

24Vdc Input, 28Vdc@21.5A Output Full-brick DC-DC Converter AGF600-24S28

Description

The AGF600-24S28 is a single output DC-DC converter with standard full-brick outline and pin configuration. It delivers up to 21.5A output current with 28V output voltage. Above 93.5% ultra-high efficiency and excellent thermal performance make it an ideal choice to supply power to power amplifier in telecom RF application. Thanks to the aluminium baseplate it can work under -40°C ~ +85°C without air cooling.

- Delivering up to 21.5A output current
- Ultra-high efficiency 93.5% typ. at half load
- Excellent thermal performance
- Wide input range: 18V ~ 36V
- No minimum load requirement
- Fixed frequency operation
- RoHS 6 compliant

Control Features

- Remote control function
- Remote output sense
- Trim function: -50% ~ +18%

Protection Features

- Input under voltage protection
- Output over current protection
- Output over voltage protection
- Over temperature protection

Mechanical Features

- Industry standard full-brick pin-out outline
- With aluminium baseplate
- Pin length: 3.8mm

Safety & EMC

- Meets safety standards UL 60950-1, IEC/EN 60950-1 and GB4943
- Approved by UL and TUV
- Meets 2006/95/EEC and 93/68/EEC directives which facilitates CE marking in user's end product
- Meets conducted emission's requirements of EN55022 Class A with external filter

Electrical Characteristics

Full operating ambient temperature range is -40°C to +85°C. Specifications are subject to change without notice.

Parameter		Min.	Тур.	Max.	Unit	Notes & Conditions		
		Α	bsolute max.	ratings				
Input voltage	Non-operating			50	V	100ms		
Input voltage	Operating			36	V	Continuous		
Operating temp	erature	-40		85	°C			
Storage temper	ature	-55		125	°C			
		lı	nput characte	ristics				
Operating input	voltage range	18	24	36	V			
	Turn-on voltage threshold	15		18	V			
Input under-voltage lockout	Turn-off voltage threshold	14		17	V			
	Lockout voltage hysteresis	1		3	V			
Max. input curre	ent			40	Α	18V _{in} , full load		
No-load input c	urrent		0.5	0.7	Α	24V _{in}		
Standby Input of	urrent		0.05	0.1	Α	Remote OFF		
Inrush current to	ransient rating		0.5	1	A ² s	Figure 18		
Input reflected r	ipple current			320	mA	Through 12µH inductor; Figure 18		
Recommended	input fuse		60		А	Fast blow external fuse recommended Figure 13		
Input filter comp	oonent values (C\L)		4.7*13\0.35		μF\μH	Internal values		
Recommended capacitance	ommended external input				1000		μF	Low ESR capacitor recommended Figure 13
		0	utput charact	eristics				
Output voltage set point (standard option)		27.72	28	28.28	V	24V _{in} , full load		
Output voltage	Output voltage line regulation		0.1	0.2	%			
Output voitage			28	56	mV			
Output valtasa	load rogulation		0.2	0.5	%			
Output voltage	load regulation		56	140	mV			

Parameter		Min.	Тур.	Max.	Unit	Notes & Conditions
Output voltage temperature regulation				0.02	%/°C	
Total output	voltage range	27.20	28	28.80	V	Over sample, line, load, temperature & life
Output volta	ge ripple and noise			200	mVpp	20MHz bandwidth; Figure 18
Operating or	utput current range	0		21.5	Α	
Output DC o	current-limit inception	23.65		30.1	Α	Hiccup, see Figure 12
Output capa	citance	470	1000	10000	μF	
		Dy	namic charac	teristics	•	
	25% ~ 50% ~ 25% I _{o,max} , 0.1A/μs			840	mV	Figure 6 Test condition: see Figure 13
Dynamic	Settling time			500	μs	Recovery to within 1% V _{o,nom}
response	50% ~ 75% ~ 50% I _{o,max} , 0.1A/μs			840	mV	Figure 7 Test condition: see Figure 13
	Settling time			500	μs	Recovery to within 1% V _{o,nom}
	Rise time	20		200	ms	Full load, Figure 8
Turn-on	Turn-on delay time	0		200	ms	
transient	Output voltage overshoot			5	%V _o	
Efficiency						,
100% load			92.0		%	Figure 1
50% load			93.5		%	Figure 1

