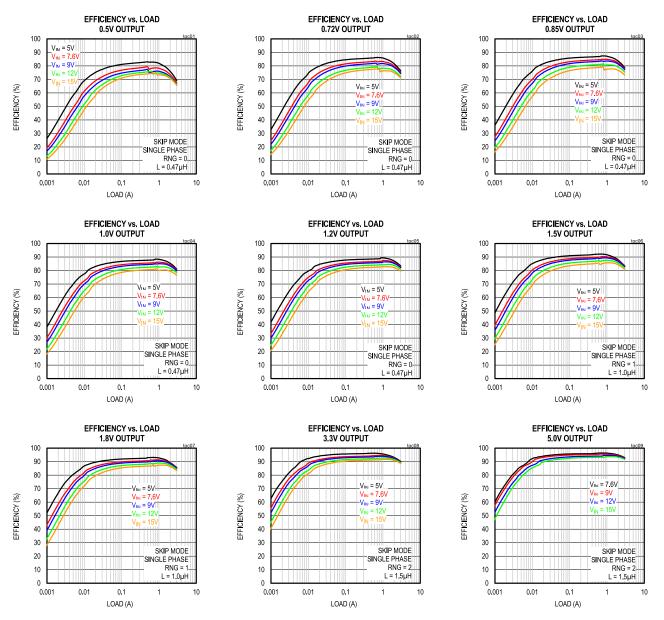
Note 8: Not applicable to FC2QFN package.

Electrical Characteristics—I²C Serial Interface

 $(V_{SYS} = 12V, V_{I2C EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

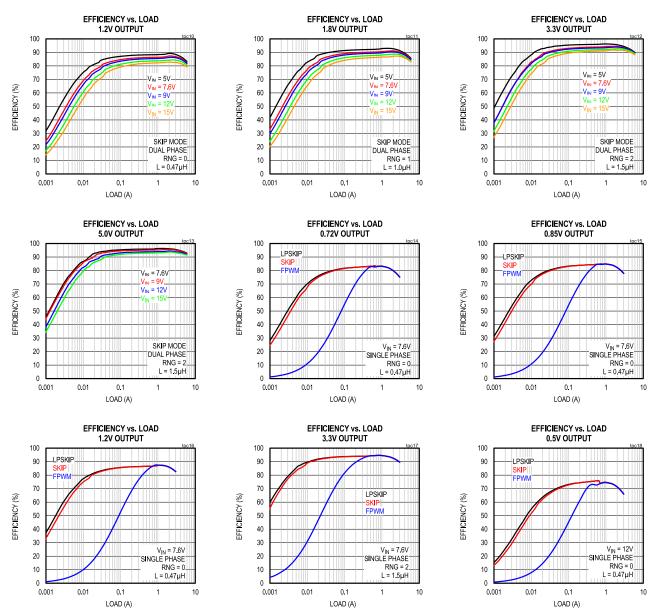
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O STAGE (Note 8)						
SCL, SDA Input Logic Low Threshold	V _{IL}				0.54	V
SCL, SDA Input Logic High Threshold	VIH		1.44			V
SCL, SDA Input Hysteresis	V _{HYS}			0.3		V
SDA Output Logic Low Threshold	V _{OL_SDA}	Sinking 20mA			0.4	V

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

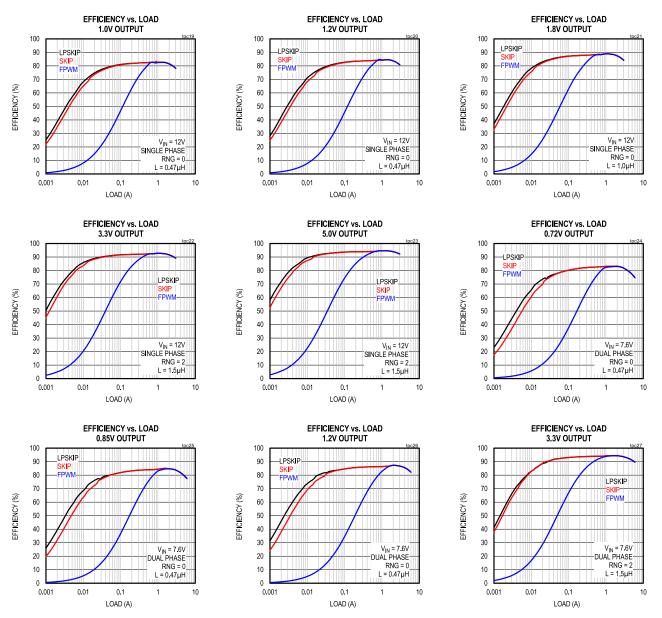

Electrical Characteristics—I²C Serial Interface (continued)

 $(V_{SYS} = 12V, V_{I2C EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted. Note 2.)

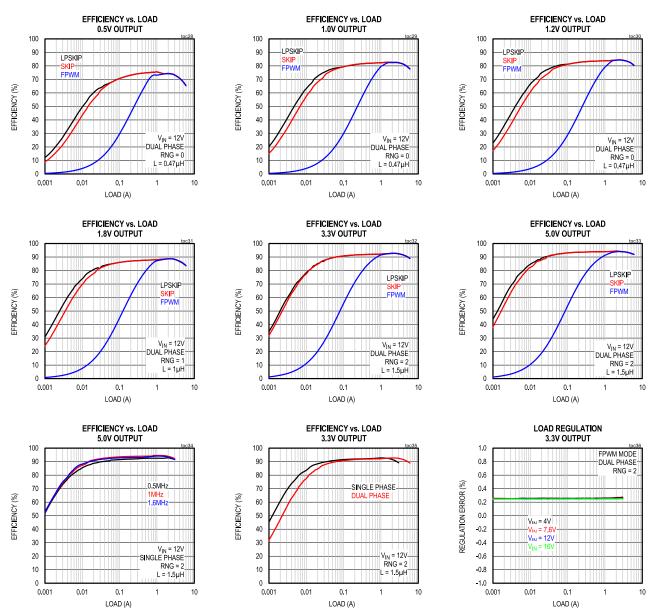
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCL, SDA Input Leakage Current	I _{LKG}	V _{SCL} = V _{SDA} = 0V or 5.5V	-10		+10	μA
SCL, SDA Pin Capacitance		(Note 7)		10		pF
STANDARD, FAST, AND	FAST-MODE P	LUS TIMING (Note 8)				
Clock Frequency	f _{SCL}				1	MHz
Hold Time (REPEATED) START Condition	^t HD;STA		260			ns
SCL LOW Period	t _{LOW}		500			ns
SCL HIGH Period	tHIGH		260			ns
Setup Time REPEATED START Condition	^t SU;STA		260			ns
Data Hold Time	t _{HD;DAT}		0			μs
Data Setup Time	t _{SU;DAT}		50			ns
Setup Time for STOP Condition	^t su;sto		260			ns
Bus Free Time between STOP and START Condition	^t BUF		0.5			μs
Input Filter Suppressed Spike Pulse Width	t _{SP}	(Note 7)		50		ns
HIGH-SPEED MODE TIM	ING (Note 8)					
Clock Frequency	f _{SCL}	High-speed mode			3.4	MHz
Setup Time REPEATED START Condition	^t SU;STA		160			ns
Hold Time (REPEATED) START Condition	^t HD;STA		160			ns
SCL LOW Period	t _{LOW}		160			ns
SCL HIGH Period	t _{HIGH}		60			ns
Data Setup Time	^t SU;DAT		10			ns
Data Hold Time	^t HD;DAT		0			μs
Setup Time for STOP Condition	tsu;sto		160			ns
Input Filter Suppressed Spike Pulse Width	t _{SP}	(Note 7)		10		ns


16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Typical Operating Characteristics

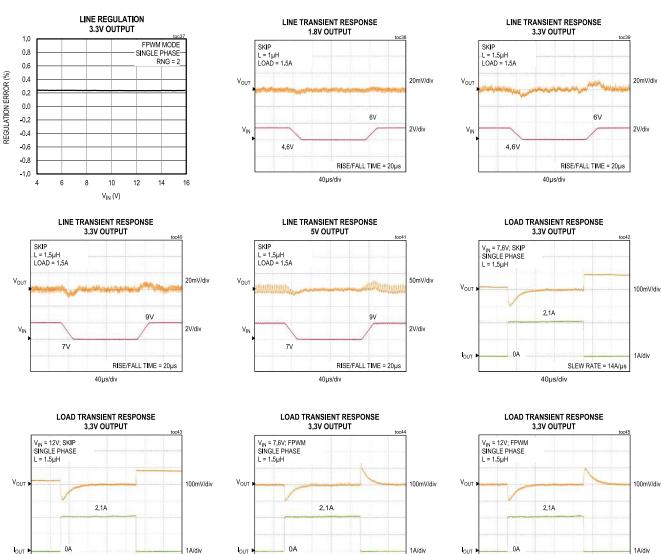

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Typical Operating Characteristics (continued)


16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Typical Operating Characteristics (continued)

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter


Typical Operating Characteristics (continued)

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

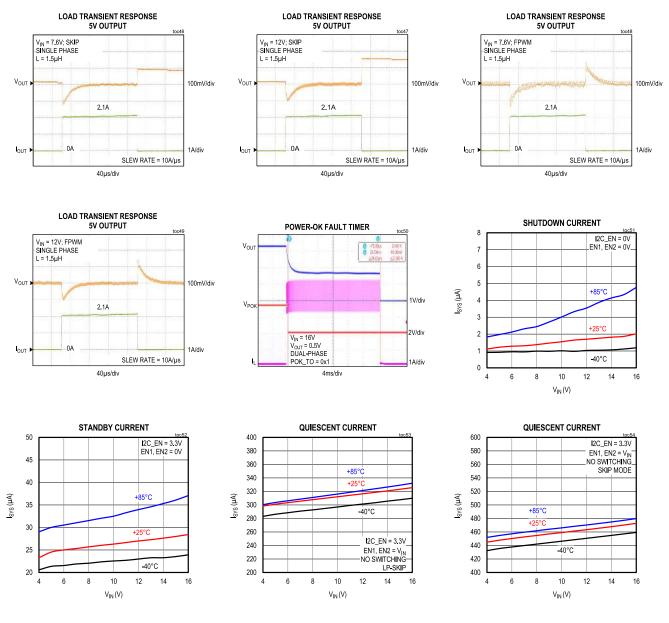
Typical Operating Characteristics (continued)

 $(V_{IN} = 12V, V_{OUT} = 3.3V, L = 1\mu H$ (Murata DFE2520F-1R0M), Skip Mode, Single Phase, F_{SW} = 1MHz, T_A = +25°C, unless otherwise noted.)

SLEW RATE = 14A/µs

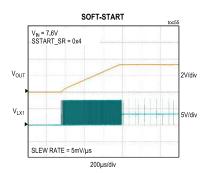
40µs/div

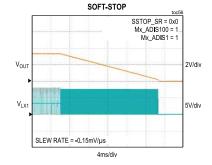
SLEW RATE = 14A/µs

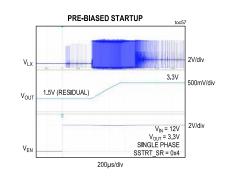

40µs/div

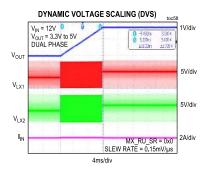
SLEW RATE = 14A/µs

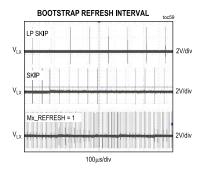
40µs/div

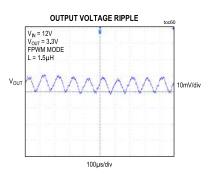

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

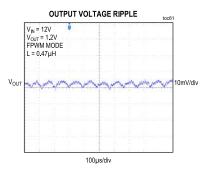

Typical Operating Characteristics (continued)

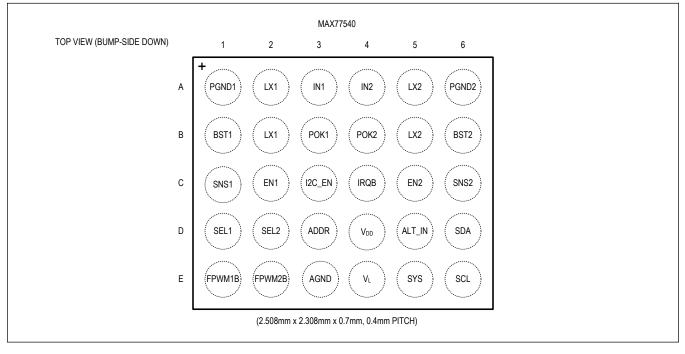


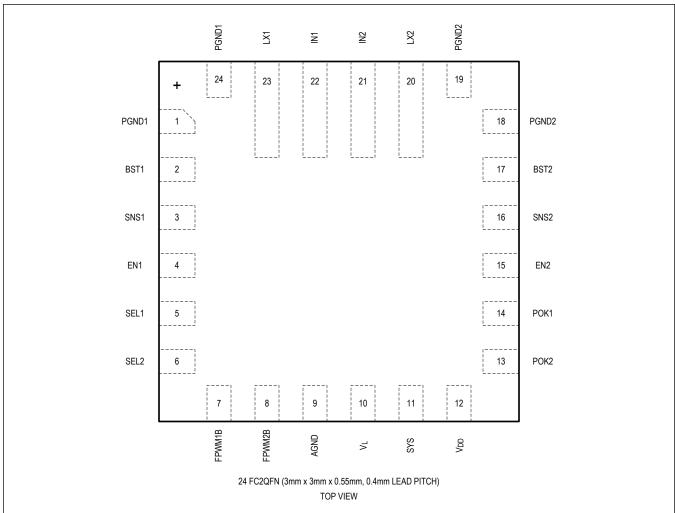

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter


Typical Operating Characteristics (continued)








