DELKIN DEVICES Utility SATA III mSATA Solid State Drive Engineering Specification

Document Number: 401-0452-00

Revision: D

© 2019 | Delkin Devices Inc.

Product Overview

- Capacity
 - 32GB up to 1TB
- SATA Interface
 - SATA Revision 3.2
 - SATA 1.5Gbps, 3Gbps, and 6Gbps interface
- Flash Interface
 - Flash type: 3D TLC
- Performance
 - Read: up to 550 MB/s
 - Write: up to 500 MB/s
- Power Consumption^{Note1}
 - Active mode: < 2,000mW
 - Idle mode: < 325mW

- MTBF
 - More than 2,000,000 hours
- Features
 - Static and Dynamic Wear Leveling
 - Bad Block Management
 - TRIM
 - SMART
 - Over-Provisioning
 - Firmware Update
- Low Power Management
 - DEVSLP Mode (Optional)
 - DIPM/HIPM Mode
- Temperature Range
 - Operation: -0°C ~ 70°C
 - Storage: -40°C ~ 85°C
- RoHS compliant

Notes:

1. Please see "4.2 Power Consumption" for details.

TABLE OF CONTENTS

UTILITY						
SOLID STATE DRIVE1						
ENG	GINEERING SPECIFICATION1					
1.	INTRODUCTION5					
	1.1. General Description5					
	1.2. Product Block Diagram5					
	1.3. Flash Management5					
	1.3.1. Error Correction Code (ECC)					
	1.3.2. Wear Leveling5					
	1.3.3. Bad Block Management6					
	1.3.4. TRIM					
	1.3.5. SMART					
	1.3.6. Over-Provisioning					
	1.3.7. Firmware Upgrades7					
	1.4. Low Power Management7					
	1.4.1. DEVSLP Mode (Optional)7					
	1.4.2. DIPM/HIPM Mode7					
	1.5. Power Loss Protection: Flushing Mechanism7					
	1.6. Advanced Device Security Features					
	1.6.1. Secure Erase8					
	1.6.2. Write Protect					
	1.7. SSD Lifetime Management8					
	1.7.1. Terabytes Written (TBW)8					
	1.7.2. Thermal Monitor (Optional)9					
	1.8. An Adaptive Approach to Performance Tuning9					
	1.8.1. Throughput9					
	1.8.2. Predict & Fetch9					
2.	PRODUCT SPECIFICATIONS10					
3.	ENVIRONMENTAL SPECIFICATIONS12					
	3.1. Environmental Conditions12					
	3.1.1. Temperature and Humidity12					
	3.1.2. Shock & Vibration12					
	3.1.3. Electrostatic Discharge (ESD)12					
	3.1.4. EMI Compliance12					

	3.2.	MTBF	12
	3.3.	Certification & Compliance	13
4.	EL	ECTRICAL SPECIFICATIONS	13
	4.1.	Supply Voltage	13
	4.2.	Power Consumption	13
5.	IN [.]	TERFACE	14
	5.1.	Pin Assignment and Descriptions	14
6.	SL	JPPORTED COMMANDS	16
	6.1.	ATA Command List	16
	6.2.	Identify Device Data	18
7.	PH	IYSICAL DIMENSIONS	22

LIST OF FIGURES

Figure 1-2	mSATA SSD Product Block Diagram

LIST OF TABLES

Table 4-1 Supply Voltage	13
Table 4-2 Power Consumption	13
Table 5-1 Pin Assignment and Description for mSATA	14
Table 6-1 ATA Command List	16
Table 6-2 List of Device Identification	18
Table 6-3 List of Device Identification for Each Capacity	21

1. INTRODUCTION

1.1. General Description

Delkin's Utility mSATA Solid State Drive (SSD) delivers all the advantages of flash disk technology with Serial ATA I/II/III interface and is fully compliant with the JEDEC MO-300B form factor standard. The mSATA draws significantly lower power compared to traditional hard drives. The drive is available in capacities from 32GB to 1TB and can reach speeds up to 550MB/s read as well as 500MB/s write (measured by CrystalDiskMark v5.0).

