

NOT RECOMMENDED FOR NEW DESIGN CONTACT US

AP43331N

QUICK CHARGER CONTROLLER COMPATIBLE WITH QUALCOMM QC3.0

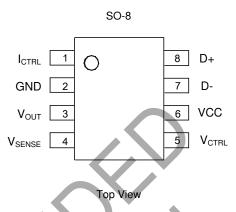
Description

The DIODESTM AP43331N is a highly integrated secondary side constant voltage (CV) and constant current (CC) controller, which is compatible with Qualcomm[®] Quick ChargeTM 3.0 (QC3.0) High Voltage Dedicated Charging Port (HVDCP) Class A specification.

The AP43331N allows for selection of the output voltage of an AC-DC USB charger based on commands from the Portable Device (PD) being powered. Selecting a higher charging voltage will reduce the charging current for a given power level resulting in reduced IR drops and increased system efficiency. The USB-bus voltage can be controlled in discreet steps (QC3.0's step is 0.2V). The output current is limited not to exceed maximum allowable power level.

The AP43331N resides at the secondary side of the charger. It includes voltage and current feedback regulation, eliminating the need for a shunt regulator such as DIODES™ TL431.

The AP43331N has a current sense amplifier to amplify the detected output current signal for contribution to accomplishing CC feature and output cable voltage compensation function.


The AP43331N incorporates a decoder used to translate Qualcomm QC3.0 protocol into internal configuration indicator, according to which the CV/CC loops will regulate the output voltage and current.

The AP43331N integrates a safe-discharge circuitry to quickly and reliably discharge output capacitors when the output voltage is switched down.

The AP43331N automatically keeps 5V output voltage in case that the connected portable device is not compatible with the QC3.0.

The AP43331N is available in SO-8 package

Pin Assignments

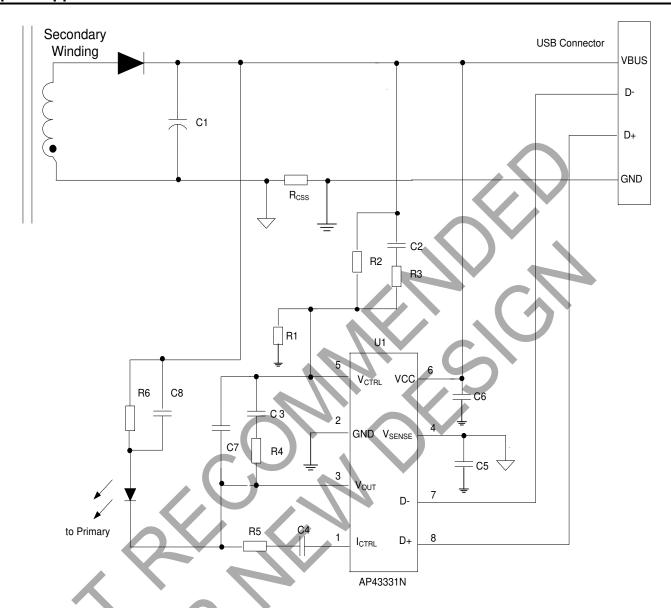
Features

- Constant Voltage and Constant Current Regulation
- Supporting Qualcomm QC3.0 Class A (3.6V up to 12V)
- Output Cable Voltage Compensation
- High Precision CV/CC References
- Fast Dynamic Response
- Removing the Need for a Shunt Regulator Such as TL431
- Output Capacitor Safe-Discharge Circuitry at the Output Voltage Switched Down.
- Output Over Voltage Protection (OVP)
- Output Under Voltage Protection (UVP)
- Operating Supply Voltage: 3.2V to 12V
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Applications

- AC/DC adapters
- Battery chargers
- LED drivers


Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Quick Charge is a trademark of Qualcomm Incorporated. Qualcomm Quick Charge is a product of Qualcomm Technologies, Inc.

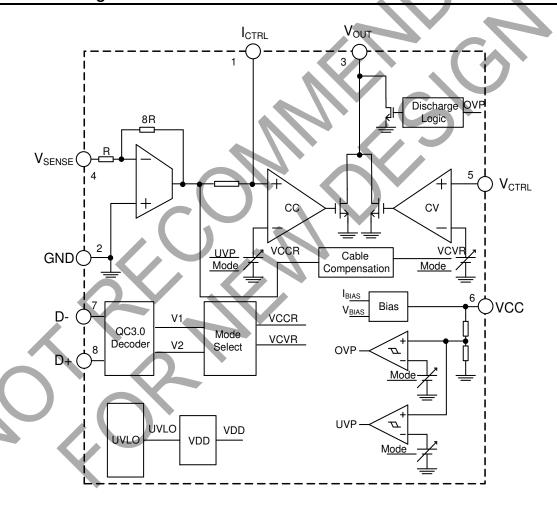
Typical Applications Circuit

$$V_o = V_{REF}|_{CV} \times \frac{R1 + R2}{R1} + R_{CABLE} \times I_o$$

$$I_{o_CC} = \frac{V_{REF_CC}}{R_{CSS}}$$

 $I_{\boldsymbol{\theta}}\!:\! \mathsf{The}$ Current Which Flows Through Current Sensor $\mathsf{R}_{\mathsf{CSS}}$