16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Bump Configuration

30 WLP

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Bump Descriptions

Р	IN	NAME	FUNCTION	ТҮРЕ						
30 WLP	24 FC2QFN		FUNCTION	ITPE						
BUCK SWITC	BUCK SWITCHING PHASE									
B1	2	BST1	Phase1 High-Side MOSFET Driver Supply. Connect a 0.1µF ceramic capacitor between BST1 and LX1.							
B6	17	BST2	Phase2 High-Side MOSFET Driver Supply. Connect a $0.1\mu F$ ceramic capacitor between BST2 and LX2.	Power Input						
A3	22	IN1	Phase1 Input. Bypass to PGND1 with a 10µF ceramic capacitor.	Power Input						
A4	21	IN2	Phase2 Input. Bypass to PGND2 with a 10µF ceramic capacitor.	Power Input						
A2, B2	23	LX1	Phase1 Switching Node	Power Output						
A5, B5	20	LX2	Phase2 Switching Node	Power Output						
A1	1, 24	PGND1	Phase1 Power Ground	Power Ground						

24 FC2QFN

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Bump Descriptions (continued)

PIN				
30 WLP	24 FC2QFN	NAME	FUNCTION	TYPE
A6	18, 19	PGND2	Phase2 Power Ground	Power Ground
C1	3	SNS1	Phase1 Output Voltage Sensing Input. Connect to the output at the point-of-load.	Analog Input
C6	16	SNS2	Phase2 Output Voltage Sensing Input. Connect to the output at the point-of-load. Connect to AGND or leave unconnected (floating) when the phase configuration is set for 2Φ operation.	Analog Input
INTERNAL BI	AS SUPPLY			
E3	9	AGND	Analog (Quiet) Ground	Ground
D5	_	ALT_IN	Alternative Power Input for V _L and V _{DD} . Bypass to AGND with a 2.2 μ F ceramic capacitor when used. See the <u>Alternative Low-Voltage Input (ALT_IN)</u> section for more information.	Power Input
E5	11	SYS	System Power Input (Supply to Internal V _L and V _{DD} Linear Regulator). Bypass to AGND with a 2.2 μ F ceramic capacitor.	Power Input
D4	12	V _{DD}	Internal Bias Supply Output. Powered from SYS or ALT_IN depending on V_{ALT_IN} . See the <u>Alternative Low-Voltage Input</u> (<u>ALT_IN</u>) section for more information. Bypass to AGND with a 1µF ceramic capacitor. Do not load this pin externally.	Power Output
E4	10	VL	Internal Gate Driver Supply Output. Powered from SYS or ALT_IN depending on V_{ALT_IN} . See the <u>Alternative Low-Voltage Input</u> (<u>ALT_IN</u>) section for more information. Bypass V _L to PGND with a 2.2µF ceramic capacitor. Do not load this pin externally.	Power Output
CONTROL AN	ND SERIAL INTE	RFACE		I
D3	_	ADDR	I ² C Slave Address Selection Input (Tri-State). Connect to V_{DD} , ground, or leave unconnected to set I ² C slave address. See the <u>Slave Address</u> section for more information.	Digital Input
C2	4	EN1	Buck1 Enable Input (Active-High). $V_{\mbox{EN1}}$ must not be higher than $V_{\mbox{SYS}}.$	Digital Input
C5	15	EN2	Buck2 Enable Input (Active-High). V_{EN2} must not be higher than $V_{SYS}.$ Connect to AGND for 2 Φ operation.	Digital Input
E1	7	FPWM1B	Buck1 Forced-PWM Mode Control (Active-Low) and External Frequency Tracking Input. Provide an external clock to enable FPWM mode with external frequency stabilization. Connect to V _L if unused. See the <u>Frequency Tracking (FTRAK)</u> section for more information.	Digital Input
E2	8	FPWM2B	Buck2 Forced-PWM Mode Control (Active-Low) and External Frequency Tracking Input. Provide an external clock to enable FPWM mode with external frequency stabilization. Connect to V_L if unused. See the <u>Frequency Tracking (FTRAK)</u> section for more information.	Digital Input
C3	_	I2C_EN	I^2C Enable Input (Active-High). Enables I^2C interface and $V_L \& V_{DD}$ regulators. V_{I2C} EN must not be higher than V_{SYS} . See the <u>Dedicated Internal Supplies</u> section for more information.	Digital Input
C4	_	IRQB	Interrupt Output (Open-Drain, Active-Low), This pin requires an external pullup resistor. Leave this pin unconnected if unused.	Digital Output
В3	14	POK1	Buck1 Power-OK Output (Open-Drain). An external pullup resistor ($10k\Omega$ to $100k\Omega$) is required. Leave this pin unconnected if unused.	Digital Output

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Bump Descriptions (continued)

Р	PIN NAME 30 WLP 24 FC2QFN		EUNCTION	TYPE
30 WLP			FUNCTION	ITPE
B4	13	POK2	Buck2 Power-OK Output (Open-Drain). An external pullup resistor ($10k\Omega$ to $100k\Omega$) is required. Leave this pin unconnected if unused. This pin is pulled low internally when the phase configuration is set for 2Φ operation.	Digital Output
E6	—	SCL	SCL I ² C Serial Interface Clock. Connect to ground if not used.	
D6	_	SDA	I ² C Serial Interface Data. Connect to ground if not used.	Digital I/O
D1	5	SEL1	Buck1 Default V _{OUT} Selection Input. Connect a selection resistor (R_{SEL1}) between SEL1 and AGND to configure the default V _{OUT} , V _{OUT} range, and switching frequency for Buck1. Default settings can be overwritten through I ² C. See the <u>Default Output Voltage</u> <u>Selection (SELx)</u> section for more information.	Analog Input
D2	6	SEL2	Buck2 Default V _{OUT} Selection Input. Connect a selection resistor (R _{SEL2}) between SEL2 and AGND to configure the default target V _{OUT} , V _{OUT} range, and switching frequency, and range for Buck2. Default settings can be overwritten through I ² C. When R _{SEL2} ≤ 95.3 Ω , Buck2 becomes a slave phase of a dual-phase converter. See the <u>Default Output Voltage Selection (SELx</u>) section for more information.	Analog Input

Detailed Description—Top-Level

Dedicated Internal Supplies

The MAX77540 has dedicated internal supplies which are the V_L and the V_{DD}. The V_L provides power to gate drivers for switching metal-oxide semiconductor field-effect transistor (MOSFETs), while the V_{DD} provides power for internal logic and control. Those two 1.8V regulators are powered from either the SYS or the ALT_IN input, depending on the DIS_ALT_IN bit and the V_{ALT_IN}. See the <u>Alternative Low-Voltage Input (ALT_IN)</u> section for more information.

- The SYS powers the V_L and the V_{DD} when the DIS_ALT_IN == 1 OR the V_{ALT_IN} is less than the switch-over voltage (V_{SWO}, typ. 2.8V).
- The ALT_IN powers the V_L and the V_{DD} when the DIS_ALT_IN == 0 AND the V_{ALT_IN} is greater than the V_{SWO}.

When either the I2C_EN or the ENx pin is pulled high, the MAX77540 enables bias circuitry as well as V_L and V_{DD} supplies. As soon as the V_{DD} supply becomes stable, the MAX77540 reads the R_{SELx} values for configuring the device. While both the V_{SYS} and the V_{DD} are valid, I²C serial communication is activated. Enabling I²C by pulling the I2C_EN pin high allows the host processor to modify configuration settings before activating the Buck outputs.

I2C_EN (PIN)EN1 OR EN2 (PIN)V_DD AND I²C SERIAL INTERFACELowLowDisabledXHighEnabledHighXEnabled

Table 1. V_{DD} and I²C Enable Truth Table

Alternative Low-Voltage Input (ALT_IN)

When an alternative power source ($V_{ALT \ IN}$) is available between the switch-over voltage (V_{SWO}) and 5.5V, it can optionally be used to power the dedicated 1.8V linear regulator (V_L and V_{DD}) in order to improve the efficiency. As shown in Figure 1, the switch-over circuit dynamically selects the input of the V_L and the V_{DD} supplies between the SYS and the ALT_IN pins as needed to maintain steady operation. When the device exits Shutdown mode (I2C_EN = 1 **OR** ENx = 1), the linear regulator is initially powered from the SYS pin and it can be switched over to the ALT_IN pin if a valid power source is connected to the ALT_IN. The ALT_IN_I interrupt and the ALT_SWO status bits indicate the status of the switch-over circuit. There are three ways of using the ALT_IN input:

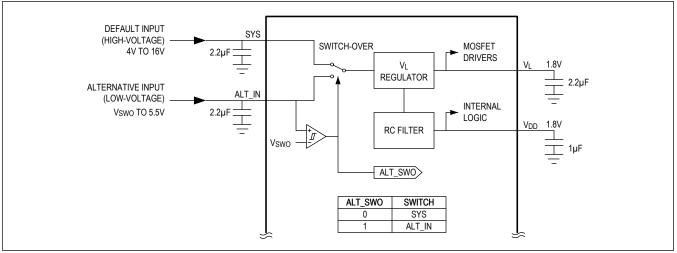


Figure 1. Alternative Input Switch-Over Circuit

• Option 1: Connect the ALT_IN pin to the AGND (not used). In this case, the internal linear regulator permanently receives power from the SYS pin.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

- Option 2: Connect the ALT_IN pin to one of the Buck outputs which is greater than the V_{SWO}. Using a Buck output
 for powering up the linear regulator improves the total efficiency of the device (it is OK to turn the Buck output on and
 off dynamically).
- Option 3: Connect the ALT_IN pin to an external high-efficiency DC source greater than the V_{SWO} when neither Buck output is greater than the V_{SWO} (using a high-efficiency power source also improves the total system efficiency).

Output Enable Control

The MAX77540 has dedicated logic input pins (EN1 and EN2) for enabling individual Buck outputs. When the ENx is pulled above the V_{IH} , the corresponding Buck output is enabled. In case the MAX77540 exits Shutdown mode by the ENx, it takes about 220µs (typ) to turn on the internal bias circuitry and evaluate the R_{SELx} before propagating the Buck enable signals. To prevent chatter, the ENx pins must be driven either high or low.

The Buck outputs can also be turned on by setting the Mx_EN bits to '1' through the I²C serial interface. The logical interaction between the enable pins (ENx) and their corresponding I²C enable bits (Mx_EN) is 'OR'. The serial interface is active whenever the V_{DD} regulator is enabled (see <u>Table 1</u>).

Undervoltage Lockout

When the V_{SYS} voltage falls below the V_{UVLO_F} (typ 3.7V), the MAX77540 initiates an immediate shutdown of all individual Buck outputs. A UVLO event forces the device to a dormant state until the V_{SYS} voltage rises above the UVLO rising threshold (typ 3.9V). If the V_{SYS} voltage drops down to the power-on reset (POR) threshold (typ 1.7V), the V_{DD} supply turns off (all the registers are reset) and the MAX77540 enters shutdown state.

Thermal Warnings and Thermal Shutdown (T_{SHDN})

The MAX77540 has two thermal warnings and a thermal shutdown (T_{SHDN}) threshold to monitor whether the junction temperature rises above +120°C and +140°C. As shown in Figure 2, the device enters thermal shutdown (T_{SHDN}) if the junction temperature exceeds the T_{SHDN} (approximately +165°C typ.). A T_{SHDN} event initiates a shutdown of all individual outputs immediately. See the *Fault Protection* section for more information. Thermal monitoring is active whenever any of the following conditions is true:

- One of the Buck outputs is enabled.
- Force temperature monitors enable bit sets (EN_FTMON = 1).
- Thermal protection is enabled (for any reason) and detects T_J ≥ 120°C (in this case, thermal monitoring remains active until T_J ≤ 105°C).

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

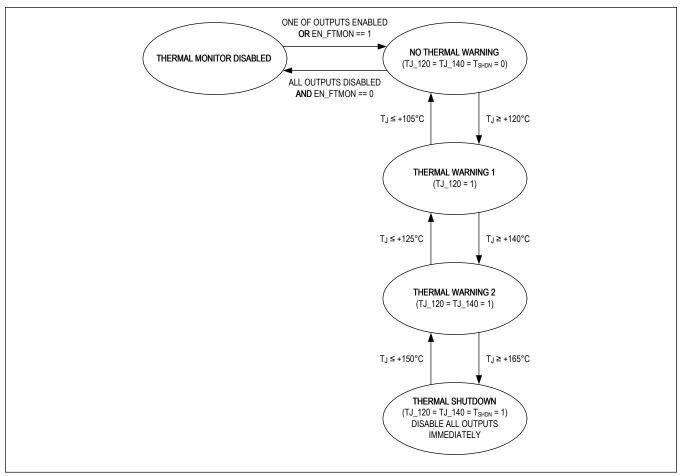


Figure 2. Thermal Monitor State Diagram

Interrupt (IRQB) and Mask

The IRQB is an active-low, open-drain output and it is for indicating to the host processor that the status on the MAX77540 has changed. The IRQB is the logical 'NOR' of all unmasked interrupt bits. See the <u>Register Map</u> for a full list of available status and interrupt bits.

The IRQB output asserts (goes low) anytime an unmasked interrupt bit is triggered. The host processor reads the interrupt source register (ADDR 0x00) and the interrupt registers that are indicated by the interrupt source register to check the cause of interrupt event. Note that the interrupt source register is cleared when the corresponding interrupt register group is read by the host processor.

All the interrupt events are edge-triggered. Therefore, the same interrupt is not generated repeatedly even though the interrupt condition persists.

Each interrupt register can be read at a time and all interrupt bits are 'Clear-on-Read' bits. The IRQB output deasserts (goes high) when all interrupt bits have been cleared. If an interrupt is captured during the read sequence, the IRQB output is held low. When the IRQB output is pulled low by an unmasked interrupt event, the IRQB output stays low until the interrupt bit is cleared by the reading operation of the host processor or the corresponding interrupt mask bit is set to '1' (masked). All interrupts (except the UVLO_I) are masked by default. Masked interrupt bits do not cause the IRQB pin to assert.