Electrical Characteristics (Continued)

Parameter	Min.	Тур.	Max.	Unit	Notes & Conditions			
Isolation characteristics								
		1500		V	Basic insulation, pollution degree 2, input to output			
Isolation voltage (1mA, 5s)		1500		V	Basic insulation, pollution degree 2, input to baseplate			
		500		V	Basic insulation, pollution degree 2, output to baseplate			

Parameter	Min.	Тур.	Max.	Unit	Notes & Conditions		
		Featur	e charact	eristics			
Switching frequency	230	260	290	kHz			
Remote ON/OFF control	1.5		5	mA	See Figure 14 and Figure 15		
Output voltage trim range	14		33	V	See Trim Characteristics of Application Note		
Output voltage remote sense range			1 V				
Output over-voltage protection	125		143	%	Over full temp range; % of V _{o,nom} Latch:reset by power on or remote on		
Over-temperature shutdown	105	115	130	°C	Auto recovery; Test point: see Figure 21		
Over-temperature hysteresis	5			°C			
	Reliability characteristics						
Calculated MTBF (telcordia)		1.5		10 ⁶ h	Telcordia SR-332-2006; 80% load, 300LFM, 40°C T _a		

Qualification Testing

Parameter	Unit (pcs)	Test condition			
Halt test	4 ~ 5	$T_{a,min}$ -10°C to $T_{a,max}$ +10°C, 5°C step, V_{in} = min to max, 0 ~ 105% load			
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m ² /s ³ , -3db/oct, axes of vibration: X/Y/Z; Time: 30min/axis			
Mechanical shock	3	30g, 6ms, 3axes, 6directions, 3time/direction			
Thermal shock	3	-40°C to 100°C, unit temperature 20cycles			
Thermal cycling	3	-40°C to 85°C, temperature change rate: 1°C/min, cycles: 2cycles			
Humidity	3	40°C, 95%RH, 48h			
Solder ability	15	IPC J-STD-002C-2007			

Characteristic Curves

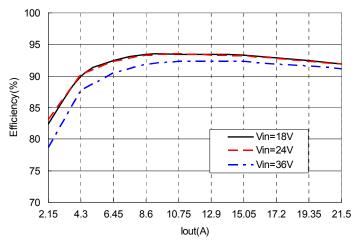


Figure 1 Efficiency vs. output current, T_a=25°C, V_o=28V

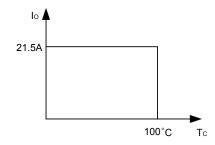


Figure 2 Output power derating curve

T_c: temperature test point on baseplate, see Figure 21 for test configuration.

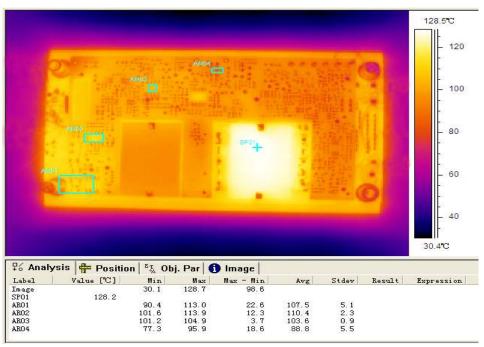


Figure 3 Thermal image, 24V_{in}, 28V_o, full load, room temperature

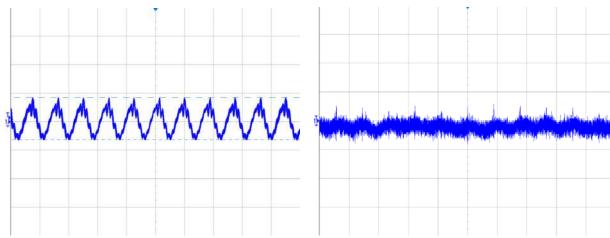


Figure 4 Output ripple & noise (5 μ s/div, 100mV/div), see Figure 18 for test configuration