 $V_{\it REF_CV}$: Constant Voltage Reference


 $I_{{\cal O}_-{\cal C}{\cal C}}$: Output Constant Current Point

Pin Descriptions

Pin Number	Pin Name	Function			
1	ICTRL	Non-inverting input pin of the current control loop			
2	GND	Ground return			
3	Vouт	Output pin. Sinking current only			
4	V _{SENSE}	Inverting input pin of the current control loop			
5	VCTRL	Input pin of the voltage control loop			
6	VCC	IC supply voltage, connected to a ceramic capacitor			
7	D-	Connected to USB D-			
8	D+	Connected to USB D+			

Functional Block Diagram

VCCR: Voltage Control Current Reference VCVR: Voltage Control Voltage Reference

VDD: Internal Voltage Source

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	-0.3 to 20	V
Vouт	Vout Pin Voltage	-0.3 to Vcc	V
VICTRL	ICTRL Pin Voltage	-0.3 to 7	V
V _{SENSE}	V _{SENSE} Pin Voltage	-0.3 to 7	V
Vvctrl	VCTRL Pin Voltage	-0.3 to 7	V
TJ	Junction Temperature	+150	°C
T _{STG}	Storage Temperature	-55 to +150	°C
T _{LEAD}	Lead Temperature (Soldering, 5 sec)	+260	°C
θја	Thermal Resistance (Junction to Ambient) (Note 5)	129	°C/W
ESD	ESD (Human Body Model)	6	kV
520	ESD (Machine Model)	300	V

Notes:

Recommended Operating Conditions

Symbol	Parameter		Min		Max	Unit
Vcc	Power Supply Voltage		3.2		12	V
TA	Ambient Temperature	7	-40		+85	°C

Electrical Characteristics (@Vcc = 5V, -40°C < TA < +85°C, unless otherwise specified.)

0	P. Constant	O a substitution		T		1114			
Symbol	Parameter	Condition	Min	Тур	Max	Unit			
TOTAL CURRENT (TOTAL CURRENT CONSUMPTION								
V _{ST}	Start-up Voltage	-/	2.8	3	3.2	V			
Vcc_uvlo	Vcc Under Voltage Lock Out Voltage	Y	2.6	2.8	3	V			
lcc	Operating Supply Current	Vcc = 5V, Vsense = 0V Vctrl= 0V	_	670	880	μА			
VOLTAGE CONTRO	OL LOOP								
Gмv	CV Amplifier Transconductance	_	1.5	5.0	12.0	mA/mV			
VREF_CV5	Reference Voltage for 5V CV Control	_	0.49	0.50	0.51	V			
V _{REF_CV9}	Reference Voltage for 9V CV Control	_	0.88	0.90	0.92	V			
VREF_CV12	Reference Voltage for 12V CV Control	_	1.17	1.20	1.23	V			
VREF_0.2V_CV_STEP	Reference Voltage for QC3.0 0.2V Step CV Control	_	_	0.02	_	V			
RCABLE	Cable Compensation	_	90	100	110	mV/A			
I _{IBV}	CV Amplifier Input Bias Current	_	5	30	100	nA			
CURRENT CONTRO	CURRENT CONTROL LOOP								
Gмı	CC Amplifier Transconductance	_	2	5	20	mA/mV			
VREF_CC5	5V CC Mode Reference Voltage	_	71.25	75	78.75	mV			
VREF_CC9	9V CC Mode Reference Voltage	_	47.5	50	52.5	mV			

Stresses greater than those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings for extended periods can affect device reliability.
 Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch² pad layout.