Register Reset Condition

All registers are reset to the POR default values specified in the register map section when the MAX77540 enters shutdown mode (I2C_EN = ENx = Low) or the V_{SYS} supply drops below its POR threshold (typ. 1.7V). Whenever the I2C_EN or the ENx pin is pulled high, the MAX77540 updates the default register values of the Mx_VOUT[7:0], the Mx_RNG[1:0], and the Mx_FREQ[1:0] bits based on R_{SELx} detection, and the updated default values are latched until both the I2C_EN and the ENx pins are pulled low or a POR event occurs.

FC2QFN Default Options

The FC2QFN package has a reduced set of features due to the the lack of SDA and SCL pins for I²C communication and the ALT_IN pin. The default register settings cannot be changed. The following is a list of features not available in the FC2QFN package:

- The Alternative Low-Voltage Input feature is not available.
- Output enable control can only be performed using the hardware ENx pins.
- Thermal warnings are not accessible.
- Interrupt pin and registers are not accessible.
- Low-Power SKIP Mode is not available (the FPWMxB pins can be used to toggle between SKIP and FPWM modes).
- Only V_{OUTx} and F_{SW} combinations available through the R_{SELx} pins can be programmed.
- Dynamic Output Voltage Scaling is not available.
- The 1Ω active discharge resistor is disabled.
- Spread Spectrum Modulation cannot be enabled.

Detailed Description—Dual-Phase Configurable Buck Converter

The MAX77540 is a high-efficiency, phase-configurable Buck converter with two 3A phases (Φ). Two output voltage sensing inputs allow up to two regulated outputs. Each Buck converter operates on an input supply between 4V and 16V. The output voltages are preset using the SELx inputs and further configurable with an I²C serial interface between 0.5V and 5.2V in 5mV, 10mV, or 20mV steps depending on the Mx_RNG[1:0] bits. See the <u>Output Voltage Setting</u> section.

Each switching phase supports 3A and dual-phase (2Φ) configuration supports up to 6A. Phase configuration is userprogrammable by tying the SEL2 pin to the AGND on the PCB. See the <u>Phase Configuration</u> section.

Buck Converter Control Scheme

The MAX77540 uses Maxim's proprietary adaptive constant on-time (COT) current-mode control scheme. The adaptive COT control provides fast response to load transients, inherent compensation to input voltage variation, and stable performance at low duty cycles. As shown in Figure 3, Buck1 is referenced in the following explanation.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

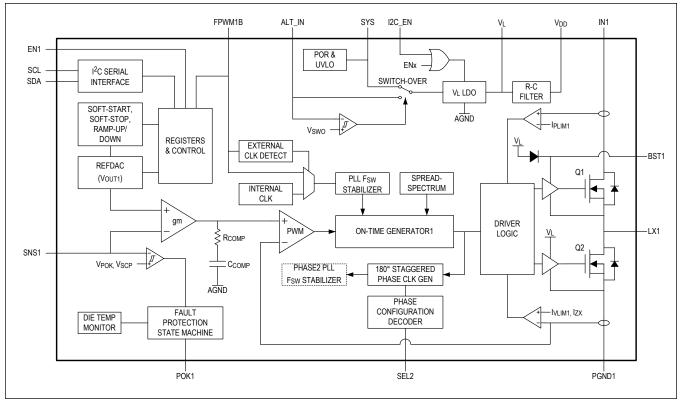


Figure 3. Functional Block Diagram

An on-time (MOSFET Q1 is on) is controlled by an on-time generator circuit and this circuit calculates an on-time based on the input voltage (V_{IN1}), the output voltage (V_{OUT1}), and the target switching frequency (F_{SW1}). An off-time (MOSFET Q2 is on) begins when the on-time ends. During the dead-time, the inductor current conducts through the intrinsic body diode. A pulse-width modulation (PWM) comparator regulates the V_{OUT1} by modulating off-time. The positive input of the PWM comparator is a voltage proportional to the actual output voltage error. The negative input is a voltage proportional to the inductor current sensed through the MOSFET Q2. The PWM comparator begins an on-time when the error voltage becomes higher than the current-sense signal. The off-time automatically begins again when the calculated on-time expires. A phase-locked loop (PLL) stabilizes the switching frequency and controls phase spacing. The PLL stabilizes Phase2 (LX2) 180° apart from Phase1 when the output is configured for the dual-phase (2 Φ) operation. In dual-phase configuration, both the master and the slave phases are activated and always switch in sequence during steady-state operation. The phases do not add or shed.

Buck Operating Modes

The buck converters have three operating modes shown in Figure 4 and transitions between the modes are determined by operating conditions and mode control settings. The operating mode setting can be changed any time while I²C communication is available. Toggling between SKIP and FPWM modes is also controlled by the FPWMxB pins. Pulling the FPWMxB pin low operates the corresponding buck in forced-PWM mode. When the FPWMxB pin is held high, the operating mode is controlled by the Mx_LPM and the Mx_FPWM bits.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

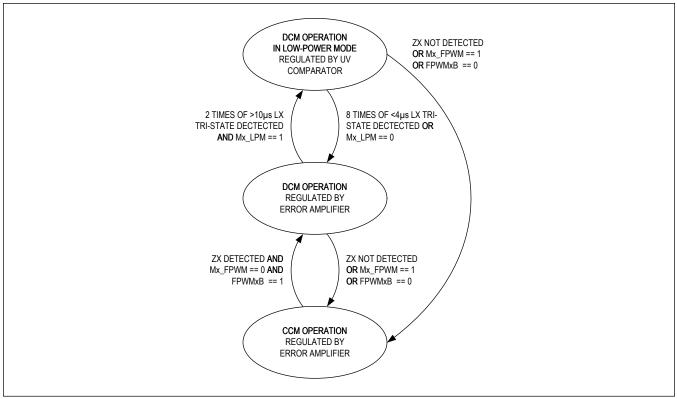


Figure 4. Buck Operating Modes

Detail mode control settings are described as follows:

SKIP Mode

In SKIP mode ($Mx_LPM == Mx_FPWM == 0$ **AND** FPWMxB == 1), the buck converter operates either in discontinuousconduction mode (DCM) or continuous-conduction mode (CCM) depending on loading. If the averaged output current is lower than a half of inductor peak-to-peak ripple current under light load condition, the low-side MOSFET turns off as soon as the inductor current drops to near zero ampere (zero-crossing). Then, the switching node (LX) remains in tristate (Hi-Z) until the next on-time is triggered. In this way, the buck prevents a negative inductor current which results in improving light-load efficiency by reducing the total number of switching cycles needed to regulate the output voltage.

When no zero-crossing (ZX) is detected (under heavier load), the buck controller goes into CCM where the averaged output current is greater than a half of inductor ripple current. In both DCM and CCM, the output voltage is regulated by an error amplifier. In case the on-time determined by a given operating condition in high output voltage range (Mx_RNG[1:0] = 0x2) is not long enough, the on-time automatically extends until the inductor current reaches 500mA for ensuring enough off-time to detect the ZX reliably.

Low-Power SKIP (LP-SKIP) Mode

Low-Power SKIP mode ($Mx_LPM == FPWMxB == 1$ **AND** $Mx_FPWM == 0$) is similar to SKIP mode as a negative inductor current is not allowed in LP-SKIP mode as well. When the averaged output current is decreased further down (>10µs of LX tri-state is detected two times consecutively) in SKIP mode, the buck converter enters LP-SKIP mode when Low Power mode is enabled. In LP-SKIP mode, the error amplifier and other internal blocks are deactivated to lower down I_Q consumption. Instead, a low-power comparator monitors the output voltage in LP-SKIP mode.

The Buck enters DCM operation in SKIP mode when the duration of LX tri-state is shorter than 4μ s for eight times in a row, or LP-SKIP mode is disabled ($Mx_LPM == 0$). If no zero-crossing is detected (e.g., sudden load transient) or FPWM mode is enabled ($Mx_FPWM = 1$ **OR** FPWMxB = 0), the Buck enters CCM directly from LP-SKIP mode.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Forced-PWM (FPWM) Mode

Forced-PWM mode ($Mx_FPWM == 1$ **OR** FPWMxB == 0) ensures a continuous inductor current under all load conditions. In FPWM mode, a negative inductor current though the low-side MOSFET is allowed but the maximum current is limited to the I_{NLIM} (typ -2.9A). When the buck converters enter/exit FPWM mode by the FPWMxB inputs, there is 1ms of delay in mode transition due to 1ms of debounce timer on the FPWMxB inputs.

In case a valid external frequency is detected on the FPWMxB input, the corresponding Buck enters FPWM mode regardless of its operating mode settings. See the <u>Frequency Tracking (FTRAK)</u> section for more information.

Dropout Mode

The MAX77540 architecture allows the buck converter to operate even when the input voltage becomes very close to the target output voltage. When the headroom between the input and the output voltages reduces during operation, the buck controller tries to maintain the output voltage regulation by increasing the duty cycle. In case Buck is not able to regulate the target output voltage with the maximum duty cycle (typ 98%), it automatically extends the on-time by skipping the off-times (dropout mode). In dropout mode, the low-side MOSFET turns on occasionally in order to refresh the bootstrap circuit for driving the high-side MOSFET. See the *Bootstrap Refresh* section for more information.

Switching Frequency

The MAX77540 has three nominal switching frequency options (0.5MHz, 1.0MHz, and 1.6MHz) to support optimization of efficiency, transient responses, noise performance, and solution size. The default switching frequency of each Buck is set by the SELx input (see <u>Table 4</u> and <u>Table 5</u>) and the switching frequencies of individual Bucks are also selectable by the Mx_FREQ[1:0] bits.

At a particular time, the switching frequency (F_{SW}) of the adaptive on-time buck converter is not fixed and heavily influenced by the instantaneous load current. More on-time pulses in a given time (higher F_{SW}) is observed as the output current increases, while fewer on-times in a given time (lower F_{SW}) is observed when the output current decreases. A valid external frequency at the FPWMxB input or enabling the internal frequency tracking feature (Mx_FTRAK = 1) stabilizes the switching frequency of the corresponding Buck in steady-state operation. See the <u>Frequency Tracking</u> (<u>FTRAK</u>) section for more information.

In case the on-time calculated by the given operating condition is less than the minimum on-time (typ 60ns), the buck controller regulates the output voltage by increasing the off-time. As a result, the actual switching frequency becomes slower than its nominal frequency setting. For example, the calculated duty cycle for $16V_{IN}$ and $0.8V_{OUT}$ is 5%, which gives less than 60ns of on-time at 1.0MHz of nominal switching frequency. It means the actual switching frequency under this condition is slower than 1.0MHz so that 0.5MHz of nominal switching frequency setting is recommended.

Phase Configuration

The MAX77540 has two 3A switching phases configurable into either two single-phase Bucks or one dual-phase Buck. As shown in <u>Table 2</u>, the Buck is configured as single-output dual-phase (2Φ) when the SEL2 is shorted to the AGND. In dual-phase (2Φ) configuration, logic I/O pins and control registers for Buck2 are deactivated so that register settings of the master phase (M1) dictate the operation of the slave phase as well.

Table 2. Phase Configuration Selection

R _{SEL1} (Ω)	R _{SEL2} (Ω)	PHASE (Φ) CONFIGURATION	NUMBER OF OUTPUTS	
Any	≤ 95.3	2Φ	1	
Any	≥ 200	1Φ + 1Φ	2	

Also, the output voltage sensing of the buck converter is assigned based on the phase configuration setting. In dualphase configuration, the buck controller regulates the output voltage using the SNS1 pin only (the SNS2 pin is unused). <u>Table 3</u> shows how to configure the output voltage sensing pins for each phase configuration.

Table 3. Buck Output Sensing Assignment

[PHASE (Φ) CONFIGURATION	PHASE ASSIGNED	BUCK NAMING CONVENTION	V _{OUT} SENSING INPUT
	2Ф (1 Output)	Phase1 (M1) Phase2 (S)	Buck1 (V _{OUT1})	SNS1

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Table 5. Buck Output Sensing Assignment (continued)							
PHASE (Φ) CONFIGURATION	PHASE ASSIGNED	BUCK NAMING CONVENTION	V _{OUT} SENSING INPUT				
1Φ + 1Φ	Phase1 (M1)	Buck1 (V _{OUT1})	SNS1				
(2 Outputs)	Phase2 (M2)	Buck2 (V _{OUT2})	SNS2				
(Mx): Master Phase (S): Slave Phase							

Table 3. Buck Output Sensing Assignment (continued)

Default Output Voltage Selection (SELx)

The MAX77540 supports user-selectable default voltages of individual Buck outputs with 1% tolerance (or better) resistors. The MAX77540 evaluates the resistances between the SELx and the AGND whenever the V_{DD} regulator first turns on (exits shutdown by either the I2C_EN or the ENx pin). The decoded values of the R_{SELx} are latched until the next time the device exits shutdown mode. The SELx_LATCH[4:0] status bits reflect the latched decoded values of the R_{SELx}. See the <u>Register Map</u> for more details.

The resistance between the SEL1 and the AGND (R_{SEL1}) configures the default voltage of Buck1, while the R_{SEL2} between the SEL2 and the AGND selects Buck2 default voltage. If the SEL2 pin is tied to the AGND on the PCB ($R_{SEL2} \le 95.3\Omega$), the Buck is configured as a single-output dual-phase (2Φ) converter. When the dual-phase operation is selected, the decoded resistance on the SEL1 (R_{SEL1}) sets the default output voltage (V_{OUT1}). Table 4 and Table 5 decode the default selection options for the V_{OUT1} and the V_{OUT2} , respectively. Once latched, the Mx_VOUT[7:0], the Mx_RNG[1:0], and the Mx_FREQ[1:0] bits reflect the selected options. The decoded values for $R_{SELx} \ge 115 k\Omega$ are programmable at the factory.