1.2. Product Block Diagram

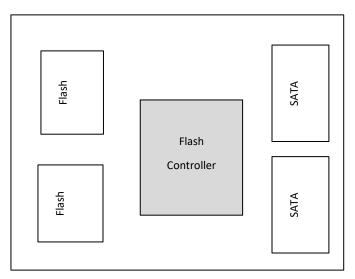


Figure 1-1 mSATA SSD Product Block Diagram

1.3. Flash Management

1.3.1. Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, Delkin's Utility mSATA SSD applies the LDPC (Low Density Parity Check) algorithm, which can detect and correct errors occur during read process, ensure data been read correctly, as well as protect data from corruption.

1.3.2. Wear Leveling

NAND flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some areas are updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling is applied to extend the © 2019 | Delkin Devices Inc. 5 lifespan of NAND flash by evenly distributing write and erase cycles across the media.

Delkin utilizes advanced Wear Leveling algorithms, which can efficiently distribute flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND flash is greatly improved.

1.3.3. Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during usage of the flash are named "Later Bad Blocks". Delkin implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves data reliability.

1.3.4. TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid-state drives (SSD). Unlike hard disk drives (HDD), SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD which blocks of data are no longer in use and can be removed permanently. Thus, the SSD will perform an erase action, which prevents unused data from occupying blocks.

1.3.5. SMART

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is an open standard that allows a drive to automatically detect its health and report potential failures. When a failure is recorded by SMART, users can choose to replace the drive to prevent unexpected outage or data loss. Moreover, SMART can inform users of impending failures while there is still time to perform proactive actions, such as copy data to another device.

1.3.6. Over-Provisioning

Over Provisioning refers to the inclusion of extra NAND capacity in a SSD, which is not visible or usable by users. With Over Provisioning, the performance and IOPS (Input/Output Operations per Second) are improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

1.3.7. Firmware Upgrades

Firmware can be considered as a set of instructions on how the device communicates with the host. Firmware can be upgraded when new features are added, compatibility issues are fixed, or read/write performance gets improved, as controlled by the user.

1.4. Low Power Management

1.4.1. DEVSLP Mode (Optional)

With the increasing need of aggressive power/battery life, SATA interfaces include a new feature, Device Sleep (DEVSLP) mode, which helps further reduce the power consumption of the device. DEVSLP enables the device to completely power down the device PHY and other sub-systems, making the device reach a new level of lower power operation. The DEVSLP does not specify the exact power level a device can achieve in the DEVSLP mode, but the power usage can be dropped down to 5mW or less.

1.4.2. DIPM/HIPM Mode

SATA interfaces contain two low power management states for power saving: Partial and Slumber modes. In Partial mode, the device must resume full operation within 10 microseconds, whereas in Slumber mode, the device has 10 milliseconds to become fully operational. SATA interfaces allow low power modes to be initiated by Host (HIPM, Host Initiated Power Management) or Device (DIPM, Device Initiated Power Management). As for HIPM, Partial or Slumber mode can be invoked directly by the software. For DIPM, the device will send requests to enter Partial or Slumber mode.

1.5. Power Loss Protection: Flushing Mechanism

Power Loss Protection is a mechanism to prevent data loss during unexpected power failures. DRAM is volatile memory and frequently used as temporary cache or buffer between the controller and the NAND flash to improve SSD performance. However, one major concern of the DRAM is that data could be lost in the event of a power failure. Accordingly, the Delkin SATA controller applies the *GuaranteedFlush* technology, which requests the controller to transfer data to the cache. Only when the data is fully committed to the NAND flash will the controller send acknowledgement (ACK) to the host. Such implementation can prevent false-positive performance and the risk of power cycling issues.

Additionally, it is critical for a controller to shorten the time the in-flight data stays in the cache. Thus, Delkin's controller applies an algorithm to reduce the amount of data residing in the cache to provide better performance. This *SmartCacheFlush* technology allows incoming data to have only a brief "pit stop" in the cache and then move straight to the NAND flash. If the flash is jammed due to particular file sizes (such as random 4KB data), the cache will be treated as an "organizer", consolidating incoming data into groups before written into the flash to improve write amplification. In summary, with this advanced Flush Mechanism, Delkin's controller provides the reliability and data protection required by today's applications and hosts.

1.6. Advanced Device Security Features

1.6.1. Secure Erase

Secure Erase is a standard ATA command and will write "0xFF" to all cells, to fully wipe all the data on hard drives and SSDs. When this command is issued, the SSD controller will erase its storage blocks and return to its factory default settings.