Electrical Characteristics (@Vcc = 5V, -40°C < TA < +85°C, unless otherwise specified.) (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
VREF CC12	12V CC Mode Reference Voltage	_	35.63	37.5	39.38	mV	
Rcc	Internal CC Amplifier Input Resistor	_	5	13	20	kΩ	
PROTECTION FUNCTION	· · · · · · · · · · · · · · · · · · ·	<u> </u>					
V _{OVP5V}	OVP_5V Enable Voltage	_	5.7	6	6.3	V	
Vovp9v	OVP_9V Enable Voltage	_	10.26	10.8	11.34	V	
V _{OVP12V}	OVP_12V Enable Voltage	_	13.68	14.4	15.12	V	
lovd	Average OVP Discharge Current	_	_	70	_	mA	
tdebounce_ovp	OVP Debounce Time	_	80	100	120	ms	
V _{UVP5V}	UVP_5V Enable Voltage	@ Below 8.8V	2.99	3.15	3.3	V	
Vuvp9v	UVP_9V Enable Voltage	@11.8V-9V	6.67	7.02	7.37	V	
V _{UVP12V}	UVP_12V Enable Voltage	@12V	8.892	9.36	9.82	V	
tdebounce_uvp	UVP Debounce Time	_	24	30	36	ms	
SECONDARY SIDE FEE	EDBACK SECTION						
Vol	Vouт Pin Voltage under 2mA Internal Amplifier Sinking Current	-	_ (30	100	mV	
los	Maximum V _{OUT} Pin Sink Current	Vout = 4V	10	20	50	mA	
QC3.0 DECODER SECT	TION						
V_{DAT_REF}	Data Detect Voltage	-	0.25	0.325	0.40	V	
Vsel_ref	Output Voltage Selection Reference	_	1.8	2.0	2.2	V	
Rdat_lkg	Data Line Leakage Resistance		300	500	800	kΩ	
Rdcp_dat	D+ to D- Resistance During DCP Mode	D+ is supplied with 0.6V	_	20	40	Ω	
R _{DM_DWM}	D- Pull-Down Resistance	-	14.25	19.53	24.80	kΩ	
tglitch_bc_done	D+ High Glitch Filter Time	-	1.0	1.25	1.5	S	
tglitch_dm_low	D- Low Glitch Filter Time	- //	1.0	2.5	4.0	ms	
tglitch_v_change	Output Voltage Glitch Filter Time	_	20	40	60	ms	
td+_dshort	D+ and D- HVDCP Short Time			10	20	ms	
t _{GLITCH_DP_LOW}	D+ Low Glitch Filter Time		35	50	65	ms	
CDCP_PWR	D+/- Equivalent Capacitance	_	_	_	0.5	nF	
tglitch_cont_change	Continuous Mode Glitch Filter Time for D+/- Pull Up or Down	_	100	_	200	μs	
tactive	Active Pulse Time in Continuous Mode	_	0.2	_	15	ms	
TINACTIVE	Time Between Pulses in Continuous Mode	_	200	_	_	μs	
Output Voltage Discharge (OVD)							
Vovd/Vcv	Ratio of the OVD Trigger Voltage to CV Reference	When the output voltage is	_	102	_	%	
Tovd	Average OVD Current	switched down	_	70	_	mA	
tovo	OVD Discharge Time		96	120	144	ms	

Operation Principle Description

Constant Voltage Operation

The output voltage is sensed on the VCTRL pin via resistor divider R1/R2 (See Page 2), and compared with the CV operational amplifier's reference voltage for constant voltage regulation to generate a CV compensation signal on the Vout pin. Via an opto-coupler, the compensation signal is transferred to the Diodes Incorporated's primary controller to control duty cycle. Given that the AP43331N is integrated with output cable voltage compensation function, the output voltage can be calculated as follows:

$$V_o = V_{REF_CV} \times \frac{R1 + R2}{R1} + R_{CABLE} \times I_o$$

Where VREF_CV is CV operational amplifier reference voltage; R1/R2 is the output voltage divider resistor; RCABLE is the parameter for output cable voltage compensation; lo is the output current flowing through Rcss. The recommended resistance value is 6.81kΩ paralleled with 16.2kΩ for R1, and $43.2k\Omega$ for R2.

Constant Current Operation

The output current is sensed on Vsense pin via current sense resistor Rcss placed on the output ground return path. The sensed signal is amplified by the internal current sensing amplifier, then is compared with the CC operational amplifier's reference voltage for constant current regulation to generate a CC compensation signal on the VouT pin. Via an opto-coupler, the compensation signal is transferred to the Diodes Incorporated's primary-side controller to determine the duty cycle. The typical output constant current can be calculated as follows:

$$I_{o_CC} = \frac{V_{REF_CC}}{R_{CSS}}$$

Where VREF_CC is CC operational amplifier reference voltage; Rcss is output current sense resistance

Qualcomm QC3.0 Decoder

The AP43331N default output voltage and current limit is 5V. For the connected portable device compatible to QC3.0, the AP43331N will complete the handshake, and decode D+/D- signals to set the related VREF cv/VREF cc, and then provide the targeted output voltage and current limit. See Table1 below for the details (The AP43331N is only compatible with Class A):

