

Cree® P4 LED CP42B-RKS CP42B-AKS

PRODUCT DESCRIPTION

This revolutionary package design allows the lighting designer to reduce the number of LEDs required and provide a more uniform and unique illuminated appearance than with other LED solutions.

This is possible through the efficient optical-package design and high-current capabilities. The low-profile package can be easily coupled with reflectors or lenses to efficiently distribute light and provide the desired lit appearance. This product family employs green and blue LED materials, which allows designers to match the color of many lighting applications such as vehicle signal lamps and amusement lighting.

FEATURES

- Size (mm): 7.6 x 7.6
- Color and Typical Dominant Wavelength: Red (624nm) Amber(591nm)
- Luminous Flux (mlm)

CP42B-RKS:(4400-11000)

CP42B-AKS:(5500-13200)

- Lead Free
- RoHS Compliant

APPLICATIONS

- Channel Letter
- Amusement

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Items	Symbol	Absolute Maximum Rating	Unit	
		Red/Amber		
Forward Current	$I_{_{\rm F}}$	70 Note1	mA	
Peak Forward Current Note2	$I_{_{FP}}$	200	mA	
Reverse Voltage	V_R	5	V	
Power Dissipation	P_{D}	210	mW	
Operation Temperature	T_{opr}	-40 ~ +100	°C	
Storage Temperature	T_{stg}	-40 ~ +100	°C	
Lead Soldering Temperature	T_{sol}	Max. 260°C for 5 sec. max. (3 mm from the base of the epoxy bulb)		
Electrostatic Discharge Classification (MIL-STD-883E)	ESD	Class 2		

Note:

- 1. A heat sink is recommended if the device is operated at ambient temperatures higher than 25°C.
- 2. Pulse width ≤ 0.1 msec, duty $\leq 1/10$.

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

Characteristics	Color	Symbol	Condition	Unit	Minimum	Typical	Maximum
Forward Voltage	Red/Amber	$V_{_{\rm F}}$	$I_F = 70 \text{ mA}$	V		2.5	3.0
Reverse Current	Red/Amber	I_R	$V_R = 5 V$	μΑ			100
Dominant Wavelength	Red	$\lambda_{_{D}}$	$I_F = 70 \text{ mA}$	nm	618	624	630
	Amber	$\lambda_{_{D}}$	$I_F = 70 \text{ mA}$	nm	584	591	599
Luminous Flux	Red	$\Phi_{\rm v}$	$I_F = 70 \text{ mA}$	mlm	4400	6000	
Luminous Flux	Amber	$\Phi_{\rm v}$	$I_F = 70 \text{ mA}$	mlm	5500	7000	
50% Power Angle	Red/Amber	201/2	$I_F = 70 \text{ mA}$	deg		120	

FLUX BIN LIMIT ($I_F = 70 \text{ mA}$)

Red

Bin Code	Min.(mlm)	Max.(mlm)
L0	4400	5500
M0	5500	6600
N0	6600	8730
P0	8730	11000

Amber

Bin Code	Min.(mlm)	Max.(mlm)
M0	5500	6600
N0	6600	8730
P0	8730	11000
Q0	11000	13200

• Tolerance of measurement of luminous flux is ±15%

COLOR BIN LIMIT ($I_F = 70 \text{ mA}$)

Red

Bin Code	Min.(nm)	Max.(nm)
RA	618	630

Amber

Bin Code	Min.(nm)	Max.(nm)
A2	584	587
А3	587	590
A4	590	593
A5	593	596
A6	596	599

ullet Tolerance of measurement of dominant wavelength is $\pm 1~\text{nm}$

VF BIN LIMIT $(I_F = 70 \text{ mA})$

Red

Bin Code	Min. (V)	Max. (V)
23	2.0	2.2
24	2.2	2.4
25	2.4	2.6
26	2.6	2.8
27	2.8	3.0

Amber

Bin Code	Min. (V)	Max. (V)
23	2.0	2.2
24	2.2	2.4
25	2.4	2.6
26	2.6	2.8
27	2.8	3.0

• Tolerance of measurement of VF is ±0.05V.

ORDER CODE TABLE*

	Vi assisa a	Luminous Flux (mlm)		Dominant Wavelength				
Color	Kit Number	Viewing Angle	Min.	Max.	Color Bin	Min. (nm)	Color Bin	Max. (nm)
Red	CP42B-RKS-CL0P0AA4	120	4400	11000	RA	618	RA	630
Red	CP42B-RKS-CM0P0AA4	120	5500	11000	RA	618	RA	630

	Viewing	Luminous Flux (mlm)		Dominant Wavelength				
Color		Viewing Angle	Min.	Max.	Color Bin	Min. (nm)	Color Bin	Max. (nm)
Amber	CP42B-AKS-CM0Q0264	120	5500	13200	A2	584	A6	599
Amber	CP42B-AKS-CN0Q0354	120	6600	13200	А3	587	A5	596

Notes:

- The above kit numbers represent order codes which include multiple flux-bin and color-bin codes.
 Only one flux-bin code and one color-bin code will be shipped on each reel.
 And single flux-bin code, single color bin-codes will not be orderable.
- 2. Please refer to the "Cree LED Lamp Reliability Test Standards" document for reliability test conditions.
- 3. Please refer to the "Cree LED Lamp Soldering & Handling" document for information about how to use this LED product safely.