Table 4. Default VOUT1 Selection

R _{SEL1} (Ω)	TARGET V _{OUT1} (V)	V _{OUT1} RANGE	F _{SW1} (MHz)
≤ 95.3	0.50	Low	1
200	0.50	Low	0.5
309	0.60	Low	0.5
422	0.60	Low	1
536	0.65	Low	0.5
649	0.65	Low	1
768	0.72	Low	0.5
909	0.72	Low	1
1.05k	0.75	Low	0.5
1.21k	0.75	Low	1
1.40k	0.80	Low	0.5
1.62k	0.80	Low	1
1.87k	0.85	Low	0.5
2.15k	0.85	Low	1
2.49k	0.90	Low	0.5
2.87k	0.90	Low	1
3.74k	1.00	Low	0.5
8.06k	1.00	Mid	1
12.4k	1.10	Low	0.5
16.9k	1.10	Mid	1
21.5k	1.20	Low	0.5
26.1k	1.20	Mid	1
30.9k	1.35	Mid	1
36.5k	1.50	Mid	1

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Table 4. Default V_{OUT1} Selection (continued)

R _{SEL1} (Ω)	TARGET V _{OUT1} (V)	V _{OUT1} RANGE	F _{SW1} (MHz)		
42.2k	1.80	Mid	1		
48.7k	2.00	2.00 Mid			
56.2k	2.50	High	1		
64.9k	2.80	High	1		
75.0k	3.30	3.30 High			
86.6k	3.80	High	1		
100k	5.00	High	1		
≥ 115k		Factory Option			

Table 5. Default VOUT2 Selection

R _{SEL2} (Ω)	TARGET V _{OUT2} (V)	V _{OUT2} RANGE	F _{SW2} (MHz)	
≤ 95.3		N/A (2Φ Operation)		
200	0.50	Low	0.5	
309	0.60	Low	0.5	
422	0.60	Low	1	
536	0.65	Low	0.5	
649	0.65	Low	1	
768	0.72	Low	0.5	
909	0.72	Low	1	
1.05k	0.75	Low	0.5	
1.21k	0.75	Low	1	
1.40k	0.80	Low	0.5	
1.62k	0.80	Low	1	
1.87k	0.85	Low	0.5	
2.15k	0.85	Low	1	
2.49k	0.90	Low	0.5	
2.87k	0.90	Low	1	
3.74k	1.00	Low	0.5	
8.06k	1.00	Mid	1	
12.4k	1.10	Low	0.5	
16.9k	1.10	Mid	1	
21.5k 1.20		Low	0.5	
26.1k 1.20		Mid	1	
30.9k	1.35	Mid	1	
36.5k	1.50	Mid	1	
42.2k	1.80	Mid	1	
48.7k	2.00	Mid	1	
56.2k	2.50	High	1	
64.9k	2.80	High	1	
75.0k	3.30	High	1	
86.6k	3.80	High	1	
100k	5.00	High	1	

Table 5. Default VOUT2 Selection (continued)

R _{SEL2} (Ω)	TARGET V _{OUT2} (V)	V _{OUT2} RANGE	F _{SW2} (MHz)
≥ 115k	Factory Option		

Output Voltage Setting

The output voltages (V_{OUTx}) are adjustable between 0.5V and 5.2V in 5mV, 10mV, or 20mV steps depending on the Mx_RNG[1:0] bits as shown in <u>Table 6</u>. Note that the Mx_RNG[1:0] bits must not be changed while the corresponding Buck is enabled.

In each output voltage range, the lowest code (0x00) of the Mx_VOUT[7:0] bits represents the minimum output voltage and the target output voltage is increased by one least significant bit (LSB) step as the code increases. The maximum programmable output voltage is digitally limited to the maximum output voltage in each range even if the code increases beyond that point. The default values of the Mx_VOUT[7:0] and the Mx_RNG[1:0] bits are set by the corresponding R_{SELx} values. See the <u>Default Output Voltage Selection (SELx)</u> section for more information.

For output voltages that have overlapping ranges (e.g., 1V), select the desired range by trading off load transient response and the required number of output capacitors. Using the 1V output example: Use low-range for a slightly better load transient response or mid-range for a slightly worse transient response but less output capacitors. See the <u>Output</u> <u>Capacitor Selection</u> section for more information on required output capacitance for the different output voltage ranges.

Table 6. Buck Output Voltage Range

Mx_RNG[1:0]	V _{OUT} PROGRAMMING RANGE (V)	STEP PER LSB (mV)
0x0 (Low-range)	0.5 to 1.2	5
0x1 (Mid-range)	1.0 to 2.4	10
0x2 (High-range)	2.0 to 5.2	20

Soft-Start and Soft-Stop

The Bucks always soft-start whenever they are enabled (regardless of the ENx or I²C command) or recovering from a fault condition. When the individual Buck is disabled by the ENx or I²C command, the Buck always initiates soft-stop. If an SCP event occurs to a Buck output, the corresponding Buck stops switching immediately (LX node becomes Hi-Z) and the other Buck starts soft-stop in a controlled manner if enabled. For a T_{SHDN} fault event, all Bucks stop switching immediately.

The Bucks have internal ramps that control the slew rate of output voltage changes during the soft-start and the softstop. The soft-start and the soft-stop slew rates are individually set by the SSTRT_SR[2:0] and the SSTOP_SR[2:0] bits, respectively, and they are the global settings for all Buck phases. During the soft-start and soft-stop, the Buck automatically enters the FPWM mode regardless of operating mode settings when the Mx_FSREN bit is set to '1' (default). To support the 'prebiased' startup (startup without discharging pre-existing voltage at the output), the Mx_FSREN and the Mx_ADIS100 bits need to be set to '0' before the Buck is enabled.

The SSTRT_SR[2:0] and the SSTOP_SR[2:0] bits set the slew rates of a voltage reference to an error amplifier. When the fastest slew-rate option is selected, the actual output voltage slew rate can be slower than the target setting due to limited sourcing and the sinking current capabilities of Bucks under given circuit parameters and operating conditions. See <u>Table 7</u> for more information.

Dynamic Output Voltage Scaling

Whenever a new target value is written in the Mx_VOUT[7:0] bits through I²C while the corresponding Buck is enabled, the output voltage starts to change. The output voltage ramps up (or down) at a positive (or negative) slew rate set by the corresponding Mx_RU_SR[2:0] (or Mx_RD_SR[2:0]) bits. When the Mx_FSREN bit is set, the corresponding Buck enters FPWM mode automatically (regardless of the Mx_FPWM bit) during the output voltage ramp-down. In FPWM mode, the Buck can sink current from the C_{OUTx} to the PGNDx through the low-side MOSFET, which allows the V_{OUTx} to track the negative rate set by the Mx_RD_SR[2:0] bits.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

		-	
OPERATING MODE	Mx_FSREN	BUCK BEHAVIOR IN STEADY STATE	BUCK BEHAVIOR DURING DVS
SKIP or LP-SKIP	0	Source Only	Source Only
SKIP OF LP-SKIP	1	Source Only	Source or Sink
FPWM X Source or Sink Source or Sink			
Note : Buck outputs (V _{OUTx}) with current sinking capability can follow negative ramp rates set by the Mx_RD_SR[2:0] or the SSTOP_SR[2:0].			

Table 7. Mx_FSREN Effect on Buck Behavior

If the negative inductor current reaches the I_{NLIM} (typ -2.9A), the low-side MOSFET is turned off immediately and the Buck initiates a new on-time (high-side MOSFET turn-on). Thus, the maximum slew rate during output voltage ramp-down (or soft-stop) is limited if an effective output capacitance is very high for the selected ramp-down (or soft-stop) slew rate. The maximum output voltage slew rate is calculated by following the formula, $dV_C/dt = i_C / C$.

Output Voltage Active Discharge

Each Buck converter integrates a 100 Ω active discharge resistor between the LXx and the PGNDx for discharging the output capacitor when the Buck output is disabled. For faster output voltage discharge at the end of soft-stop, a 1 Ω active discharge function is added. Those two active discharge resistors are individually enabled by setting the Mx_ADIS100 and the Mx_ADIS1 bits, respectively. If both the Mx_ADIS100 and the Mx_ADIS1 are set to '1', the 1 Ω active discharge is first activated for 1ms right after soft-stop is completed, and then the 100 Ω active discharge is enabled until the Buck is enabled next time. In shutdown mode (I2C_EN = EN1 = EN2 = 0), the 100 Ω active discharge of each Buck phase is enabled by default.

Note that the 1 Ω active discharge function of the corresponding output must be disabled (Mx_ADIS1 = 0) to avoid excessive power dissipation when the falling slew-rate control feature is disabled (Mx_FSREN = 0).

Bootstrap Refresh

When the Buck is in dropout operation or it operates in SKIP (or LP-SKIP) mode under extremely light load condition, the low-side MOSFET does not turn on for a long period of time. In this case, the buck controller occasionally turns on the low-side MOSFET for about 100ns (typ) in order to charge a bootstrap circuit for driving the high-side MOSFET. The bootstrap refresh interval is set to 64µs in SKIP mode (128µs in LP-SKIP) by default. The bootstrap refresh interval can be reduced to 10µs when the Mx_REFRESH bit is set to '1'. The bootstrap refresh interval selection is shown in Table 8.

Table 8. Bootstrap Refresh Interval Selection

Mx REFRESH	REFRESH INTERVAL	
MX_REFRESH	SKIP OR DROPOUT MODE	LP-SKIP MODE
0	64µs	128µs
1	10µs	10µs

The bootstrap refresh is also required when the buck converter starts switching. As a part of the startup procedure, the buck controller forces 15 times of refresh pulses with 4μ s of interval.

Frequency Tracking (FTRAK)

The MAX77540 supports frequency tracking feature. When a valid external clock is detected on the FPWMxB input (triggers the EXT_FREQ_DET_I interrupt if unmasked), the corresponding buck converter enters FPWM mode regardless of its operating mode setting and tracks the external frequency by modulating on-times. Buck1 attempts to track the beginning of on-times to the rising edges of the external clock on the FPWM1B input, while Buck2 attempts to track the beginning of on-times to the falling edges of the external clock on the FPWM2B input.

Table 9. Mx_FTRAK Enable Truth Table

EXT_FREQ_DET	Mx_FTRAK	PLL	BUCK OPERATING MODE	NOTE
0	0	Disabled	Depends on Buck Mode Setting	No Tracking
0	1	Enabled	Depends on Buck Mode Setting	Internal Freq. Tracking

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Table 9. Mx FTRAK Enable Truth Table (continued)

1	0	Enabled	FPWM	External Freq. Tracking
1	1	Enabled	FPWM	External Freq. Tracking

As shown in <u>Table 9</u>, the Bucks can also track an internal clock. When the FTRAK function is enabled (Mx_FTRAK = 1), the corresponding Buck tracks the internal PLL frequency (set by the Mx_FREQ[1:0] bits) if no valid external clock is applied. In case a valid external clock is detected while the corresponding Buck is tracking the internal PLL, it switches to the external clock tracking. The frequency window for both external and internal tracking is about $\pm 5\%$ of the nominal switching frequency. The frequency tracking operation is legal whenever one of the buck converters is enabled regardless of the I2C_EN pin status. The FPWM1B and the FPWM2B must be driven either low or high to prevent chattering or false tracking.

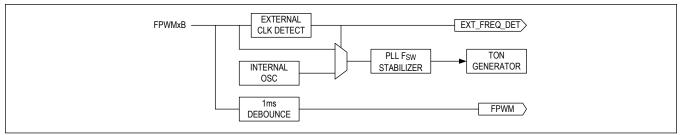


Figure 5. Frequency Tracking

Spread-Spectrum Modulation

The Bucks are capable of dithering its switching frequency for noise-sensitive applications. The spread-spectrum function of each Buck is individually enabled by setting the Mx_SS_ENV[1:0] bits. The spread-spectrum function is activated only in the CCM and it is automatically deactivated when the Bucks enter the DCM. The spread-spectrum modulation pattern is programmable either pseudorandom or triangular by the Mx_SS_PAT[1:0] bits. The spread-spectrum modulation is characterized by modulation envelope and modulation frequency:

- Modulation envelope (△F_{SS}) determines the maximum difference between the modulated switching frequency and the nominal switching frequency. The modulation envelope is programmable (±8%, ±12%, or ±16%) by the Mx_SS_ENV[1:0] bits and it controls 'how wide' the switching frequency dithers.
- Modulation frequency (F_{SS_MOD}) determines how often the switching frequency changes from one value to another. The modulation frequency is also programmable (1kHz, 3kHz, 5kHz, or 7kHz) by the Mx_SS_FREQ[1:0] bits and it controls 'how fast' the switching frequency dithers.

Pseudo-Random Pattern

The pseudo-random engine uses a 4-bit linear feedback shift register (LFSR) to create a pseudo-random value as shown in <u>Figure 6</u>. The LFSR value is converted to an analog signal and then amplified before being added to the output of the on-time generator circuit. The pseudo-random value shortens or lengthens the on-time. This causes the Buck controller to increase or decrease the switching frequency to maintain voltage regulation. Each Buck has its own pseudo-random pattern generator.

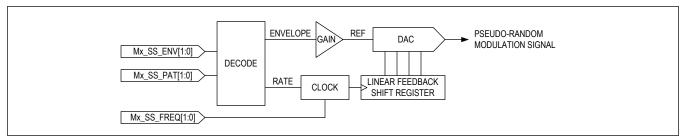


Figure 6. Pseudo-Random Modulator Engine

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

The modulation envelope and frequency are programmable by the Mx_SS_ENV[1:0] and the Mx_FREQ[1:0] bits. The F_{SS_MOD} sets the frequency at which the LFSR wraps back to the seed value. The clock rate of the LFSR is the F_{LFSR} . This is the frequency at which one pseudo-random value changes to another. An example is shown in Figure 7.