Figure 5 Input reflected ripple current (5µs/div, 20mA/div), see Figure 18 for test configuration

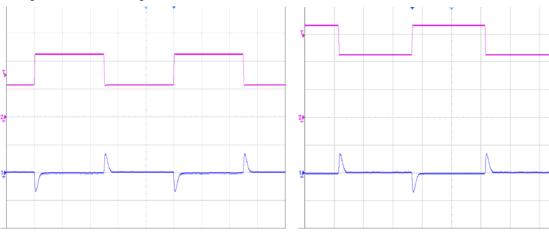


Figure 6 Dynamic response for 25% load step (25% $\sim 50\% \sim 75\%$) and 0.1A/µs slew rate, see Figure 13 for test configuration, CH1-output voltage (500mV/div); CH2-output current (5A/div)

Figure 7 Dynamic response for 25% load step (50% \sim 75% \sim 50%) and 0.1A/ μ s slew rate, see Figure 13 for test configuration. CH1-output voltage (500mV/div); CH2-output current (5A/div)

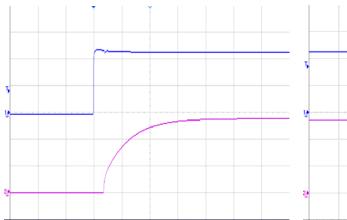


Figure 8 Output voltage startup by power on, (20ms/div), see Figure 13 for test configuration, CH1-input voltage (10V/div); CH2-output voltage (10V/div)

Figure 9 Output voltage shut down by power off, (2ms/div), see Figure 13 for test configuration, CH1-input voltage (10V/div); CH2-output voltage (10V/div)

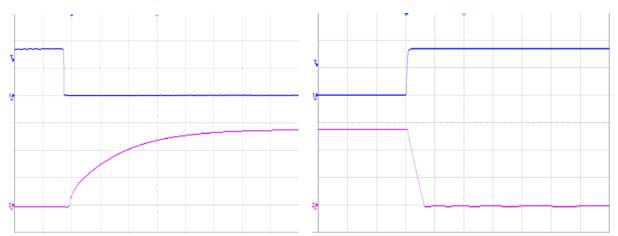


Figure 10 Output voltage startup by remote ON, (10ms/div), see Figure 14 for test configuration, CH1-remote ON (2V/div); CH2-output voltage (10V/div)

Figure 11 Output voltage shutdown by remote OFF, (2ms/div), see Figure 14 for test configuration, CH1-remote OFF (2V/div); CH2-output voltage (10V/div)

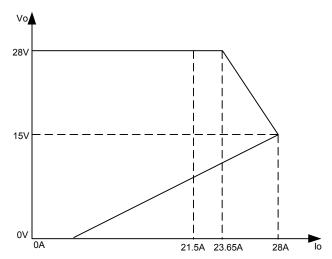


Figure 12 Over-current protection characteristics

(It's only a sketch map of OCP action. Little alteration of the current value vs. voltage value would be allowed.)

Application Note

Typical Application

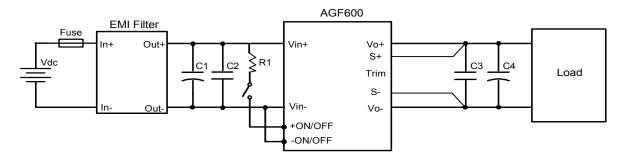


Figure 13 Typical application

R1: $10k\Omega$ (1W) current limiting resistor

C1: 1000µF/50V electrolytic capacitor, P/N: UPW2A471MHD (Nichicon) or equivalent caps

C2, C3: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U(TDK) or equivalent caps

C4: 7X150µF electrolytic capacitor, P/N: UUD1H151MNL1GS (Nichicon) or equivalent caps

Note: If ambient temperature is below -5°C, additional 1000µF electrolytic capacitor is needed for output.

Fuse: External fast blow fuse with a rating of 60A. The recommended fuse model is F60AH (100/250V).

Remote ON/OFF

A remote ON/OFF control circuit is provided which is isolated from the input side, as well as, the output side. (Isolation withstand voltage: 1.5kV)

Connection of remote ON/OFF terminal is shown in the Figure 14. Output voltage turns remote on when current is made to flow through remote ON/OFF terminal. Remote ON/OFF terminal can be controlled by opening or closing connections (with switch or relay).