GRAPHS

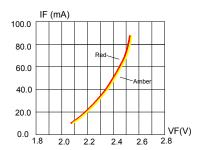


FIG.1 FORWARD CURRENT VS. FORWARD VOLTAGE.

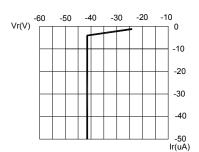


FIG.3 Red & Amber REVERSE CURRENT VS. REVERSE VOLTAGE.

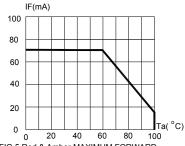


FIG.5 Red & Amber MAXIMUM FORWARD DC CURRENT VS AMBIENT TEMPERATURE (Tjmax=120°C)

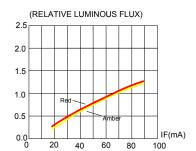


FIG.2 RELATIVE LUMINOUS FLUX VS. FORWARD CURRENT

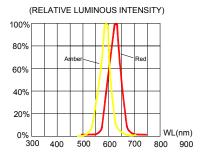
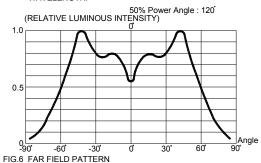
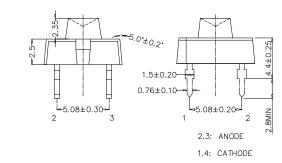
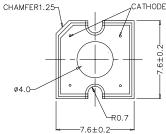



FIG.4 RELATIVE LUMINOUS INTENSITY VS. WAVELENGTH.

The above data are collected from statistical figures that do not necessarily correspond to the actual parameters of each single LED. Hence, these data will be changed without further notice.




MECHANICAL DIMENSIONS

All dimensions are in mm. Tolerance is ± 0.25 mm unless otherwise noted.

An epoxy meniscus extend about 1.5 mm down the leads.

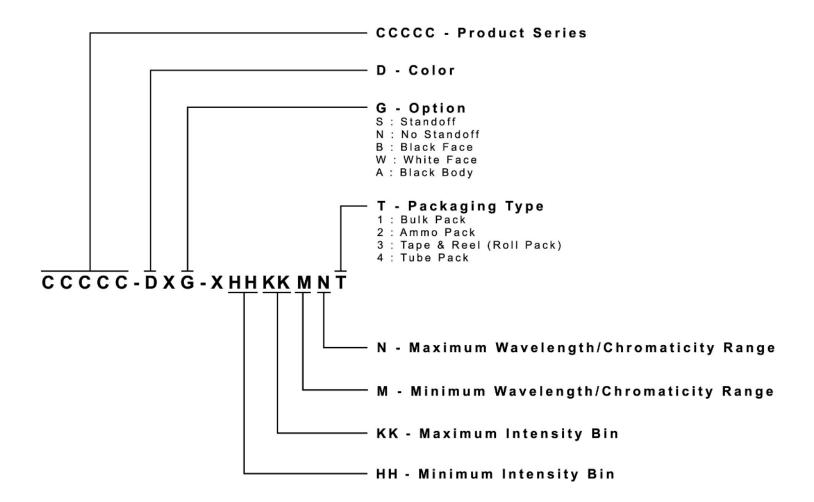
All metal burr dimension is 0.2 mm max.

NOTES

RoHS Compliance

The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.

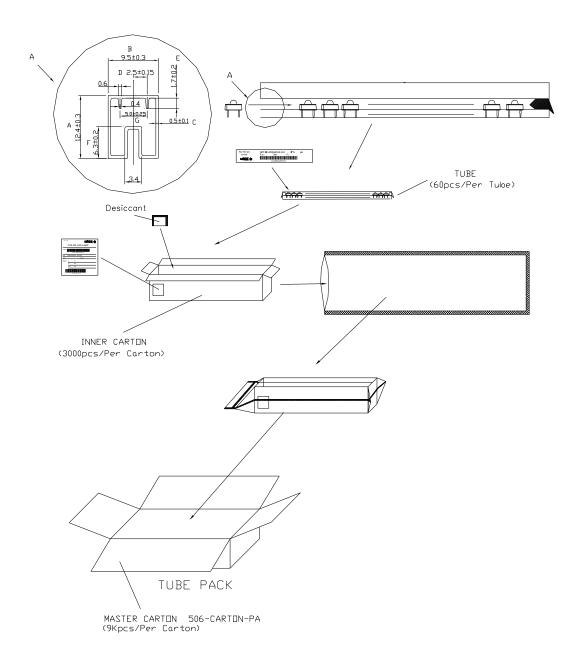
Vision Advisory Claim


Users should be cautioned not to stare at the light of this LED product. The bright light can damage the eye.

KIT NUMBER SYSTEM

All dimensions in mm.Cree LED lamps are tested and sorted into performance bins. A bin is specified by ranges of color, forward voltage, and brightness. Sorted LEDs are packaged for shipping in various convenient options. Please refer to the "Cree LED Lamp Packaging Standard" document for more information about shipping and packaging options.

Cree LEDs are sold by order codes in combinations of bins called kits. Order codes are configured in the following manner:



PACKAGING

Features:

- The LEDs are packed in cardboard boxes after packaging in normal or anti-electrostatic bags.
- Cardboard boxes will be used to protect the LEDs from mechanical shock during transportation.
- The boxes are not water resistant, and they must be kept away from water and moisture.
- The Tube Pack type of packaging.
- Max 60 pcs per tube.