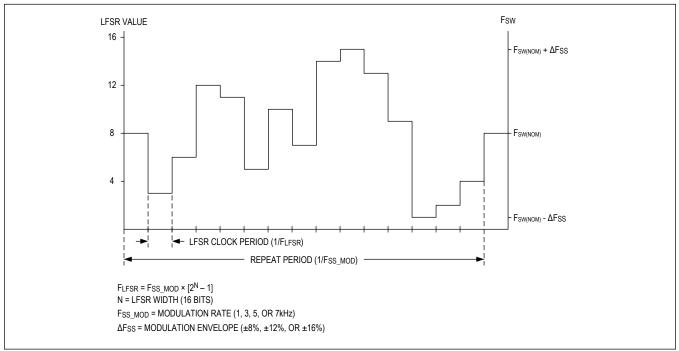


Figure 7. 4-Bit Pseudo-Random Modulation Signal Example

Triangular Pattern

The triangular engine uses a 4-bit up/down synchronous counter to create a stepped triangle pattern as shown in Figure 8. The counter value is converted to an analog signal and then amplified before being added to the output of the on-time generator circuit. The counter value progressively shortens and lengthens the on-time. This causes the Buck controller to progressively increase and decrease the switching frequency to maintain voltage regulation. Each Buck has its own triangular pattern generator.

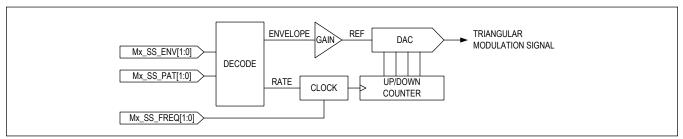


Figure 8. Triangular Modulator Engine

The modulation envelope and frequency are programmable by the Mx_SS_ENV[1:0] and the Mx_FREQ[1:0] bits. The F_{SS_MOD} sets the frequency at which the counter returns to the same value. The clock rate of the counter is the F_{COUNT} . This is the frequency at which the frequency changes from one value to another. An example is shown in Figure 9.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

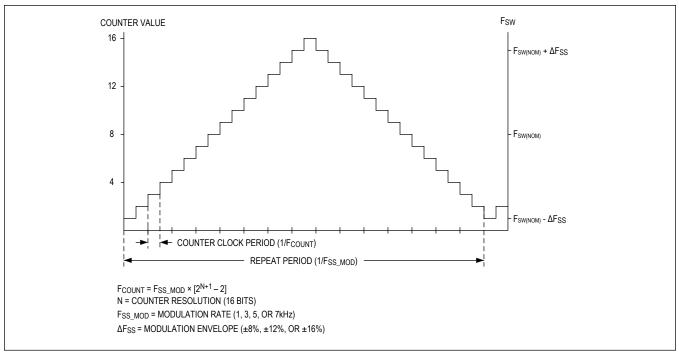


Figure 9. 4-Bit Triangular Modulation Signal Example

Inductor Current Limits

The MAX77540 has a cycle-by-cycle current limit feature that prevents the inductor current (in each phase) from increasing beyond the I_{PLIM} . If an on-time is ended by the peak current limit, the Buck prevents a new on-time from starting until the inductor current falls below the valley current limit (I_{VLIM}) which is typically set 1A less than the I_{PLIM} . This prevents the inductor current from increasing uncontrollably due to the overloaded output. In case the on-time determined by the given operating condition is less than 130ns (typ), the next on-time pulse is not triggered until the inductor current hits the I_{VLIM} . Each Buck has four PLIM thresholds which are individually set by Mx_ILIM[1:0] bits. See the <u>Register Map</u> for more details. The programmable PLIM thresholds allow an optimal circuit protection and inductor selections for the given operating conditions and load requirements.

Power-OK (POK)

The MAX77540 features the Power-OK (POK) comparators to monitor the quality of each Buck output. The Mx_POK status bits continuously reflect the status of these monitors. The quality of Buck output can be directly monitored by the corresponding POKx pins. The POKx are active-high, open-drain outputs that require an external pullup resistor (typ 10k Ω to 100k Ω). The POKx output goes high if the corresponding Buck output voltage rises above the V_{POK_R} (typ 82% of the V_{OUT} target) when the soft-start is completed. When the corresponding Buck falls below the V_{POK_F} (typ 78% of the V_{OUT} target), the POKx output goes low.

The Mx_POKFLT_I interrupt is also available to signal whenever any of the Mx_POK status bit changes from 1 to 0. Each Mx_POKFLT_I bit is individually maskable. See the <u>*Register Map*</u> for more details.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Fault Protection

The MAX77540 has fault protection scheme designed to protect itself from abnormal conditions. The Bucks have additional short-circuit protection (SCP) and thermal shutdown (T_{SHDN}) protection functions that operate according to the state machine in <u>Figure 10</u>. The operation of the state machine is summarized as follows:

- If one of the enabled Buck outputs falls below the V_{POK_F} (typ 78% of regulation target), then the Mx_POKFLT_I asserts.
- If one of the enabled Buck outputs stays below the V_{POK_R} (typ 82% of regulation target) for longer than t_{POK_TO}, then the corresponding output is disabled immediately, while other outputs initiate soft-stop.
- If one of the phases continues to have an unbroken string of on-times terminated by current limit for longer than the t_{POK_TO}, then the corresponding output is disabled immediately, while other outputs initiate soft-stop (the Mx_SCPFLT_I interrupt asserts when unmasked).
- If one of the enabled Buck outputs falls below the V_{SCP} (typ 20% of regulation target), then the corresponding output is disabled immediately, while other outputs initiate soft-stop.
- If the junction temperature exceeds the T_{SHDN} (typ 165°C), then all Bucks outputs are disabled immediately and the TSHDN_I interrupt asserts.
- The POK and SCP monitoring is not active during the soft-start and soft-stop.

To exit the fault state, all of the following conditions need to be satisfied:

- The die temperature falls below the T_{SHDN} by approximately 15°C (T_{SHDN} = 0).
- One or all Bucks are disabled:
 - If the fault state was latched due to SCP, then only the Buck that caused SCP needs to be disabled to clear fault.
 - If the fault state was latched due to T_{SHDN}, then all Buck outputs need to be disabled to clear fault.

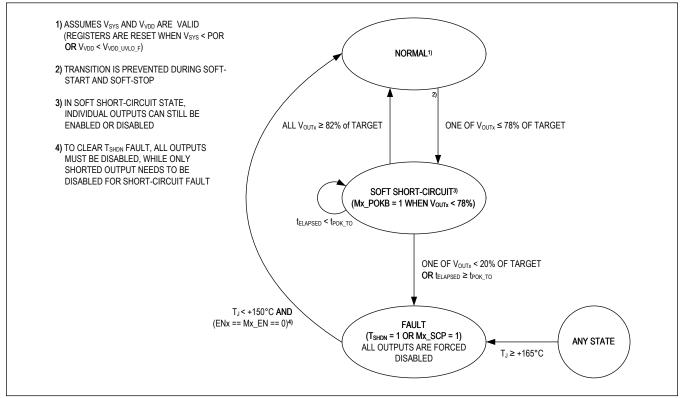


Figure 10. Fault Protection State Diagram

Detailed Description—I²C Serial Interface

The MAX77540 features an I²C version 3.0 compatible, 2-wire serial interface consisting of a serial clock line (SCL) and a bidirectional serial data line (SDA). The MAX77540 is a slave-only device that relies on an external bus master to generate the SCL clock. The SCL clock rates from 0Hz to 3.4MHz are supported. As I²C is an open-drain bus, the SDA and the SCL require external pullup resistors.

Slave Address

The I²C communication controller implements a 7-bit slave addressing and the slave address is user-selectable using ADDR pin on the PCB. All other slave addresses not listed in <u>Table 10</u> are not acknowledged. The device uses 8-bit registers with 8-bit register addressing. They support standard communication protocols: (1) Writing to a single register, (2) Writing to multiple sequential registers with an autoincrement data pointer, (3) Reading from a single register, and (4) Reading from multiple sequential registers with an autoincrement data pointer. For additional information about I²C protocols, refer to I²C specifications.

Table 10. I²C Slave Address Options

ADDR PIN	7-BIT SLAVE ADDRESS	8-BIT WRITE ADDRESS	8-BIT READ ADDRESS
0V	7'h75 (111 0101)	0xEA (1110 1010)	0xEB (1110 1011)
V _{DD}	7'h76 (111 0110)	0xEC (1110 1100)	0xED (1110 1101)
FLOAT	7'h77 (111 0111)	0xEE (1110 1110)	0xEF (1110 1111)

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Register Map

MAX77540 WLP Package

ADDRESS	NAME	MSB							LSB
GLOBAL C	ONFIGURATION 1								
0x00	INT_SRC[7:0]			RESER	VED[5:0]			BUCK_I	TOPSYS _I
0x01	INT_SRC_M[7:0]			RESER	VED[5:0]			BUCK_M	TOPSYS _M
0x02	TOPSYS_INT[7:0]	RESER	/ED[1:0]	EXT_FR EQ_DET _I	ALT_SW O_I	UVLO_I	TSHDN_	TJ_140C _I	TJ_120C _I
0x03	TOPSYS_INT_M[7:0]	RESER	/ED[1:0]	EXT_FR EQ_DET _M	ALT_SW O_M	UVLO_M	TSHDN_ M	TJ_140C _M	TJ_120C _M
0x04	TOPSYS_STAT[7:0]	RESER	/ED[1:0]	EXT_FR EQ_DET	ALT_SW O	UVLO	TSHDN	TJ_140	TJ_120
0x06	DEVICE_CFG1[7:0]	RE	ESERVED[2	2:0]		SE	L1_LATCH	4:0]	
0x07	DEVICE_CFG2[7:0]	RE	ESERVED[2	2:0]		SE	L2_LATCH[4:0]	
0x08	TOPSYS_CFG[7:0]		RESERVED[4:0]					RESERV ED	DIS_ALT _IN
0x09	PROT_CFG[7:0]		R	ESERVED[4	i:0]		EN_FTM ON	POK_TO[1:0]	
0x0B	EN_CTRL[7:0]	RESER	/ED[1:0]	M2_LPM	M1_LPM	RESER	VED[1:0]	M2_EN	M1_EN
GLOBAL C	ONFIGURATION 2								
0x11	GLB_CFG1[7:0]	RESER	/ED[1:0]	SS	STOP_SR[2	:0]	S	STRT_SR[2	:0]
BUCK1 CO	NFIGURATION								
0x20	BUCK_INT[7:0]	RESER	/ED[1:0]	M2_SCF LT_I	M1_SCF LT_I	RESERVED[1:0]		M2_POK FLT_I	M1_POK FLT_I
0x21	BUCK_INT_M[7:0]	RESER	/ED[1:0]	M2_SCF LT_M	M1_SCF LT_M	RESER	VED[1:0]	M2_POK FLT_M	M1_POK FLT_M
0x22	BUCK_STAT[7:0]	RESER	/ED[1:0]	M2_SCF LT	M1_SCF LT	RESER	VED[1:0]	M2_POK	M1_POK
0x23	<u>M1_VOUT[7:0]</u>				M1_VC	0UT[7:0]			
0x25	M1_CFG1[7:0]	M1_R	NG[1:0]	M	1_RD_SR[2	::0]	M	1_RU_SR[2	:0]
0x26	M1_CFG2[7:0]	M1_SS_	ENV[1:0]	M1_SS_F	REQ[1:0]	M1_SS_	PAT[1:0]	M1_FSR EN	M1_FPW M
0x27	M1_CFG3[7:0]	M1_ADI S100	M1_ADI S1	M1_REF RESH	M1_FTR AK	M1_FR	EQ[1:0]	M1_IL	IM[1:0]
BUCK2 CO	NFIGURATION								
0x33	<u>M2_VOUT[7:0]</u>				M2_VC	OUT[7:0]			
0x35	M2_CFG1[7:0]	M2_R	NG[1:0]	M	2_RD_SR[2	:0]	M	2_RU_SR[2	:0]
0x36	M2_CFG2[7:0]	M2_SS_	ENV[1:0]	M2_SS_F	REQ[1:0]	M2_SS_	PAT[1:0]	M2_FSR EN	M2_FPW M
0x37	M2_CFG3[7:0]	M2_ADI S100	M2_ADI S1	M2_REF RESH	M2_FTR AK	M2_FR	EQ[1:0]	M2_IL	IM[1:0]

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Register Details

INT_SRC (0x00)

BIT	7	6	5	2	1	0					
Field				BUCK_I	TOPSYS_I						
Reset		0x0 0x0 0x0									
Access Type		Read Only Read Only Read On									
BITFIELD	BITS		DESCRIPT	ION		C	ECODE				
RESERVED	7:2	Reserved. R	eturns '0'								
BUCK_I	1	Buck Interru	pt Source				n Buck has not n Buck has dete				
TOPSYS_I	0	0x0 = Interrunt event in TOPSYS has not detecte									

INT_SRC_M (0x01)

BIT	7	6	5	4	3	2	1	0			
Field			BUCK_M	TOPSYS_M							
Reset			0x1	0x0							
Access Type		Write, Read Write, Read Write, Read									
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
RESERVED	7:2	Reserved. R	eturns '0'								
BUCK_M	1	1 Buck Interrupt Source Mask 0x0 = Enable BUCK_I 0x1 = Mask BUCK I									
TOPSYS_M	0										

TOPSYS_INT (0x02)

BIT	7	6	5	4		3	2	1	0	
Field	RESERV	/ED[1:0]	EXT_FREQ _DET_I	ALT_SWO_ I	U	VLO_I	TSHDN_I	TJ_140C_I	TJ_120C_I	
Reset	0x	:0	0x0	0x0		0x0	0x0	0x0	0x0	
Access Type	Read Cl	ears All	Read Clears All	Read Clears All		Read ears All	Read Clears All	Read Clears All	Read Clears All	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
RESERVED	7:6	Reserved. F	Returns '0'							
EXT_FREQ_ DET_I	5	External Clo	ck Frequency I	Detection Interr	rupt	one of F 0x1= Va	PWMxB inputs	equency has no ; quency has det		
ALT_SWO_I	4	Alternate Inp	Alternate Input Switch-Over Interrupt				0x0 = Input voltage of internal bias circuitry has not switched to ALT_IN input 0x1 = Input voltage of internal bias circuitry has switched to ALT_IN input			