1.6.2. Write Protect

When a SSD contains too many bad blocks and data is continuously written in, then the SSD may no longer be usable. Thus, Write Protect is a mechanism to prevent data from being written in and protect the accuracy of data that are already stored in the SSD.

1.7. SSD Lifetime Management

1.7.1. Terabytes Written (TBW)

TBW (Terabytes Written) is a measurement of SSDs' expected lifespan, which represents the amount of data written to the device. To calculate the TBW of a SSD, the following equation is applied:

TBW = [(NAND Endurance) x (SSD Capacity) x (WLE)] / WAF

<u>NAND Endurance</u>: NAND endurance refers to the P/E (Program/Erase) cycle of a NAND flash. <u>SSD Capacity</u>: The SSD capacity is the specific capacity in total of a SSD.

<u>WLE</u>: Wear Leveling Efficiency (WLE) represents the ratio of the average amount of erases on all the blocks to the erases on any block at maximum.

<u>WAF</u>: Write Amplification Factor (WAF) is a numerical value representing the ratio between the amount of data that a SSD controller needs to write and the amount of data that the host's flash controller writes. A better WAF, which is near 1, guarantees better endurance and lower frequency

of data written to flash memory.

© 2019 | Delkin Devices Inc.

1.7.2. Thermal Monitor (Optional)

Thermal monitors are devices for measuring temperature, and can be found in SSDs in order to issue warnings when SSDs go beyond a certain temperature. The higher the temperature the thermal monitor detects, the more power the SSD consumes, causing the SSD to age quickly. Therefore, the processing speed of the SSD will be under control to prevent the temperature from exceeding a certain range.

1.8. An Adaptive Approach to Performance Tuning

1.8.1. Throughput

Based on the available space of the disk, Delkin SSD controller will regulate the read/write speed and manage the throughput performance. When significant free space remains, the firmware will continuously perform read/write activity. At this stage, there is still no need to implement garbage collection to allocate and release memory, which will accelerate read/write processing to improve the performance. However, when free space is used up, the controller will slow down the read/write processing, and implement garbage collection to release memory blocks. Hence, read/write performance will become slower.

1.8.2. Predict & Fetch

Normally, when the host tries to read data from the SSD, the SSD will only perform one read action after receiving one command. However, Delkin's controller applies *Predict & Fetch* to improve the read speed. When the host issues sequential read commands to the SSD, the SSD will automatically expect that the following will also be read commands. Thus, before receiving the next command, flash has already prepared the data. Accordingly, this accelerates the data processing time, and the host does not need to wait as long to receive data.

2. PRODUCT SPECIFICATIONS

- Capacity
 - From 32GB up to 1TB

• Electrical/Physical Interface

- SATA Interface
 - Compliant with SATA Revision 3.2
 - Compatible with SATA 1.5Gbps, 3Gbps and 6Gbps interface
 - Supports power management
 - Supports expanded register for SATA protocol 48 bit addressing mode

ECC Scheme

mSATA applies the LDPC (Low Density Parity Check) ECC algorithm.

• Supports SMART and TRIM commands

• Performance and Power Consumption

	Performance		Power Consumption			
Capacity	CrystalDiskMark		Read	Write	IDLE	
	Read (MB/s)	Write (MB/s)	(mW)	(mW)	(mW)	
32GB	300	125	950	850	300	
64GB	550	255	1,215	1,020	300	
128GB	550	275	1,250	1,210	315	
256GB	550	490	1,350	1,400	300	
512GB	550	490	1,360	1,450	320	
1TB	550	500	1,575	1,620	325	

NOTE:

For more details on Power Consumption, please refer to Chapter 4.2.

• Endurance - TBW (Terabytes Written)

Capacity	твw
32GB	17
64GB	42
128GB	75
256GB	180
512GB	425
1TB	835

NOTES:

Many factors affect drive endurance / TBW, including flash configuration, SDR configuration, host platform, usage model, write amplification factor, etc. The figures above are estimates based on the JEDEC JESD219A Client Workload model and are not guaranteed.