Maximum source current for remote ON/OFF terminal is 5mA. Therefore, current limiting resistor value must be set such that this maximum source current value is not exceeded. Also, the allowable maximum reverse current flow is 5mA.

Controlling the remote ON/OFF terminal from the input side

Connect current limiting resistor R1 as shown in Figure 14.

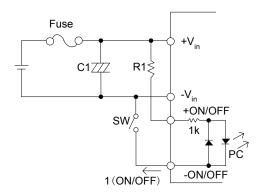


Figure 14 Connection of remote ON/OFF control (A)

R1: Recommended resistor value: $10k\Omega$ (1W)

Controlling the remote ON/OFF terminal from the output side

Connect the current limiting resistor R1 as shown in Figure 15.

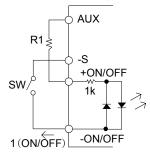


Figure 15 Connection of remote ON/OFF control (B)

R1: Recommended resistor Value: 2kΩ (1/2W)

Note:

- 1. A decoupling capacitor of about 0.1µF between the +remote ON/OFF terminal and –remote ON/OFF terminal is needed when input wiring is too long.
- 2. Current limiting resistor can also be connected to the -remote ON/OFF terminal side.

Remote ON/OFF level	Output status
Open (<100µA)	Remote OFF
1.5mA ≤ I (ON/OFF) ≤ 5mA	Remote ON

Trim Characteristics

The output voltage of the converter can be trimmed using the trim pin provided. Connecting an external resistor between Trim pin and V_{o^-} pin will decrease the output voltage, while connecting it between +S and V_{o^+} will increase the output voltage. Trimming down more than 50% and trimming up more than 18% can cause the module to regulate improperly. If the trim pin is not needed, it should be left open.

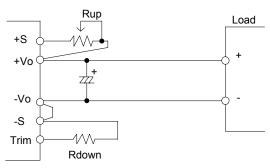


Figure 16 Trim circuit

$$R_{up} = 28(\frac{V_O - V_e}{V_e})k\Omega$$

$$R_{down} = -5.97(\frac{V_O}{V_O - V_e})k\Omega$$

V_e is the rated output voltage and V_o is the goal voltage.

For example, to get 30V output, the resistor is:

$$R_{up} = 28(\frac{30-28}{28})k\Omega = 2k\Omega$$

For another example, to get 14V output, the resistor is:

$$R_{down} = -5.97(\frac{14}{14 - 28})k\Omega = 5.97k\Omega$$

Note: Input voltage should be limited when output voltage increases, shown in the following figure.

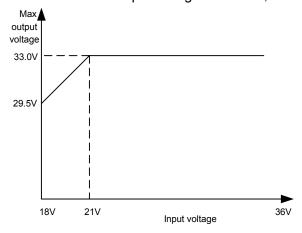


Figure 17 Trim-up voltage vs. input voltage

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line. See Figure 13.

If the sense compensate function is not necessary, short S+ to V_o+ and S- to V_o- respectively.

Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

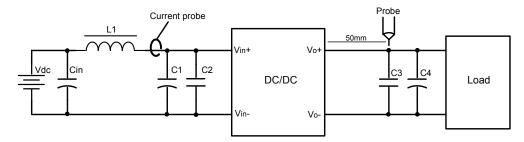


Figure 18 Input ripple & inrush current, ripple & noise test configuration

Vdc: DC power supply

L1: 12µH

Cin: 220µF/100V typical. C1 ~ C4: See Figure 13

Note: Using a coaxial cable with series 50Ω resistor and $0.68\mu F$ ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