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE
UVLO_I	3	SYS Undervoltage Lock-Out Interrupt	$0x0 = Input voltage (V_{SYS})$ has not dropped below UVLO threshold $0x1 = Input voltage (V_{SYS})$ has dropped below UVLO threshold
TSHDN_I	2	Thermal Shutdown Interrupt	0x0 = Junction temperature has not risen above TSHDN threshold (165°C) 0x1 = Junction temperature has risen above TSHDN threshold (165°C)
TJ_140C_I	1	Thermal Warning2 Interrupt	0x0 = Junction temperature has not risen above 140°C 0x1 = Junction temperature has risen above 140°C
TJ_120C_I	0	Thermal Warning1 Interrupt	0x0 = Junction temperature has not risen above 120°C 0x1 = Junction temperature has risen above 120°C

TOPSYS_INT_M (0x03)

BIT	7	6	5	4		3	2	1	0		
Field	RESER	/ED[1:0]	EXT_FREQ _DET_M	ALT_SWO_ M	U١	/LO_M	TSHDN_M	TJ_140C_M	TJ_120C_M		
Reset	0>	(3	0x1	0x1		0x0	0x1	0x1	0x1		
Access Type	Write,	Read	Write, Read	Write, Read	Writ	e, Read Write, Read		Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION			DECODE				
RESERVED	7:6	Reserved. F	Returns '1'								
EXT_FREQ_ DET_M	5	External Clo Mask	ck Frequency I	Detection Inter	rupt		nable EXT_FR ask EXT_FRE				
ALT_SWO_ M	4	Alternate Inp	out Switch-Ove	r Interrupt Mas	k		0x0 = Enable ALT_SWO_I 0x1 = Mask ALT_SWO_I				
UVLO_M	3	SYS Underv	voltage Lock-O	ut Interrupt Ma	sk	0x0 = Enable UVLO_I 0x1 = Mask UVLO_I					
TSHDN_M	2	Thermal Shu	utdown Interrup	ot Mask			nable TSHDN_ ask TSHDN_I	I			
TJ_140C_M	1	Thermal Wa	rning2 Interrup	t Mask		0x0 = Enable TJ_140C_I 0x1 = Mask TJ_140C_I					
TJ_120C_M	0	Thermal Wa	rning1 Interrup	t Mask			nable TJ_120C ask TJ_120C_				

TOPSYS_STAT (0x04)

BIT	7	6	5	4		3	2	1	0	
Field	RESERVED[1:0]		EXT_FREQ _DET	ALT_SWO	UVLO		TSHDN	TJ_140	TJ_120	
Reset	0x	(0	0x0	0x0		0x0	0x0	0x0	0x0	
Access Type	Read	Only	Read Only	Read Only	Rea	ad Only	Read Only	Read Only	Read Only	
BITFIELD	BITS		DESCRIPTION				DECODE			
RESERVED	7:6	Reserved. F	Reserved. Returns '0'							

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE
EXT_FREQ_ DET	5	External Clock Frequency Detection Status	0x0 = Valid external frequency is not detected 0x1 = Valid external frequency is detected
ALT_SWO	4	Alternate Input Switch-Over Status	$0x0 = V_{DD} \& V_L LDO$ is powered from SYS $0x1 = V_{DD} \& V_L LDO$ is powered from ALT_IN
UVLO	3	SYS Undervoltage Lock-Out Status	$0x0 = V_{SYS} \ge V_{UVLO_R}$ $0x1 = V_{SYS} \le V_{UVLO_F}$
TSHDN	2	Thermal Shutdown Status	$\begin{array}{l} 0x0 = T_{\rm J} \leq 150^{\circ}{\rm C} \\ 0x1 = T_{\rm J} \geq 165^{\circ}{\rm C} \end{array}$
TJ_140	1	Thermal Warning2 Status	$\begin{array}{l} 0x0 = T_{J} \leq 125^{\circ}C\\ 0x1 = T_{J} \geq 140^{\circ}C \end{array}$
TJ_120	0	Thermal Warning1 Status	$\begin{array}{l} 0x0 = T_{\rm J} \leq 105^{\circ}{\rm C} \\ 0x1 = T_{\rm J} \geq 120^{\circ}{\rm C} \end{array}$

DEVICE_CFG1 (0x06)

BIT	7	6	5	4	3	2	1	0							
Field		RESERVED[2:0]			SEL1_LATCH[4:0]						SEL1_LATCH[4:0]				
Reset		0x0 0x0													
Access Type		Read Only Read Only													
BITFIEI	D	BITS			DE	SCRIPTION									
RESERVED		7:5	Rese	Reserved. Returns '0'											
SEL1_LATCH		4:0	SEL	SEL1 Latched Code											

DEVICE_CFG2 (0x07)

BIT	7	6	5	4	3	2	1	0		
Field		RESERVED[2:0)]	SEL2_LATCH[4:0]						
Reset		0x0				0x0				
Access Type		Read Only		Read Only						
BITFIEI	D	BITS			DE	SCRIPTION				
RESERVED		7:5 Reserved. Returns '0'		Reserved. Returns '0'						
SEL2_LATCH		4:0	SEL	SEL2 Latched Code						

TOPSYS_CFG (0x08)

BIT	7	6	5	3	2	1	0	
Field		F	RESERVED[4:0	RESERVED	RESERVED	DIS_ALT_I N		
Reset			0x0	0x0	0x0	0x0		
Access Type			Write, Read	Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION		D	ECODE	
RESERVED	7:3	7:3 Reserved. Returns '0'						
RESERVED	2	Reserved. R	eturns '0'					

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	1	Reserved. Returns '0'	
DIS_ALT_IN	0	Alternative Input for V_{DD} and V_{L} LDO	$0x0 = Allow V_{DD}$ and V_L supply switch over to ALT_IN $0x1 = V_{DD}$ and V_L LDO is powered from SYS

PROT_CFG (0x09)

BIT	7	6	5	4	3	2	1	0	
Field		F	RESERVED[4:0)]		EN_FTMON POK_TO[1:0]			
Reset			0x0			0x0	0	k0	
Access Type			Write, Read	Write, Read	Write,	Read			
BITFIELD	BITS		DESCRIPT	ION		DECODE			
RESERVED	7:3	Reserved. F	Returns '0'						
EN_FTMON	2	Forced Junc	tion Temperati	ure Monitor	or more 0x1 = N	Aonitor junction to outputs is/are of Aonitor junction to puts are disable	enabled temperature ev	-	
РОК_ТО	1:0	Power-OK F	ault Time-Out	Setting	0x0 = E 0x1 = 2 0x2 = 5 0x3 = 1	i0ms			

EN_CTRL (0x0B)

BIT	7	6	5	4	3	2	1	0		
Field	RESERV	/ED[1:0]	M2_LPM	M1_LPM	RESEF	RESERVED[1:0] M2_EN M1_EN				
Reset	0×	(0	0x0	0x0	()x0	0x0	0x0		
Access Type	Write,	Read	Write, Read	Write, Read	Write	Write, Read Write, Read				
BITFIELD	BITS		DESCRIPT	ION		DECODE				
RESERVED	7:6	Reserved. F	Returns '0'							
M2_LPM	5	Buck Maste	r2 Low Power I	Mode Control		0x0 = Disable 0x1 = Enable				
M1_LPM	4	Buck Maste	r1 Low Power I	Mode Control	0x0 = [0x1 = [
RESERVED	3:2	Reserved. F	Returns '0'							
M2_EN	1	Buck Maste	r2 Enable Cont	rol		0x0 = Disable 0x1 = Enable ('OR' Logic with EN2 Input)				
M1_EN	0	Buck Maste	r1 Enable Cont	rol	0x0 = [0x1 = [ogic with EN1 In	put)		

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

GLB_CFG1 (0x11)

BIT	7	6	5	4	3	2	1	0		
Field	RESERV	/ED[1:0]		SSTOP_SR[2:0]		SSTRT_SR[2:0]				
Reset	0x	0		0x0			0x4			
Access Type	Write,	Read		Write, Read			Write, Read			
BITFIELD	BITS		DESCRIPT	ΓΙΟΝ		D	ECODE			
RESERVED	7:6	Reserved. F	Returns '0'							
SSTOP_SR	5:3	Global Soft-	Stop Slew-Rat	te Control	0x1 = -0 0x2 = -1 0x3 = -2 0x4 = -5 0x5 = -1 0x6 = -2	0x0 = -0.15mV/µs 0x1 = -0.625mV/µs 0x2 = -1.25mV/µs 0x3 = -2.5mV/µs 0x4 = -5.0mV/µs 0x5 = -10mV/µs 0x6 = -20mV/µs 0x7 = -40mV/µs				
SSTRT_SR	2:0	Global Soft-	Start Slew-Ra	te Control	0x1 = 0 0x2 = 1 0x3 = 2 0x4 = 5 0x5 = 10 0x6 = 20	0x7 = 40mV/µs 0x0 = 0.15mV/µs 0x1 = 0.625mV/µs 0x2 = 1.25mV/µs 0x3 = 2.5mV/µs 0x4 = 5.0mV/µs 0x5 = 10mV/µs 0x6 = 20mV/µs 0x7 = 40mV/µs				

BUCK_INT (0x20)

BIT	7	6	5	4	3	2	1	0	
Field	RESER	/ED[1:0]	D[1:0] M2_SCFLT M1_SCFLT			RESERVED[1:0] M2_POKFL T_I		M1_POKFL T_I	
Reset	0×	:0	0x0 0x0			x0	0x0	0x0	
Access Type	Read Cl	ears All	Read Clears All	Read Clears All	Read C	Read Clears All Read Clears All			
BITFIELD	BITS		DESCRIPT	ION	DECODE				
RESERVED	7:6	Reserved. R	teturns '0'						
M2_SCFLT_I	5	Buck Master	r2 Short-Circuit	Fault Interrupt	been de 0x1 = B	0x0 = Buck Master2 Short-circuit Fault has not been detected 0x1 = Buck Master2 Short-circuit Fault has been detected			
M1_SCFLT_I	4	Buck Master	1 Short-Circuit	Fault Interrupt	been de	etected uck Master1 SI	hort-circuit Faul		
RESERVED	3:2	Reserved. R	teturns '0'						
M2_POKFLT _ ^I	1	Buck Master	2 Power-OK F	ault Interrupt	detecte	d uck Master2 Po	ower-OK Fault		

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE
M1_POKFLT _I	0	Buck Master1 Power-OK Fault Interrupt	0x0 = Buck Master1 Power-OK Fault has not been detected 0x1 = Buck Master1 Power-OK Fault has been detected

BUCK_INT_M (0x21)

BIT	7	6	5	4		3	2	1	0	
Field	RESERV	/ED[1:0]	M2_SCFLT _M	M1_SCFLT _M		RESERVED[1:0]		M2_POKFL T_M	M1_POKFL T_M	
Reset	0x	:3	0x1	0x1		0:	x3	0x1	0x1	
Access Type	Write,	Read	Write, Read	Write, Read		Write,	Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
RESERVED	7:6	Reserved. R	leturns '1'							
M2_SCFLT_ M	5	Buck Master Mask	2 Short-Circuit	Fault Interrupt		0x0 = Enable M2_SCFLT_I 0x1 = Mask M2_SCFLT_I				
M1_SCFLT_ M	4	Buck Master Mask	1 Short-Circuit	Fault Interrupt			nable M1_SCF ask M1_SCFL ⁻			
RESERVED	3:2	Reserved. R	teturns '1'							
M2_POKFLT _M	1	Buck Master	Buck Master2 Power-OK Fault Interrupt Mask				nable M2_POK ask M2_POKF			
M1_POKFLT _M	0	Buck Master	1 Power-OK F	ault Interrupt M			nable M1_POK ask M1_POKF			

BUCK_STAT (0x22)

BIT	7	6	5	4	3	2	1	0		
Field	RESERV	/ED[1:0]	M2_SCFLT	M1_SCFLT	RESER	RESERVED[1:0] M2_POK M1_F				
Reset	0x	:0	0x0	0x0	0	x0	0x0	0x0		
Access Type	Read	Only	Read Only	Read Only	Read	I Only	Read Only	Read Only		
BITFIELD	BITS		DESCRIPT	ION		D	ECODE			
RESERVED	7:6	Reserved. F	Returns '0'							
M2_SCFLT	5	Buck Master	r2 Short-Circuit	Fault Status	its SCP 0x1 = B	0x0 = Buck Master2 output voltage is higher than its SCP threshold, or Buck Master2 is disabled 0x1 = Buck Master2 output voltage is lower than its SCP threshold				
M1_SCFLT	4	Buck Master	r1 Short-Circuit	Fault Status	its SCP	threshold, or B uck Master1 oເ	utput voltage is suck Master1 is utput voltage is	disabled		
RESERVED	3:2	Reserved. F	Returns '0'							
М2_РОК	1	Buck Master	r2 Power-OK S	tatus	POK thr 0x1 = B	eshold, or Buc	utput voltage is k Master2 is dis utput voltage is	sabled		

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE
М1_РОК	0	Buck Master1 Power-OK Status	0x0 = Buck Master1 output voltage is lower than its POK threshold, or Buck Master1 is disabled 0x1 = Buck Master1 output voltage is higher than its POK threshold

M1_VOUT (0x23)

BIT	7	6	5	4	3	2	1	0				
Field				M1_VC	UT[7:0]			•				
Reset		0x41										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
M1_VOUT	7:0	Buck Master Register	r1 Output Volta	ige Control	0x0 - 0xi 0x8C - 0 When M 0x0 - 0xi 0x8C - 0 When M 0x0 - 0xi	0xFF = 1.20V 1_RNG = 0x1 8B = (1.0 + 0. 0xFF = 2.40V 1_RNG = 0x2	005 x M1_VOU : 01 x M1_VOUT	Γ)ν				

M1_CFG1 (0x25)