• Part Numbers

3D TLC mSATA (0 to 70°C Operating Temperature)

Capacity	Part Number			
32GB	MD32FNUFC-3N000-2			
64GB	MD64FNUFC-3N000-2			
128GB	MD1HFNWFC-3N000-2			
256GB	MD2HFLGFC-3N000-2			
512GB	MD5HFLGFC-3N000-2			
1TB	MD1TFNXFC-3N000-2			

3. ENVIRONMENTAL SPECIFICATIONS

3.1. Environmental Conditions

3.1.1. Temperature and Humidity

- Temperature:
 - Storage: -40°C to 85°C
 - Operational: 0°C to 70°C
- Humidity:
 - ◆ RH 90% under 40°C (operational)

3.1.2. Shock & Vibration

- Shock Specification
 - ◆ 1500G, 0.5ms duration
- Vibration Specification
 - 20Hz ~80Hz/1.52mm displacement, 80Hz~2000Hz / 20G Acceleration, 3 axes

3.1.3. Electrostatic Discharge (ESD)

• +/- 4KV contact

3.1.4. EMI Compliance

- FCC: CISPR22
- CE: EN55022
- BSMI 13438

3.2. MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The measure is typically in units of hours. The higher the MTBF value, the higher the reliability of the device. The predicted result of Delkin's mSATA SSD is more than 2,000,000 hours.

3.3. Certification & Compliance

- RoHS
- SATA III (SATA Rev. 3.2)
- Up to ATA/ATAPI-8 (Including S.M.A.R.T)

4. ELECTRICAL SPECIFICATIONS

4.1. Supply Voltage

Table 4-1 Supply Voltage

Parameter	Rating
Operating Voltage	3.3V

4.2. Power Consumption

Capacity	Read	Write	Partial	Slumber	ldle
32GB	950	850	15	10	300
64GB	1,215	1,020	15	10	300
128GB	1,250	1,210	20	12	315
256GB	1,350	1,400	15	10	300
512GB	1,360	1,450	22	16	320
1TB	1,575	1,620	22	15	325

 Table 4-2 Power Consumption

Unit: mW

NOTES:

- 1. The average value of power consumption is achieved based on 100% conversion efficiency.
- 2. The measured input power voltage is 3.3V.
- 3. Sequential R/W is measured while testing 4000MB sequential R/W 5 times by CrystalDiskMark. DEVSLP is measured while entering device sleep mode for 5 minutes.
- 4. Power Consumption may differ according to flash configuration and host platform.

5. INTERFACE

5.1. Pin Assignment and Descriptions

Table 5-1 Pin Assignment and Description for mSATA						
Pin Number	mSATA Pin	Description				
1	NC	No Connect				
2	+3.3V	3.3V Source				
3	NC	No Connect				
4	DGND	Digital GND				
5	NC	No Connect				
6	NC	No Connect				
7	NC	No Connect				
8	NC	No Connect				
9	DGND	Digital GND				
10	NC	No Connect				
11	NC	No Connect				
12	NC	No Connect				
13	NC	No Connect				
14	NC	No Connect				
15	DGND	Digital GND				
16	NC	No Connect				
17	NC	No Connect				
18	DGND	Digital GND				
19	NC	No Connect				
20	NC	No Connect				
21	SATA GND	SATA Ground Return Pin				
22	NC	No Connect				
23	TXP (out)	Host Receiver Differential Signal Pair				
24	+3.3V	3.3V Source				
25	TXN (out)	Host Receiver Differential Signal Pair				
26	SATA GND	SATA Ground Return Pin				
27	SATA GND	SATA Ground Return Pin				
28	NC	No Connect				
29	SATA GND	SATA Ground Return Pin				
30	NC	No Connect				
31	RXN (in)	Host Transmitter Differential Signal Pair				
32 NC No Connect						

 Table 5-1 Pin Assignment and Description for mSATA

© 2019 | Delkin Devices Inc.

	1	
33	RXP (in)	Host Transmitter Differential Signal Pair
34	DGND	Digital GND
35	SATA GND	SATA Ground Return Pin
36	NC	No Connect
37	SATA GND	SATA Ground Return Pin
38	NC	No Connect
39	+3.3V	3.3V Source
40	DGND	Digital GND
41	+3.3V	3.3V Source
42	NC	No Connect
43	NC	No Connect
44	DEVSLP	Enter/Exit DevSleep
45	NC	Reserved Pin
46	NC	No Connect
47	NC	Reserved Pin
48	NC	No Connect
49	DAS	Device Activity Signal
50	DGND	Digital GND
51	GND	Default Connect to GND
52	+3.3V	3.3V Source

