

#### **EVALSTDRV600HB8**

### Demonstration board kit for L638xE and L639x high voltage gate

**Data brief** 



#### **Features**

- · Half-bridge configuration
- High voltage rail up to 600 V
- Includes samples of each compatible gate driver in SO8 package
  - L6385E, L6387E, L6388E, L6389E,
  - L6395, L6398, L6399
- Compatible with MOSFETs/IGBTs in
  - DPAK, D2PAK, TO-220, TO-220FP
- dV/dt transient immunity ± 50 V/ns in full temperature range
- · Integrated bootstrap diode
- Dedicated high- and low-side driving inputs
- Compact and simplified layout
- Gate drivers in the kit features different functionalities and characteristics
  - UVLO on both high-side and low-side
  - Internal deadtime, or no deadtime
  - Interlocking for anti cross-conduction protection
  - Ability to drive asymmetrical half-bridges and switched reluctance motors
  - Active high or active low LIN for single input gate driving

#### **Description**

The L638xE and L639x are high voltage devices manufactured with the BCD™ "offline" technology. They are single chip half-bridge gate drivers for N-channel power MOSFET or IGBT.

The high-side (floating) section is designed to stand a voltage rail up to 600 V. The logic inputs are CMOS/TTL compatible down to 3.3 V for the easy interfacing microcontroller and up to 15 V for Hall-effect interfaces.

The integrated bootstrap diode allows a more compact and cost-effective design, but the use of the external diode is still possible in case of specific requirements.

The EVALSTDRV600HB8 contains 2 samples in the SO8 package for each of the compatible gate drivers, and allows evaluating all of the gate drivers features and functionalities while driving a half-bridge power stage based on N-channel MOSFETs or IGBTs in several different packages and with voltage rating up to 600 V.

Essential passive components such as the filtering and bootstrap capacitor are already mounted on the PCB, while the gate driving network shall be populated depending on the selected power switch.

Passive components footprints are compatible with both SMT and T.H. components, so they allow a fast and easy configuration and modification.

Supported devices EVALSTDRV600HB8

## 1 Supported devices

The EVALSTDRV600HB8 board supports several high voltage high- and low-side driver devices all in the SO8 package.

Table 1. Supported devices and characteristics

| Part<br>name          | Max. supply voltage | Current<br>capability<br>sink/source | 3.3 V compatible inputs | UVLO on<br>V <sub>CC</sub> | UVLO on<br>V <sub>BO</sub> | Deadtime | Interlocking |
|-----------------------|---------------------|--------------------------------------|-------------------------|----------------------------|----------------------------|----------|--------------|
| L6385ED               | 17 V                | 650 mA<br>400 mA                     | NO                      | ON 9.6 V<br>OFF 8.3 V      | ON 9.5 V<br>OFF 8.2 V      | NO       | NO           |
| L6387ED               | 17 V                | 650 mA<br>400 mA                     | NO                      | ON 6.0 V<br>OFF 5.5 V      | NO                         | NO       | YES          |
| L6388ED               | 17 V                | 650 mA<br>400 mA                     | YES                     | ON 9.6 V<br>OFF 8.3 V      | ON 9.5 V<br>OFF 8.2 V      | 320 ns   | YES          |
| L6389ED               | 17 V                | 650 mA<br>400 mA                     | YES                     | ON 9.6 V<br>OFF 8.3 V      | ON 9.5 V<br>OFF 8.2 V      | 470 ns   | YES          |
| L6395D                | 20 V                | 430 mA<br>290 mA                     | YES                     | ON 9.5 V<br>OFF 8.8 V      | ON 8.6 V<br>OFF 8.0 V      | NO       | NO           |
| L6398D <sup>(1)</sup> | 20 V                | 430 mA<br>290 mA                     | YES                     | ON 9.5 V<br>OFF 8.0 V      | ON 9.0 V<br>OFF 8.0 V      | 320 ns   | YES          |
| L6399D                | 20 V                | 430 mA<br>290 mA                     | YES                     | ON 9.5 V<br>OFF 8.0 V      | ON 9.0 V<br>OFF 8.0 V      | 320 ns   | YES          |

<sup>1.</sup> LIN input active low, allows single input driving configuration.

