

<IGBT Modules>

CM150RX-12A

HIGH POWER SWITCHING USE INSULATED TYPE

INSULATED TYPE	
Collector current I _c	. 150A
Collector current I _c Collector current I _c Collector-emitter voltage V _{CES} Maximum junction temperature T _{jmax} •Flat base Type •Copper base plate (non-plating) •RoHS Directive compliant	
Maximum junction temperature T _{jmax}	150°C
•Flat base Type	
•Copper base plate (non-plating)	
RoHS Directive compliant	
•Recognized under UL1557, File E323585	
sevenpack (3ø Inverter + Brake Chopper)	
APPLICATION	
AC Motor Control, Motion/Servo Control, etc.	
	Dimension in mm
	TERMINAL (3.81)
	1.15
	0.65
(7.75)- (7.75)- * 15- * 15- * 15- * 16- * 28- * 49.28 * 49.28 * 49.28 * 49.28 * 49.28 * 49.28 * 49.28 * 49.25 * 49.28 * 114.06	7.4)
110 ±0.5 99 4-¢5.5 MOUNTING HOLES(20.5)	t=0.8
	SECTION A
	↓ .
	12.5
	Ⅰ <u>↓</u> //.
12 17 6-M5 NUTS (SCREWING DEPTH) 13.5 20.71 22.86 22.86	
INTERNAL CONNECTION	
	herwise specified Dimension Tolerance
	to 3 ±0.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	to 6 ±0.3 to 30 ±0.5
EUP(33)	to 120 ±0.8
	to 400 ±1.2
$V(2)$ $W(3)$ $B(4)$ of \oplus	Ø0.5
N(36) EUN(29) EVP(21) EWN(13) EB(5)	

1

MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	600	V
V _{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V
Ic		DC, T _C =63 °C (Note2, 4)	150	
ICRM	Collector current	Pulse, Repetitive (Note3)	300	- A
Ptot	Total power dissipation	T _C =25 °C (Note2, 4)	520	W
IE (Note1)		DC (Note2)	150	
I _{ERM} (Note1)	Emitter current	Pulse, Repetitive (Note3)	300	A

BRAKE PART IGBT/DIODE

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	600	V
V _{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V
lc	Collector ourrent	DC, T _C =70 °C (Note2, 4)	75	•
I _{CRM}	Collector current	Pulse, Repetitive (Note3)	150	A
Ptot	Total power dissipation	T _C =25 °C (Note2, 4)	280	W
V _{RRM}	Repetitive peak reverse voltage	G-E short-circuited	600	V
I _F	Forward current	DC (Note2)	75	
I _{FRM}	Forward current	Pulse, Repetitive (Note3)	150	A

MODULE

Symbol	Item	Conditions	Rating	Unit
Visol	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	2500	V
Tj	Junction temperature	-	-40 ~ +150	°C
T _{stg}	Storage temperature	-	-40 ~ +125	C
T _{Cmax}	Maximum case temperature	(Note4)	125	°C

ELECTRICAL CHARACTERISTICS ($T_j=25$ °C, unless otherwise specified) INVERTER PART IGBT/DIODE

Currente e l	ltere	Conditions			Limits		المناسبة الم
Symbol Item Conditions		-	Min.	Тур.	Max.	Unit	
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		-	-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA
$V_{\text{GE(th)}}$	Gate-emitter threshold voltage	I _C =15 mA, V _{CE} =10 V		5	6	7	V
		I _C =150 A, V _{GE} =15 V ^(Note5)	T _j =25 °C	-	1.7	2.1	
V_{CEsat}	Collector-emitter saturation voltage	Refer to the figure of test circuit	T _j =125 °C	-	1.9	-	V
		I_{C} =150 A, V_{GE} =15 V, chip (Note5)		-	1.6	-	
Cies	Input capacitance			-	-	18	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited	-	-	-	2.0	nF
Cres	Reverse transfer capacitance		-	-	-	0.6	
Q_{G}	Gate charge	V _{CC} =300 V, I _C =150 A, V _{GE} =15 V		-	400	-	nC
t _{d(on)}	Turn-on delay time			-	-	120	
tr	Rise time	- V _{CC} =300 V, I _C =150 A, V _{GE} =±15 V,	-	-	-	100	
$t_{d(off)}$	Turn-off delay time		-	-	-	350	ns
t _f	Fall time	- R _G =6.2 Ω, Inductive load	-	-	-	600	1
r _g	Internal gate resistance	Per switch		-	0	-	Ω