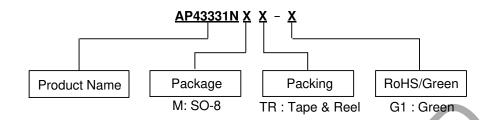
Decoder	V _{D+} (V)	V _{D-} (V)	HV DCP (Class A)	HV DCP (Class B)
	0.6	0.6	12V	20V
	3.3	0.6	9V	9V
	0.6	3.3	Continuous Mode	Continuous Mode
Qualcomm Quick Charge 3.0 Protocol	3.3	3.3	Previous Voltage	Previous Voltage
	3.3	GND	Previous Voltage	Previous Voltage
	0.6	GND	5V	5V
	GND	0.6 or 3.3 or GND	5V, Protocol Handshake Reset	5V, Protocol Handshake Reset

Table 1. D+/D- Voltage Qualcomm QC3.0 Decoder

Over Voltage Protection (OVP)

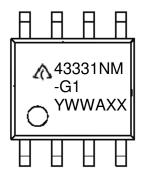
Output voltage is detected through the AP43331N Vcc pin for OVP monitor. Once output voltage rises to OVP enable voltage, the AP43331N will have OVP function triggered to generate the discharged current.

Under Voltage Protection (UVP)


The AP43331N will fully depend on the Diodes Incorporated's primary controller to take charge of UVP. The primary controller can detect output voltage via its Vcc winding's waveform to trigger primary UVP function once the output voltage drops below the UVP threshold voltage.

Over Voltage Discharge (OVD)

When the portable device requests a lower output voltage, the AP43331N will have over voltage discharge function work to accelerate output voltage decrease.

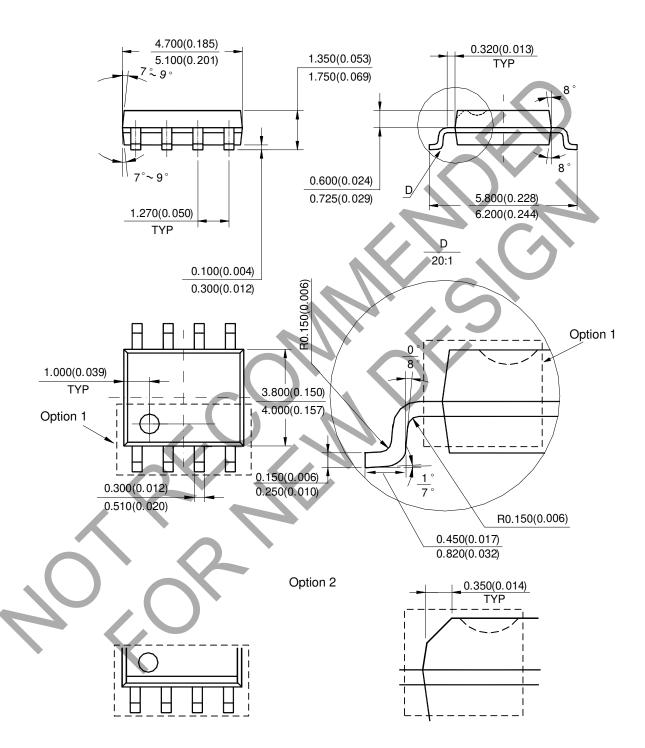

Ordering Information

Part Number	Package Temperature Range		Marking ID	Packing			
Part Number	Package	remperature name	mperature Range Marking ID		Carrier		
AP43331NMTR-G1	SO-8	-40 to +85°C	43331NM-G1	4000	Tape & Reel		

Marking Information

First and Second Lines: Logo and Marking ID Third Line: Date Code

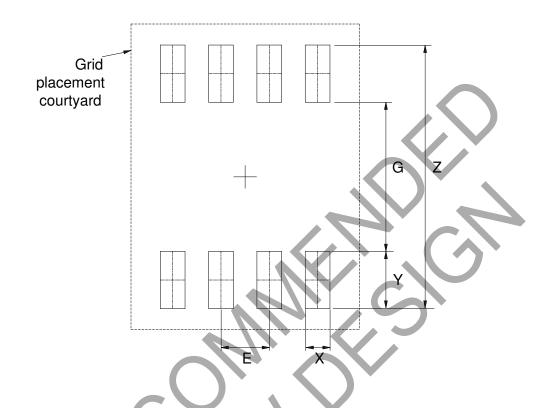
Y: Year


WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch No.

Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: SO-8


Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

 $Please see \ http://www.diodes.com/package-outlines.html \ for \ the \ latest \ version.$

(1) Package Type: SO-8

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

IMPORTANT NOTICE

- DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and
- Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-andconditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries. The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. © 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com

10 of 10 AP43331N www.diodes.com Document number: DS39263 Rev. 5 - 3