BIT	7	6	5	4		3	2	1	0	
Field	M1_RN	IG[1:0]	G[1:0] M1_RD_SR[2:0]				M1_RU_SR[2:0]			
Reset	0>	(2		0x0				0x4		
Access Type	Write,	Read	Write, Read				Write, Read			
BITFIELD	BITS		DESCRIPTION DECODE							
M1_RNG	7:6	(Register se	ck Master1 Output Voltage Range Setting gister setting must not be changed while output is enabled)				0x0 = Low-range (0.5V to 1.2V, 5mV step) 0x1 = Mid-range (1.0V to 2.4V, 10mV step) 0x2 = High-range (2.0V to 5.2V, 20mV step) 0x3 = Reserved			
M1_RD_SR	5:3	Buck Maste	r1 Ramp-Dow	$0x3 = Reserved$ $0x0 = -0.15mV/\mu s$ $0x1 = -0.625mV/\mu s$ $0x2 = -1.25mV/\mu s$ $0x3 = -2.5mV/\mu s$ $0x4 = -5.0mV/\mu s$ $0x5 = -10mV/\mu s$ $0x6 = -20mV/\mu s$ $0x7 = -40mV/\mu s$						

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE		
M1_RU_SR	2:0	Buck Master1 Ramp-Up Slew-Rate Setting	0x0 = 0.15mV/µs 0x1 = 0.625mV/µs 0x2 = 1.25mV/µs 0x3 = 2.5mV/µs 0x4 = 5.0mV/µs 0x5 = 10mV/µs 0x6 = 20mV/µs 0x7 = 40mV/µs		

M1_CFG2 (0x26)

BIT	7	6	5	4	3		2	1	0	
Field	M1_SS_	ENV[1:0]	M1_SS_F	-REQ[1:0]	M1	LSS_	PAT[1:0]	M1_FSREN	M1_FPWM	
Reset	0>	(0	0:	x0		0	‹ 3	0x1	0x0	
Access Type	Write,	Read	Write, Read			Write,	Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
M1_SS_ENV	7:6	Buck Master Setting	1 Spread Spe	ctrum Envelope	e Ox Ox	0x0 = Disable $0x1 = \pm 8\%$ $0x2 = \pm 12\%$ $0x3 = \pm 16\%$				
M1_SS_FRE Q	5:4	Buck Master Setting	Buck Master1 Spread Spectrum Frequency Setting			0x0 = 1kHz 0x1 = 3kHz 0x2 = 5kHz 0x3 = 7kHz				
M1_SS_PAT	3:2	Buck Master Setting	Buck Master1 Spread Spectrum Pattern Setting			$ \begin{array}{l} 0x0 = \mbox{Triangular Pattern (0001b to 1111b)} \\ 0x1 = \mbox{Pseudo-Random Polynomial } (x^4 + x + 1) \\ 0x2 = \mbox{Pseudo-Random Polynomial } (x^4 + x^3 + 1) \\ 0x3 = \mbox{Pseudo-Random Polynomial (Alternating "x^4 + x + 1" and "x^4 + x^3 + 1" every cycle) } \end{array} $			$x^{4} + x + 1$) $x^{4} + x^{3} + 1$) Iternating "x ⁴	
M1_FSREN	1	Buck Master	1 Falling Slew-rate Control			$\begin{array}{l} 0x0 = \text{Disable (Buck does not sink current from} \\ C_{OUT} \text{ in SKIP or LP-SKIP mode)} \\ 0x1 = \text{Enable (Buck operates in FPWM mode to} \\ \text{sink current from } C_{OUT} \text{ when its } V_{OUT(TARGET)} \text{ is} \\ \text{lower than the actual } V_{OUT}) \end{array}$			I mode to	
M1_FPWM	0	Buck Master	1 Forced-PWM Control			0x0 = Disable (Automatic SKIP mode operation under light load condition) 0x1 = Enable ('OR' Logic with FPWM1B input)				

M1_CFG3 (0x27)

BIT	7	6	5	4	3	2	1	0	
Field	M1_ADIS10 0	M1_ADIS1	M1_REFRE SH	M1_FTRAK	M1_FF	REQ[1:0]	M1_ILIM[1:0]		
Reset	0x1	0x0	0x0	0x0	0	x1	0:	0x3	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write	, Read	Write,	Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE			
M1_ADIS100	7	Buck Master	Buck Master1 100 Ω Active Discharge		0x0 = D 0x1 = E				

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE	
M1_ADIS1	6	Buck Master1 1 Ω Active Discharge, Note that 1 Ω active discharge must be disabled when falling slew-rate function of corresponding output is disabled (M1_FSREN = 0)	0x0 = Disable 0x1 = Enable (Active for 1ms after Soft-stop is completed)	
M1_REFRES H	5	Buck Master1 Bootstrap Refresh Interval Control	$0x0 = 64\mu s$ (SKIP or DROPOUT)/128 μs (LP-SKIP) $0x1 = 10\mu s$	
M1_FTRAK	4	Buck Master1 Internal Frequency Tracking Control	0x0 = Disable 0x1 = Enable	
M1_FREQ	3:2 Buck Master1 Switching Frequency Setting		0x0 = 0.5MHz 0x1 = 1.0MHz 0x2 = 1.6MHz 0x3 = 1.6MHz	
M1_ILIM	1:0	Buck Master1 Peak Current Limit Setting	0x0 = 1.50A 0x1 = 2.25A 0x2 = 3.00A 0x3 = 4.50A	

M2_VOUT (0x33)

BIT	7	6	5	4	3	2	1	0		
Field		M2_VOUT[7:0]								
Reset				0>	:96					
Access Type		Write, Read								
BITFIELD	BITS		DESCRIPT		DECODE					
M2_VOUT	7:0	Buck Maste Register	r2 Output Volta	ige Control	0x0 - 0x 0x8C - 0 When M 0x0 - 0x 0x8C - 0 When M 0x0 - 0x	0xFF = 1.20V l2_RNG = 0x1 8B = (1.0 + 0.0 0xFF = 2.40V l2_RNG = 0x2	005 x M2_VOU : 01 x M2_VOU1	-)V		

<u>M2_CFG1 (0x35)</u>

BIT	7	6	5	4		3	2	1	0	
Field	M2_RNG[1:0]		M2_RD_SR[2:0]				M2_RU_SR[2:0]			
Reset	0>	k2	0x0				0x4			
Access Type	Write,	Read	ad Write, Read			Write, Read				
BITFIELD	BITS		DESCRIPT	ION			DECODE			
M2_RNG	7:6		2 Output Voltage Range Setting ting must not be changed while enabled)			0x1 = M	id-range (1.0V gh-range (2.0)	/ to 1.2V, 5mV s to 2.4V, 10mV / to 5.2V, 20m\	step)	

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

BITFIELD	BITS	DESCRIPTION	DECODE
M2_RD_SR	5:3	Buck Master2 Ramp-Down Slew-Rate Setting	0x0 = -0.15mV/µs 0x1 = -0.625mV/µs 0x2 = -1.25mV/µs 0x3 = -2.5mV/µs 0x4 = -5.0mV/µs 0x5 = -10mV/µs 0x6 = -20mV/µs 0x7 = -40mV/µs
M2_RU_SR	2:0	Buck Master2 Ramp-Up Slew-Rate Setting	0x0 = 0.15mV/µs 0x1 = 0.625mV/µs 0x2 = 1.25mV/µs 0x3 = 2.5mV/µs 0x4 = 5.0mV/µs 0x5 = 10mV/µs 0x6 = 20mV/µs 0x7 = 40mV/µs

M2_CFG2 (0x36)

BIT	7	6	5	4	3		2	1	0		
Field	M2_SS_I	ENV[1:0]	M2_SS_F	REQ[1:0]	M2_9	ss_	PAT[1:0]	M2_FSREN	M2_FPWM		
Reset	0>	(0	0:	x0		0>	k 3	0x1	0x0		
Access Type	Write,	Read	Write,	W	ite,	Read	Write, Read	Write, Read			
BITFIELD	BITS		DESCRIPT	ION			D	ECODE			
M2_SS_ENV	7:6	Buck Master Setting	aster2 Spread Spectrum Envelope				0x0 = Disable $0x1 = \pm 8\%$ $0x2 = \pm 12\%$ $0x3 = \pm 16\%$				
M2_SS_FRE Q	5:4	Buck Master Setting	Buck Master2 Spread Spectrum Frequency Setting			0x0 = 1kHz 0x1 = 3kHz 0x2 = 5kHz 0x3 = 7kHz					
M2_SS_PAT	3:2	Buck Master Setting	Buck Master2 Spread Spectrum Pattern Setting			0x0 = Triangular Pattern (0001b to 1111b) 0x1 = Pseudo-Random Polynomial ($x^4 + x + 1$) 0x2 = Pseudo-Random Polynomial ($x^4 + x^3 + 1$) 0x3 = Pseudo-Random Polynomial (Alternating " x^4 + x + 1" and " $x^4 + x^3 + 1$ " every cycle)			$x^{4} + x + 1$) $x^{4} + x^{3} + 1$) Iternating "x ⁴		
M2_FSREN	1	Buck Master	ster2 Falling Slew-Rate Control			0x0 = Disable (Buck does not sink current from C_{OUT} in SKIP or LP-SKIP mode) 0x1 = Enable (Buck operates in FPWM mode to sink current from C_{OUT} when its V_{OUT} (TARGET) i lower than the actual V_{OUT})			M mode to		
M2_FPWM	0	Buck Master	2 Forced-PWN	2 Forced-PWM Control			0x0 = Disable (Automatic SKIP mode operation under light load condition) 0x1 = Enable ('OR' Logic with FPWM2B input)				

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

M2_CFG3 (0x37)

BIT	7	6	5	4		3	2	1	0
Field	M2_ADIS10 0	M2_ADIS1	M2_REFRE SH	M2_FTRAK		M2_FREQ[1:0]		M2_ILIM[1:0]	
Reset	0x1	0x0	0x0	0x0		0:	x1	0)	(3
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write,	, Read	Write,	Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
M2_ADIS100	7	Buck Master	2 100Ω Active	Discharge		0x0 = Disable 0x1 = Enable			
M2_ADIS1	6	1Ω active dis falling slew-	ck Master2 1Ω Active Discharge. Note that active discharge must be disabled when ling slew-rate function of corresponding tput is disabled (M2_FSREN = 0).			0x0 = Disable 0x1 = Enable (Active for 1ms after Soft-stop is completed)			
M2_REFRES H	5	Buck Master Control	2 Bootstrap Ro	efresh Interval		$0x0 = 64\mu s$ (SKIP or DROPOUT)/128 μs (LP-SKIP) $0x1 = 10\mu s$			
M2_FTRAK	4	Buck Master Control	2 Internal Fred	quency Tracking	5	0x0 = Disable 0x1 = Enable			
M2_FREQ	3:2	Buck Master	Aaster2 Switching Frequency Setting			0x0 = 0.5MHz 0x1 = 1.0MHz 0x2 = 1.6MHz 0x3 = 1.6MHz			
M2_ILIM	1:0	Buck Master	2 Peak Current Limit Setting			0x0 = 1. 0x1 = 2. 0x2 = 3. 0x3 = 4.	25A 00A		

Applications Information—Dual-Phase Configurable Buck Converter

Inductor Selection

An inductor with a saturation current that is greater than or equal to the peak current limit setting (I_{PLIM}) is recommended. The load current requirement (per phase) of the system is also considered to choose the RMS current rating of the inductor. Inductors with lower saturation current and higher DCR ratings tend to be physically small, however higher values of DCR reduce the efficiency. To choose a suitable inductor for the given application, trade-off the size of the inductor and the DCR value. It is recommended to choose an inductance such that the inductor's ripple current to the average current ratio is between 30% and 60%. Consider the output voltage range when choosing the inductance. In general, for 1MHz switching frequency, 0.47μ H is suitable for low-range outputs, 1.0μ H is suitable for mid-range outputs, and 1.5μ H is suitable for high-range outputs. For other switching frequencies, the inductance may need to be adjusted to account for the inductor current ripple. Lower switching frequencies require higher inductance values. Note that higher inductances slow down the maximum slew rate of the inductor current, and high duty cycles (V_{IN} close to V_{OUT}) coupled with large inductance can slow down the load transient response.

MANUFACTURER P/N	INDUCTANCE (µH)	TYPYCAL DCR (mΩ)	TYPYCAL I _{SAT} (A)	TYPICAL I _{TEMP} (A)	DIMENSION (L x W x H) (mm)
DFE252012F-R47M	0.47 ±20%	23	6.7	4.9	2.5 x 2.0 x 1.2
DFE252012F-1R0M	1.0 ±20%	40	4.7	3.3	2.5 x 2.0 x 1.2
DFE252012F-1R5M	1.5 ±20%	58	3.8	2.7	2.5 x 2.0 x 1.2
HTEL25201B-R47MSR	0.47 ±20%	11.0	7.4	6.7	2.5 x 2.0 x 1.2
HTEL25201B-1R0MSR	1.0 ±20%	18.0	5.8	5.7	2.5 x 2.0 x 1.2
HTEP25201T-1R0MSR	1.0 ±20%	18.0	5.5	5.7	2.5 x 2.0 x 1.0

Table 11. Recommended Inductors

For the dual-phase configuration, each phase needs its own inductor with the same inductance value (do not short the LX nodes of different phases together on the PCB). See the <u>Phase Configuration</u> section for more information regarding different phase configurations.

Input Capacitor Selection

The input capacitor (C_{IN}) reduces the current peaks drawn from the battery or input power source and reduces switching noise in the device. The impedance of the C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a 10μ F capacitor is sufficient.