6. SUPPORTED COMMANDS

6.1. ATA Command List

Op Code	Description	Op Code		de	Description
00h	NOP	C9h			Read DMA without Retry
06h	Data Set Management	CAh			Write DMA
10h-1Fh	Recalibrate		CBh		Write DMA without Retry
20h	Read Sectors		CEh		Write Multiple FUA EXT
21h	Read Sectors without Retry		E0h		Standby Immediate
24h	Read Sectors EXT		E1h		Idle Immediate
25h	Read DMA EXT		E2h		Standby
27h	Read Native Max Address EXT		E3h		Idle
29h	Read Multiple EXT		E4h		Read Buffer
2Fh	Read Log EXT		E5h		Check Power Mode
30h	Write Sectors		E6h		Sleep
31h	Write Sectors without Retry		E7h		Flush Cache
34h	Write Sectors EXT		E8h		Write Buffer
35h	Write DMA EXT		E9h		READ BUFFER DMA
37h	Set Native Max Address EXT		EAh		Flush Cache EXT
38h	CFA WRITE SECTORS WITHOUT		EBh		Write Buffer DMA
	ERASE				
39h	Write Multiple EXT	ECh			Identity Device
3Dh	Write DMA FUA EXT		EFh		Set Features
3Fh	Write Long EXT	EFh	0	2h	Enable volatile write cache
40h	Read Verify Sectors	EFh	0	3h	Set Transfer mode
41h	Read Verify Sectors without Retry	EFh	0	5h	Enable the APM feature set
42h	Read Verify Sectors EXT	EFh	1	0h	Enable use of SATA features
7211					set
44h	Zero EXT	EFh	10h	02h	Enable DMA Setup FIS Auto-
		L I II	1011	0211	Activate optimization
					Enable Device-initiated
45h	WRITE UNCORRECTABLE EXT	EFh	10h	n 03h	interface power state (DIPM)
					transitions
47h	Red Log DMA EXT	EFh	10h	n 06h	Enable Software Settings
					Preservation (SSP)
57h	Write Log DMA EXT	EFh	10h	h 07h	Enable Device Automatic
					Partial to Slumber transitions

Table 6-1 ATA Command List

60h		Read FPDMA Queued	EFh	10h 09h		Enable Device Sleep	
6′	lh	Write FPDMA Queued	EFh	55	ōh	Disable read look-ahead	
70h-	-7Fh	Seek	EFh	66h		Disable reverting to power-on defaults	
90h		Execute Device Diagnostic	EFh	82h		Disable volatile write cache	
91h		Initialize Device Parameters	EFh	85h		Disable the APM feature set	
92h		Download Microcode	EFh	90h		Disable use of SATA feature set	
93	3h	DOWNLOAD MICROCODE DMA	EFh	90h 02h		Disable DMA Setup FIS Auto- Activate optimization	
B	Dh	SMART	EFh	90h	03h	Disable Device-initiated interface power state (DIPM) transitions	
B0h	D0h	SMART READ DATA	EFh	90h	06h	Disable Software Settings Preservation (SSP)	
B0h	D1h	SMART READ ATTRIBUTE THRESHOLDS	EFh	90h	07h	Disable Device Automatic Partial to Slumber transitions	
B0h	D2h	SMART ENABLE/DISABILE ATTRIBUTE AUTOSAVE	EFh	90h	09h	Disable Device Sleep	
B0h	D3h	SMART SAVE ATTRIBUTE VALUES	EFh	AAh		Enable read look-ahead	
B0h	D4h	SMART EXECUTE OFF-LINE	EFh	CCh		Enable reverting to power-on defaults	
B0h	D5h	SMART READ LOG		F1h		Security Set Password	
B0h	D6h	SMART WRITE LOG		F2h		Security Unlock	
B0h	D8h	SMART ENABLE OPERATIONS		F3h		Security Erase Prepare	
B0h	D9h	SMART DISABLE OPERATIONS		F4h		Security Erase Unit	
B0h	DAh	SMART RETURN STATUS		F5h		Security Freeze Lock	
B0h	DBh	SMART ENABLE/DISABILE AUTOMATIC OFF-LINE	F6h			Security Disable Password	
B	1h	Device Configuration		F8h		Read Native Max Address	
B	4h	Sanitize		F9h		Set Max Address	
C	4h	Read Multiple	F9h	F9h 01h		SET MAX SET PASSWORD	
C	5h	Write Multiple	F9h	F9h 02h		SET MAXLOCK	
C6h		Set Multiple Mode	F9h	03h		SET MAX UNLOCK	
C	3h	Read DMA	F9h	h 04h S		SET MAX FREEZE LOCIK	

6.2. Identify Device Data

The following table details the sector data returned by the IDENTIFY DEVICE command.