ELECTRICAL CHARACTERISTICS (cont.; $T_j=25$ °C, unless otherwise specified) INVERTER PART IGBT/DIODE

Cumbal	ltom	Conditions		Limits			Link
Symbol Item		Conditions		Min.	Тур.	Max.	Unit
		I _E =150 A, G-E short-circuited ^(Note5)	T _j =25 °C	-	2.0	2.8	
V _{EC} (Note1)	Emitter-collector voltage	Refer to the figure of test circuit	T _j =125 °C	-	1.95	-	V
		I _E =150 A, G-E short-circuited, chip (Note5)		-	1.9	-	
trr (Note1)	Reverse recovery time	V_{CC} =300 V, I _E =150 A, V _{GE} =±15 V,		-	-	200	ns
Qrr (Note1)	Reverse recovery charge	$R_G=6.2 \Omega$, Inductive load		-	5.0	-	μC
Eon	Turn-on switching energy per pulse	V_{CC} =300 V, I_{C} = I_{E} =150 A,		-	3.2	-	- m l
E _{off}	Turn-off switching energy per pulse	$V_{GE}=\pm 15 V, R_{G}=6.2 \Omega, T_{j}=125 °C,$		-	7.4	-	mJ
Err (Note1)	Reverse recovery energy per pulse	Inductive load		-	1.47	-	mJ

BRAKE PART IGBT/DIODE

Currente e l	literee	Canditiana		Limits			1.1
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
ICES	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		-	-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA
$V_{\text{GE(th)}}$	Gate-emitter threshold voltage	I _C =7.5 mA, V _{CE} =10 V		5	6	7	V
		I _C =75 A, V _{GE} =15 V ^(Note5)	T _j =25 °C	-	1.7	2.1	
V_{CEsat}	Collector-emitter saturation voltage	Refer to the figure of test circuit	T _j =125 °C	-	1.9	-	V
		I _C =75 A, V _{GE} =15 V, chip (Note5)		-	1.6	-	1
Cies	Input capacitance			-	-	9.3	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited		-	-	1.0	nF
Cres	Reverse transfer capacitance			-	-	0.3	1
Q_{G}	Gate charge	V_{CC} =300 V, I _C =75 A, V _{GE} =15 V		-	200	-	nC
I _{RRM}	Repetitive peak reverse current	V _R =V _{RRM} , G-E short-circuited		-	-	1.0	mA
		I _F =75 A, G-E short-circuited ^(Note5)	T _j =25 °C	-	2.0	2.8	
VF	Forward voltage	Refer to the figure of test circuit	T _j =125 °C	-	1.95	-	V
		I _F =75 A, G-E short-circuited, chip ^{(N}	lote5)	-	1.9	-	1
r _g	Internal gate resistance	-		-	0	-	Ω

NTC THERMISTOR PART

Symbol	Item	Conditions -		Unit		
			Min.	Тур.	Max.	Unit
R ₂₅	Zero-power resistance	T _c =25 °C ^(Note4)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	R_{100} =493 Ω, T_{C} =100 °C ^(Note4)	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note6)	-	3375	-	K
P ₂₅	Power dissipation	T _c =25 °C ^(Note4)	-	-	10	mW