Output Capacitor Selection

The output capacitor (C_{OUT}) is required to keep the output voltage ripple small and to ensure the regulation loop stability. The C_{OUT} must have low impedance at the switching frequency. Ceramic capacitors with X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. The recommended minimum effective output capacitance **per phase** is shown as follows:

Table 12. Recommended Minimum Effective Output Capacitance

V _{OUT} RANGE SWITCHING FREQUENCY (MHz)		MINIMUM EFFECTIVE C _{OUT} * (μF)
Low (0.3V - 1.2V)	1	42
Mid (1.0V - 2.4V)	1	24
High (2.0V - 5.2V)	1	16

* The required minimum $C_{OUT(EFF)}$ is inversely proportional to the switching frequency. For example, an output using RNG = 0 and 1MHz switching frequency requires a minimum of 42µF of effective output capacitance. Changing the switching frequency to 1.6MHz increases the C_{OUT} requirement to 27µF (42µF/1.6).

The effective C_{OUT} is the actual capacitance value seen by the Buck output during operation. The nominal capacitance (C_{OUT}) needs to be selected carefully by considering the capacitor's initial tolerance, variation with temperature, and derating with DC bias. Refer to <u>Tutorial 5527</u> for more information. Larger values of the C_{OUT} (above the required minimum effective) improve load transient performance, but increase the input inrush currents during startup. The output filter capacitor must have low enough ESR to meet output ripple and load transient requirements. The output capacitance must be high enough to absorb the inductor energy while transitioning from full-load to no-load conditions. When using high-capacitance, low-ESR capacitors, the filter capacitor's ESR dominates the output voltage ripple in CCM. Therefore, the size of the output capacitor depends on the maximum ESR required to meet the output voltage ripple specifications.

General PCB Layout Guidelines

- The power components should be placed first and then small analog control signals.
- It is important to always have a ground layer next to the power stage layer because a solid ground layer provides uninterrupted ground return path between the input and the output caps during switch on-time. (A solid plane minimizes inductance to the absolute minimum and also is a very good thermal conductor and can act as a heat sink.)
- It is recommended to have thick copper for the external high current power layers to minimize the PCB conduction loss and thermal impedance.
- The power stage loop that is made by the input capacitor (C_{IN}), the LX trace, the inductor (L), and the output capacitor (C_{OUT}) coming back to the PGNDx bumps should be minimized for electromagnetic compatibility (EMC) considerations.
- The input capacitors (C_{IN}) should be located close to the input bumps of each phase.
- Bypass capacitors for the V_L, the V_{DD}, and the BSTx pins should be placed as close as possible.
- Analog ground (AGND) and power ground (PGND) bumps should be directly connected to the ground plane separately in order to avoid common impedance ground.
- It is recommended to avoid having direct connection the SYS and its AGND traces to the nearest IN and the PGND traces.
- The output voltage sensing trace should not intersect the power stage (the loop made by the input capacitor, LX trace, inductor, output capacitor, and the PGND)
- It is important to have impedance matching between phases for stable operation in multiphase configuration. (The output PCB trace of each phase should be as symmetric as possible.)
- For multiphase configurations, the output voltage sensing bumps for the master phase should be connected to the middle point of the output phases.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

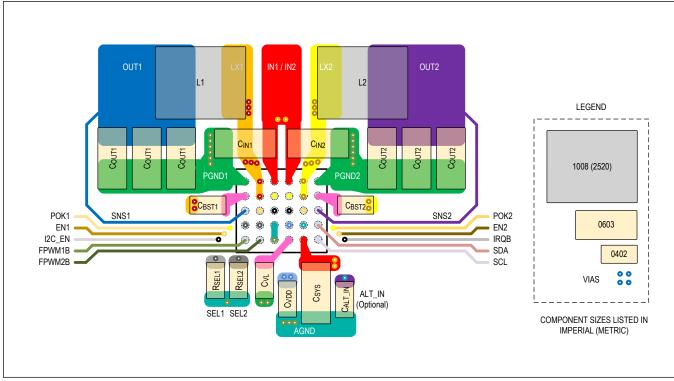


Figure 11. PCB Layout Example - WLP

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

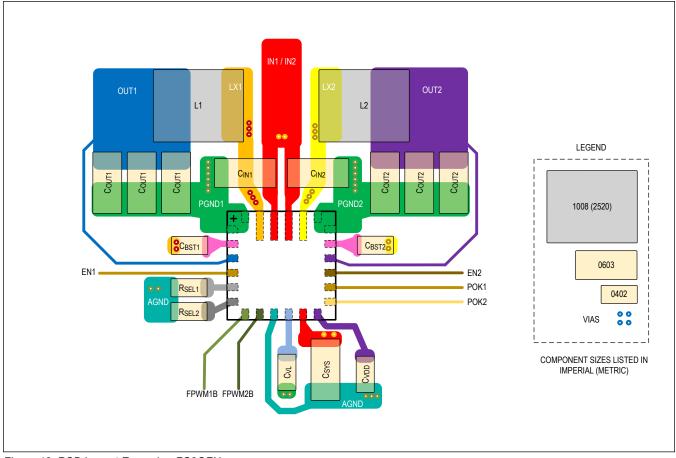
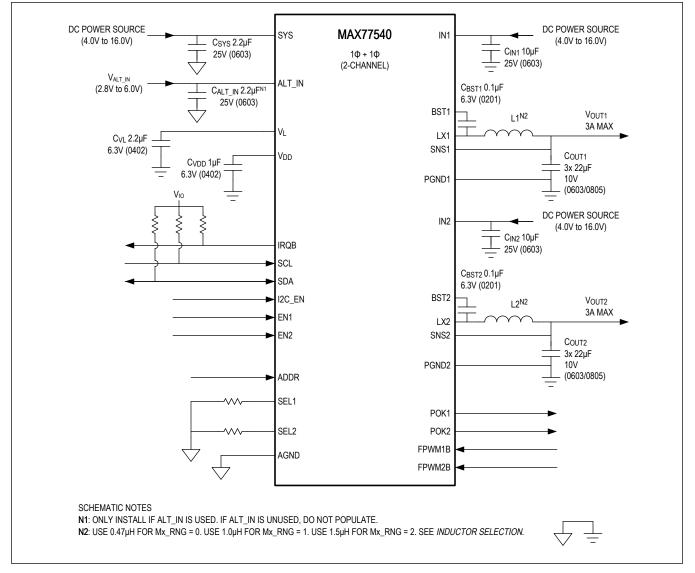
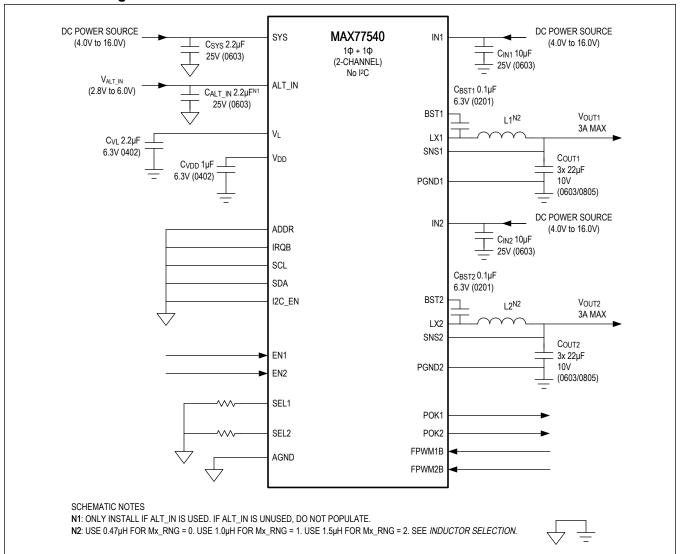



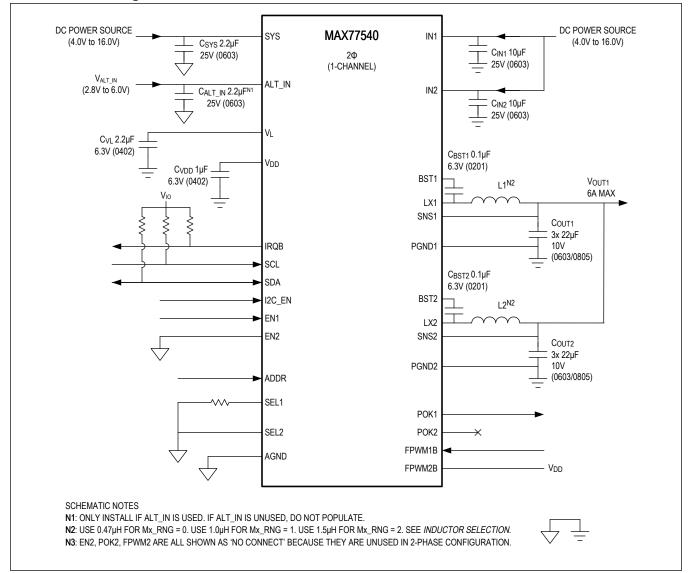
Figure 12. PCB Layout Example - FC2QFN

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter


Typical Application Circuits

1+1 Phase Configuration with I²C Enabled—WLP

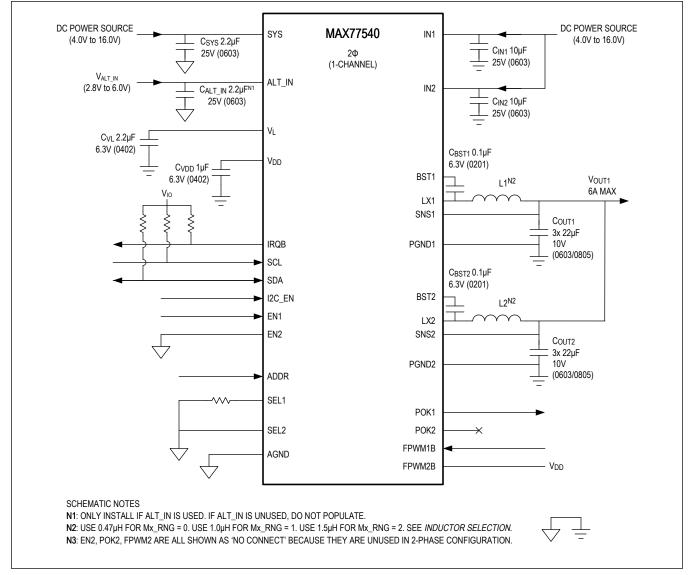
16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter


Typical Application Circuits (continued)

1+1 Phase Configuration without I²C—WLP

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

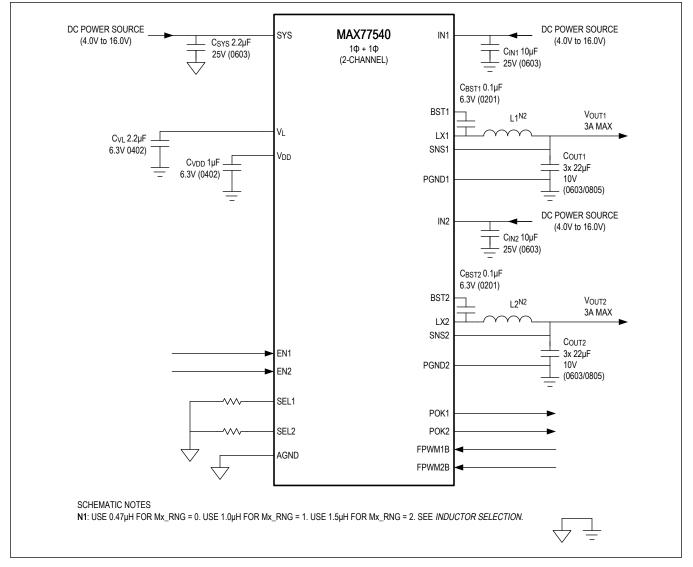
Typical Application Circuits (continued)



Dual-Phase Configuration with I²C Enabled—WLP

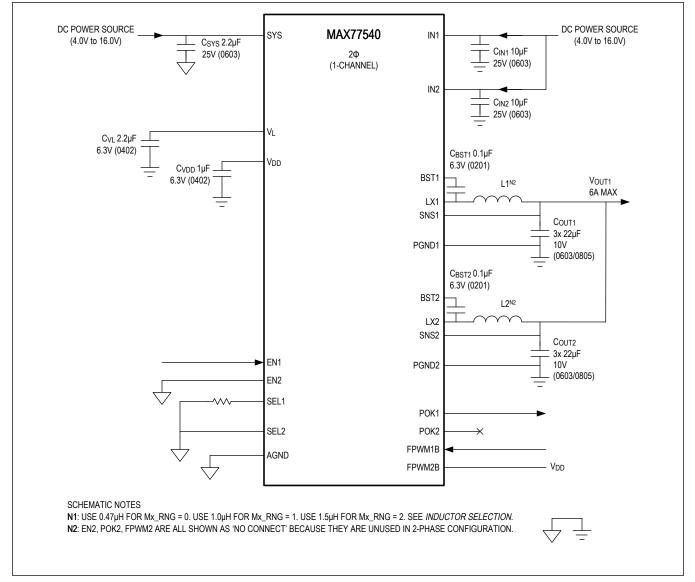
16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Typical Application Circuits (continued)



16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Typical Application Circuits (continued)


1+1 Phase Configuration—FC2QFN

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Typical Application Circuits (continued)

Dual-Phase Configuration—FC2QFN

Ordering Information

PART NUMBER	FACTORY OPTION	PIN-PACKAGE
MAX77540AAWV+T	A	30 WLP
MAX77540AAFG+T	A	24 FC2QFN

T = Tape and reel.

16V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/21	Release for market intro	—
1	12/21	Updated Absolute Maximum Ratings, Package Information, Electrical Characteristics, Typical Operating Characteristics, Bump Configuration, Bump Descriptions, Detailed Description - Top-Level, FC2QFN Default Options, Detailed Description - Dual-Phase Configurable Buck Converter, Applications Information, Typical Applications Circuits, and Ordering Information	6-21, 23-25, 26, 29, 56, 61-63
2	4/22	Updated General Description, Benefits and Features, Absolute Maximum Ratings, Package Information, Electrical Characteristics, Typical Operating Characteristics, Register Reset Condition, Bootstrap Refresh, Spread-Spectrum Modulation, Register Map, and Ordering Information	1, 6, 7, 11, 21, 29, 36, 37, 42, 50, 51, 53, 62

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.