	F: Fixed				
Word	V: Variable	Default Value	Description		
	X: Both				
0	F	0040h	General configuration bit-significant information		
1	X	*1	Obsolete – Number of logical cylinders		
2	V	C837h	Specific configuration		
3	X	0010h	Obsolete – Number of logical heads (16)		
4-5	X	00000000h	Retired		
6	X	003Fh	Obsolete – Number of logical sectors per logical track (63)		
7-8	V	00000000h	Reserved for assignment by the Compact Flash Association		
9	X	0000h	Retired		
10-19	F	Varies	Serial number (20 ASCII characters)		
20-21	X	0000h	Retired		
22	X	0000h	Obsolete		
23-26	F	Varies	Firmware revision (8 ASCII characters)		
27-46	F	Varies	Model number		
47	F	8010h	7:0- Maximum number of sectors transferred per interrupt on		
			MULTIPLE commands		
48	F	4000h	Trusted Computing feature set options (not support)		
49	F	2F00h	Capabilities		
50	F	4000h	Capabilities		
51-52	X	000000000h	Obsolete		
53	F	0007h	Words 88 and 70:64 valid		
54	X	*1	Obsolete – Number of logical cylinders		
55	X	0010h	Obsolete – Number of logical heads (16)		
56	X	003Fh	Obsolete – Number of logical sectors per track (63)		
57-58	X	*2	Obsolete – Current capacity in sectors		
59	F	0110h	Number of sectors transferred per interrupt on MULTIPLE		
			commands		
60-61	F	*3	Maximum number of sector (28bit LBA mode)		
62	Х	0000h	Obsolete		
63	F	0407h	Multi-word DMA modes supported/selected		
64	F	0003h	PIO modes supported		
65	F	0078h	Minimum Multiword DMA transfer cycle time per word		

Word	F: Fixed V: Variable X: Both	Default Value	Description		
66	F	0078h	Manufacturer's recommended Multiword DMA transfer cycle		
			time		
67	F	0078h	Minimum PIO transfer cycle time without flow control		
68	F	0078h	Minimum PIO transfer cycle time with IORDY flow control		
69	F	0100h	Additional Supported (support download microcode DMA)		
70	F	0000h	Reserved		
71-74	F	00000000000000000h	Reserved for the IDENTIFY PACKET DEVICE command		
75	F	001Fh	Queue depth		
76	F	670eh	Serial SATA capabilities		
77	F	0084h	Serial ATA Additional Capabilities		
78	F	014Ch	Serial ATA features supported		
79	V	0040h	Serial ATA features enabled		
80	F	07F8h	Major Version Number		
81	F	0000h	Minor Version Number		
82	F	346bh	Command set supported		
83	F	7d09h	Command set supported		
84	F	6063h	Command set/feature supported extension		
85	V	3469h	Command set/feature enabled		
86	V	bc01h	Command set/feature enabled		
87	V	6063h	Command set/feature default		
88	V	003Fh	Ultra DMA Modes		
89	F	0001h	Time required for security erase unit completion		
90	F	001Eh	Time required for Enhanced security erase completion		
91	V	0000h	Current advanced power management value		
92	V	FFFEh	Master Password Revision Code		
93	F	0000h	Hardware reset result. For SATA devices, word 93 shall be		
			set to the value 0000h.		
94	V	0000h	Obsolete		
95	F	0000h	Stream Minimum Request Size		
96	V	0000h	Streaming Transfer Time – DMA		
97	V	0000h	Streaming Access Latency – DMA and PIO		
98-99	F	0000h	Streaming Performance Granularity		
100-103	V	*4	Maximum user LBA for 48 bit Address feature set		
104	V	0000h	Streaming Transfer Time – PIO		