EMC Filter Configuration

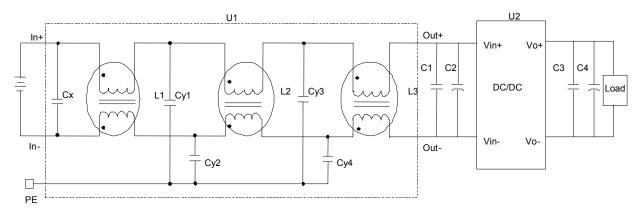


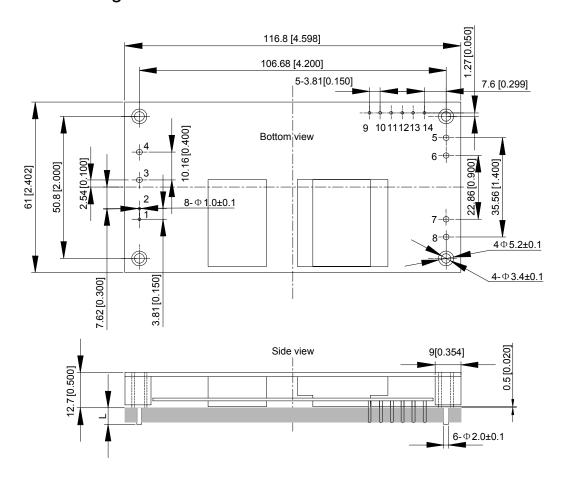
Figure 19 EMC test configuration

C_X: 5.7µF/100V capacitor

Cy1, Cy2, Cy3, Cy4: 4700pF, Y capacitor

L1, L2, L3: 100µH, common mode inductor

C1: 1000µF/50V electrolytic capacitor, P/N: UPW2A471MHD (Nichicon) or equivalent caps


C2, C3: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U(TDK) or equivalent caps

C4: 7X150µF electrolytic capacitor, P/N: UUD1H151MNL1GS (Nichicon) or equivalent caps

U1: 40A input EMC filter module (P/N: FM100-40)

U2: Module under test, AGF600-24S28

Mechanical Diagram

Unit: mm[inch]

Bottom view: pin on upside

Tolerance: X.Xmm±0.5mm[X.X in.±0.02in.] X.XXmm±0.25mm[X.XX in.±0.01in.]

Figure 20 Mechanical diagram

Pin length option

Device code suffix	L
-4	4.8mm±0.2mm
-6	3.8mm±0.2mm
-8	2.8mm±0.2mm
None	5.8mm±0.2mm

Pin Designations

Pin NO.	Name	Function			
1	+On/Off	Remote control			
2	-On/Off	Remote control			
3	V _{in} +	Positive input voltage			
4	V _{in} -	Negative input voltage			
5, 6	V _o -	Negative output voltage			
7, 8	V _o +	Positive output voltage			
9	AUX	Auxiliary voltage			
10	IOG	Inverter operation good			
11	PC	Parallel operation			
12	Trim	Trim terminal			
13	+S	Remote sensing +			
14	-S	Remote sensing -			

Soldering

The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260°C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300° C $\sim 380^{\circ}$ C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Thermal Considerations

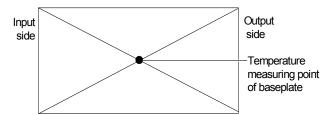


Figure 21 Temperature test point on base plate

Ordering Information

Ī	AGF600	-	24	S	28	-	6	L
	1		2	3	4		5	6

1)	Model series	AGF: high efficiency full brick series; 600: output power 600W
2	Input voltage	24: 18V ~ 36V input range, rated input voltage 24V
3	Output channel	S: single output
4)	Rated output voltage	28: 28V output
(5)	Pin length	-6: 3.8mm
6	RoHS status	L: RoHS, R6; Y: RoHS, R5

Model number	Description
AGF600-24S28-6L	3.8mm pin length; without thread inside mounting hole; R6 compliat
AGF600-24S28-6Y	3.8mm pin length; without thread inside mounting hole; R5 compliat

Hazardous Substances Announcement (RoHS of China)

Parts	Hazardous substances								
Paris	Pb	Hg	Cd	Cr6+	PBB	PBDE			
AGF600-24S28 -6L	0	0	0	0	0	0			
AGF600-24S28 -6Y	V	0	0	0	0	0			

o: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006

Emerson Network Power Co., Ltd. has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

- 1. Solders (including high-temperature solder in parts) contain plumbum.
- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

 $[\]sqrt{}$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006