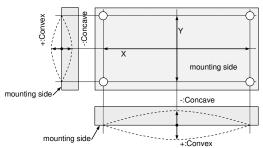
THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
Symbol	nem	Conditions	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}		Junction to case, per Inverter IGBT (Note4)	-	-	0.24	K/W
R _{th(j-c)D}		Junction to case, per Inverter DIODE (Note4)	-	-	0.46	r\/ VV
R _{th(j-c)Q}	Thermal resistance	Junction to case, Brake IGBT (Note4)	-	-	0.44	K/W
R _{th(j-c)D}		Junction to case, Brake DIODE (Note4)	-	-	0.85	r\/ VV
$R_{th(c-s)}$	Contact thermal resistance	Case to heat sink, per 1 module, Thermal grease applied (Note4, 7)	-	15	-	K/kW

HIGH POWER SWITCHING USE INSULATED TYPE

MECHANICAL CHARACTERISTICS

Symbol	Itom	Conditions	O a se all'hi a se a		Limits		
	Item	Conditions		Min.	Тур.	Max.	Unit
Mt	Mounting torque	Main terminals	M 5 screw	2.5	3.0	3.5	N∙m
Ms	Mounting torque	Mounting to heat sink	M 5 screw	2.5	3.0	3.5	N∙m
	Creepage distance	Terminal to terminal		10.28	-	-	
ds		Terminal to base plate		12.46	-	-	mm
d	Clearance	Terminal to terminal		9.88	-	-	
da	Clearance	Terminal to base plate		10.12	-	-	mm
m	mass	-		-	350	-	g
ec	Flatness of base plate	On the centerline X, Y (Note8)		±0	-	+100	μm

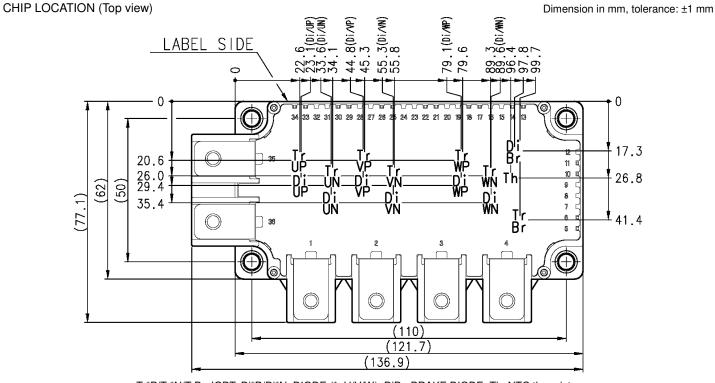

Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE).

- 2. Junction temperature (T_j) should not increase beyond T_{jmax} rating.
- 3. Pulse width and repetition rate should be such that the device junction temperature (T_j) dose not exceed T_{jmax} rating.
- 4. Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
- 5. Pulse width and repetition rate should be such as to cause negligible temperature rise.

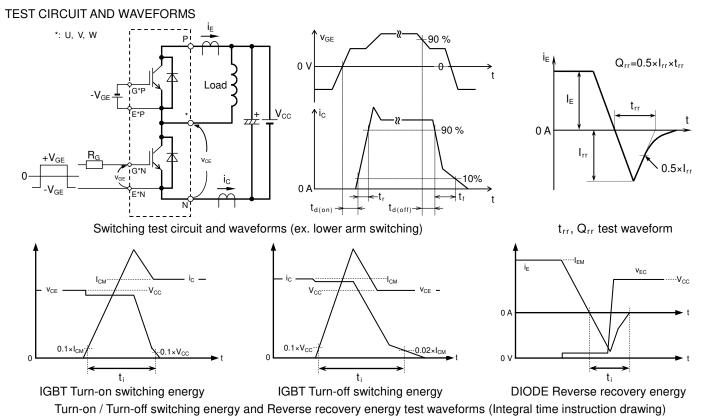
$$6. \mathsf{B}_{(25/50)} = \mathsf{In}(\frac{\mathsf{R}_{25}}{\mathsf{R}_{50}}) / (\frac{1}{\mathsf{T}_{25}} - \frac{1}{\mathsf{T}_{50}}) \ ,$$

R₂₅: resistance at absolute temperature T₂₅ [K]; T₂₅=25 [°C]+273.15=298.15 [K]

- R_{50} : resistance at absolute temperature T_{50} [K]; T_{50} =50 [°C]+273.15=323.15 [K]
- 7. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).
- 8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.