Word	F: Fixed V: Variable X: Both	Default Value	Description	
105	F	0008h	Maximum number of 512-byte blocks per DATA SET	
			MANAGEMENT command	
106	F	4000h	Physical sector size/Logical sector size	
107	F	0000h	Inter-seek delay for ISO-7779 acoustic testing in	
			microseconds	
108-111	F	00000000000000000h	Unique ID	
112-115	F	00000000000000000h	Reserved	
116	V	0000h	Reserved	
117-118	F	00000000h	Words per logical Sector	
119	F	4014h	Supported settings	
120	F	4014h	Command set/Feature Enabled/Supported	
121-126	F	0h	Reserved	
127	F	0000h	Removable Media Status Notification feature set support	
128	V	0021h	Security status	
129-140	Х	Varies	Vendor specific	
141	Х	Varies	Vendor specific	
142-159	Х	Varies	Vendor specific	
160	F	0000h	Compact Flash Association (CFA) power mode 1	
161-167	Х	0h	Reserved for assignment by the CFA	
168	F	Varies	Device Nominal Form Factor	
169	F	0001h	DATA SET MANAGEMENT command is supported	
170-173	F	0000000000000000	Additional Product Identifier	
		0h		
174-175	Х	0000000h	Reserved	
176-205	F	0h	Current media serial number	
206	F	0000h	SCT Command Transport	
207-208	Х	0000000h	Reserved	
209	F	4000h	Alignment of logical blocks within a physical block	
210-211	F	0000000h	Write-Read-Verify Sector Count Mode 3 (not supported)	
212-213	F	0000000h	Write-Read-Verify Sector Count Mode 2 (not supported)	
214-216		00h	NV Cache relate (not supported)	
217	F	0001h	Non-rotating media device	
218	F	0000h	Reserved	
219	F	0000h	NV Cache relate (not supported)	
220	V	0000h	Write read verify feature set current mode	

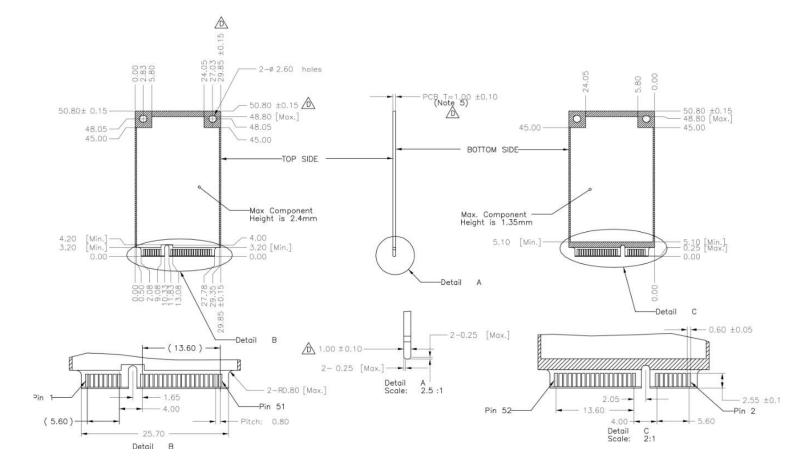

Word	F: Fixed V: Variable X: Both	Default Value	Description
221	Х	0000h	Reserved
222	F	107Fh	Transport major version number
223	F	0000h	Transport minor version number
224-229	Х	0h	reserved
230-233	F	000000000000000000h	Extend number of user addressable sectors
234	F	0001h	Minimum number of 512-byte data blocks per DOWNLOAD MICROCODE command for mode 03h
235	F	0080h	Maximum number of 512-byte data blocks per DOWNLOAD MICROCODE command for mode 03h
236-254	Х	0h	Reserved
255	F	XXA5h XX is variable	Integrity word (Checksum and Signature)

Table 6-3 List of Device Identification for Each Capacity

Capacity	*1	*2	*3	*4
(GB)	(Word 1/Word 54)	(Word 57 - 58)	(Word 60 - 61)	(Word 100 - 103)
32	3FFFh	FBFC10h	3BA2EB0h	3BA2EB0h
64	3FFFh	FBFC10h	7740AB0h	7740AB0h
128	3FFFh	FBFC10h	EE7C2B0h	EE7C2B0h
256	3FFFh	FBFC10h	FFFFFFh	1DCF32B0h
512	3FFFh	FBFC10h	FFFFFFh	3B9E12B0h
1024	3FFFh	FBFC10h	FFFFFFh	773BD2B0h

7. PHYSICAL DIMENSIONS