EVALSTDRV600HB8 Schematic diagram

## 2 Schematic diagram

å ∑ ∑  $\stackrel{\text{Q}}{\text{N}}$ 2 \<u>\{\</u> ⋛⊦ S S. Z. 2 × ∑. GH 1 GL 1 PUT STPS0540Z R2 N.M. Σ. Z R4 N.M. §33 C2 220 nF TP1 B00T OUT D3 N.M. L638xE / L639x 10 \OD GND Z T Z TP2 GND N | Z 꼰 C8 220 nF<sup>-</sup> 影 C9 10 μF 50 V C5 33 pF/25 V C6 33 pF/25 V Vcc 2 \O R13 1 장 R14 R6 JP1 OPEN ☐ PWM H 0000

Figure 1. EVALSTDRV600HB8 circuit schematic

Bill of material EVALSTDRV600HB8

### 3 Bill of material

Table 2. EVALSTDRV600HB8 - bill of material

| Part reference | Part value    | Part description                               |  |
|----------------|---------------|------------------------------------------------|--|
| C1 N.M.        |               | Electrolytic capacitor, D18, P7.62             |  |
| C2             | 220 nF / 50 V | Ceramic capacitor, SMT 0805 (or 2.5 x 7.5 P05) |  |
| C3, C4         | N.M.          | Ceramic capacitor, SMT 0805                    |  |
| C5, C6         | 33 pF / 25 V  | Ceramic capacitor, SMT 0603                    |  |
| C7             | N.M.          | Ceramic capacitor, SMT 1206                    |  |
| C8             | 220 nF / 50 V | Ceramic capacitor, SMT 0603                    |  |
| C9             | 10 μF / 50 V  | Electrolytic capacitor, D5, P2.5               |  |
| D1, D2         | STPS0540Z     | Schottky diode 40 V, 0.5 A, SOD-123            |  |
| D3             | N. M.         | DO41 or SMA                                    |  |
| J1             | MORSV350-4P   | PCB terminal block 3.50 mm, 4 POS              |  |
| J2             | STRIP254P-M-4 | Male pin strip 2.54 mm, 4 POS                  |  |
| J3             | MORSV508-3P   | PCB terminal block 5.08 mm, 3 POS              |  |
| Q1, Q2         | N. M.         | Power MOSFETs or IGBTs, DPAK, D2PAK, or TO220  |  |
| R1             | 10 Ω          | Resistor, SMT 0805                             |  |
| R2, R3, R4, R5 | N.M.          | Resistor, SMT 0805 or T.H. P10                 |  |
| R6             | 2 Ω           | Resistor, SMT 0603                             |  |
| R13, R14       | 1 kΩ          | Resistor, SMT 0603                             |  |
| TP1, TP2       | TPTH-RING-1MM | PCB test terminal 1 mm                         |  |
| U1             | N.M.          | 600 V high- and low-side gate driver, SO8      |  |

## 4 Layout and component placements

Figure 2. EVALSTDRV600HB8 - layout (top layer)

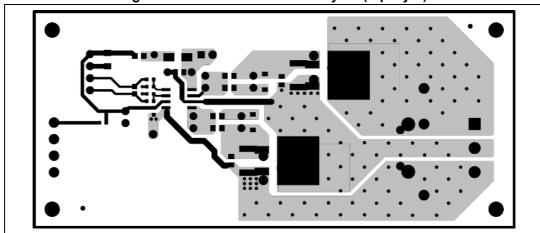



Figure 3. EVALSTDRV600HB8 - Layout (bottom layer)

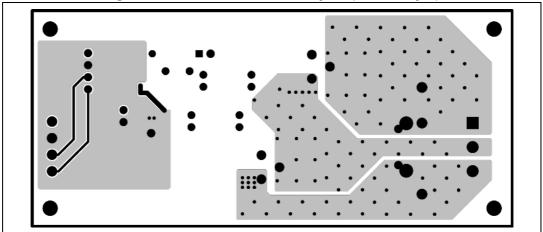
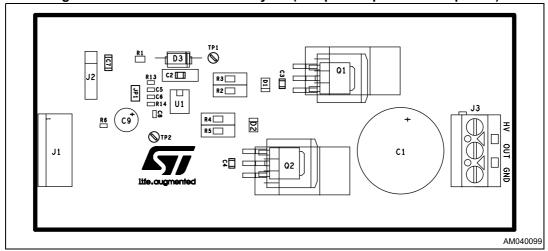




Figure 4. EVALSTDRV600HB8 - layout (component placement top view)





Revision history EVALSTDRV600HB8

# 5 Revision history

Table 3. Document revision history

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 28-Apr-2017 | 1        | Initial release. |

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