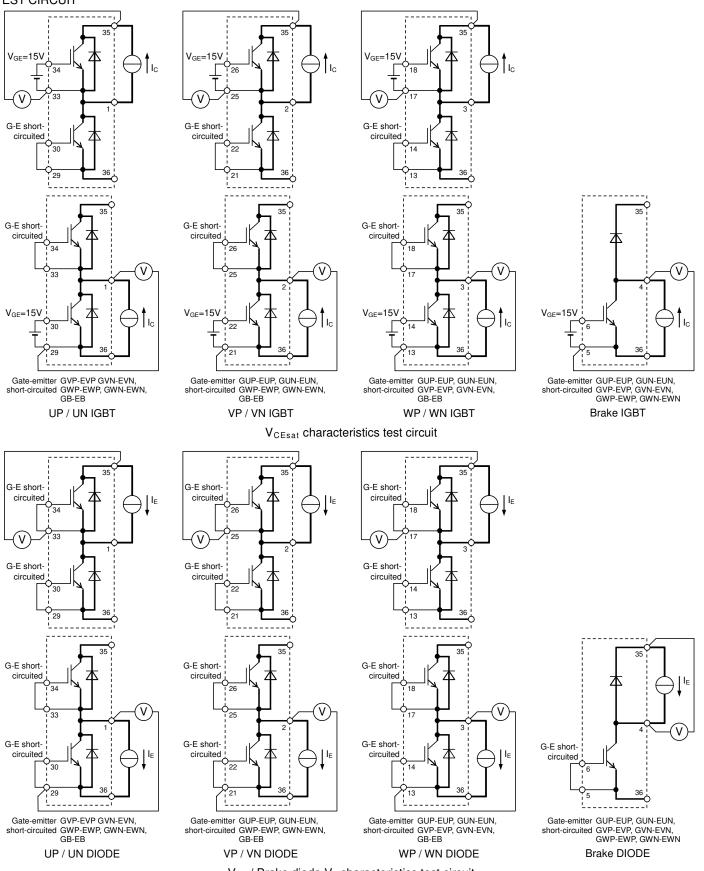

9. Use the following screws when mounting the printed circuit board (PCB) on the standoffs. " ϕ 2.3×10 or ϕ 2.3×12, B1 tapping screw"

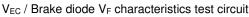
The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.


RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Conditions			Unit		
Symbol	item			Min.	Тур.	Max.	Unit
V _{cc}	(DC) Supply voltage	Applied across P-N terminals		-	300	400	V
V _{GEon}	Gate (-emitter drive) voltage	Applied across GB-EB / G*P-E*P / G*N-E*N (*=U, V, W) terminals		13.5	15.0	16.5	V
R _G	External acto registence	Per switch	Inverter IGBT	4.1	-	41	Ω
п _G	External gate resistance	Brake IGBT		8.0	-	83	- 12

HIGH POWER SWITCHING USE INSULATED TYPE

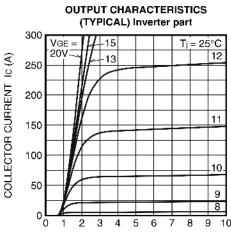

Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: BRAKE DIODE, Th: NTC thermistor

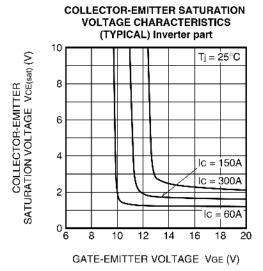


5

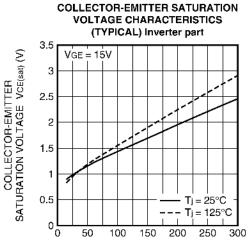
HIGH POWER SWITCHING USE INSULATED TYPE

TEST CIRCUIT

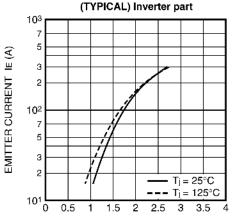



HIGH POWER SWITCHING USE INSULATED TYPE

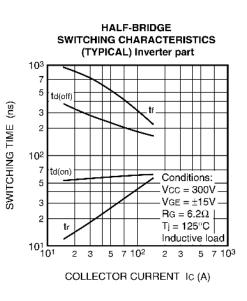
PERFORMANCE CURVES


INVERTER PART

COLLECTOR-EMITTER VOLTAGE VCE (V)

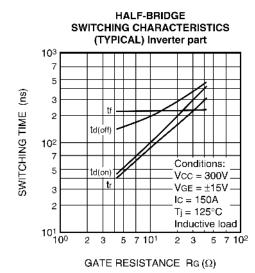


CAPACITANCE CHARACTERISTICS (TYPICAL) Inverter part 10^{2} £ 3 2 CAPACITANCE (nF) 10¹ ŝ 3 2 10⁰ 5 3 2 VGE = ÓV 10-1 10-1 2 3 57100 2 3 57101 2 3 57102 COLLECTOR-EMITTER VOLTAGE VCE (V)

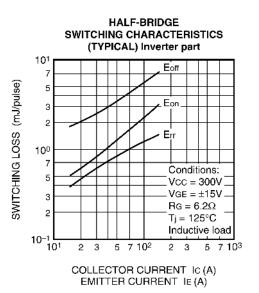


COLLECTOR CURRENT IC (A)

FREE WHEELING DIODE FORWARD CHARACTERISTICS


EMITTER-COLLECTOR VOLTAGE VEC (V)

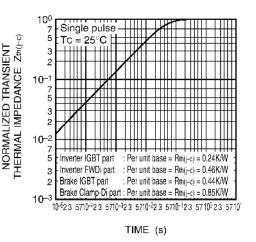
HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

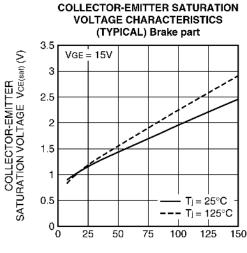
INVERTER PART



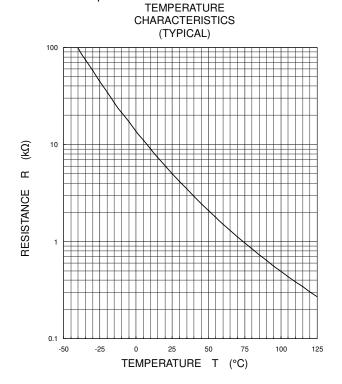
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part 10² 5 SWITCHING LOSS (mJ/pulse) 3 2 Eon 101 5 З 2 Conditions: 100 VCC = 300VFr 5 $V_{GE} = \pm 15V$ IC, IE = 150A 3 Tj = 125°C 2 Inductive load 10-1 L 100 5 7 10¹ 7 102 З 2 2 3 5 GATE RESISTANCE $\operatorname{RG}(\Omega)$

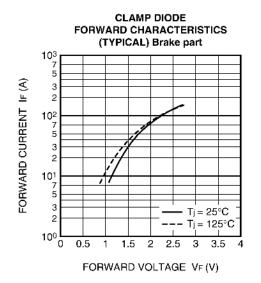

GATE CHARGE CHARACTERISTICS (TYPICAL) Inverter part 20 IC = 150A GATE-EMITTER VOLTAGE VGE (V) Vcc = 200 15 Vcc = 300V 10 5 0⊾ 0 100 200 300 400 500 600 GATE CHARGE QG (nC)

REVERSE RECOVERY CHARACTERISTICS OF FREE WHEELING DIODE (TYPICAL) Inverter part


TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES


BRAKE PART

COLLECTOR CURRENT Ic (A)

NTC thermistor part

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information containedherein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2007-2014 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED