Bi-CMOS IC 3ch LED Driver

http://onsemi.com

Overview

This LV5217GP is 3-channel LED driver for cell phones. Each LED driver current can be adjusted by I2C bus. LV5217GP can perform various illumination effects with a full-color LED display.

Features

- Three color LED driver circuits.
- The LED current can be switched independently in 7-bit units (0.31 to 25.48mA).
- Independent on/off control of the three LED drivers (independent control of the 3 RGB colors).
- Each LED drive current level can be adjusted independently over the I²C bus.
- Miniature package.
- Thermal shutdown circuit.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} max		6.0	V
Supply voltage 2	V _{DD} max		6.0	V
Maximum input current	V _{IN} B		6.0	٧
Maximum output current	I _O max		30.0	mA
STBY pin voltage	V _{STBY}		6.0	V
Allowable power dissipation	Pd max	Mounted on the specified board *	0.55	W
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

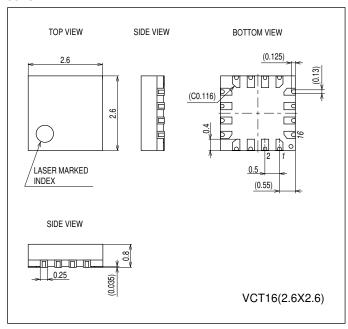
The specified board * : 50mm \times 40mm \times 0.8mm glass epoxy (4-layer circuit board).

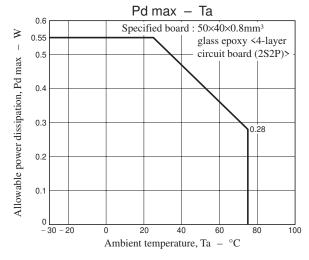
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC}		3.0 to 4.5	٧
Supply voltage 2	V_{DD}		1.6 to 3.0	V

Electrical Characteristics Ta = 25°C, $V_{CC} = 3.7V$, $V_{DD} = 1.8V$, $RT = 56k\Omega$, Unless otherwise specified.

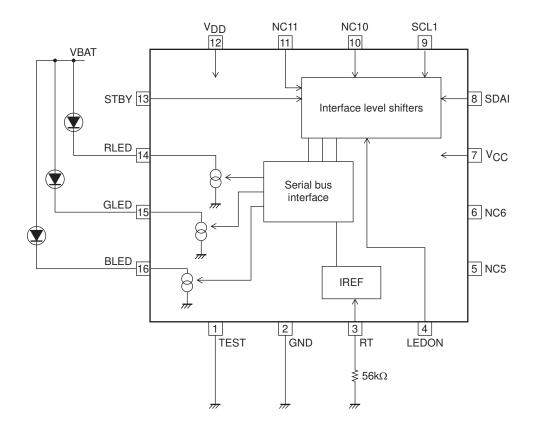

Devenue	0	O and distance		Ratings		11-4
Parameter	Symbol	Conditions	min	typ	max	Unit
Overall Characteristics						
Current drain 1	I _{CC} 1	STBY = L *1			5	μΑ
Current drain 2 I _{CC} 2		STBY = H, LED ON= L *1 With the default serial data settings		0.7	2	mA
High-level input voltage 1	V _{IN} H1	Serial data signals, LEDON pin	V _{DD} ×0.8			٧
Low-level input voltage 1	V _{IN} L1	Serial data signals, LEDON pin	0		V _{DD} ×0.2	V
High-level input voltage 2 V _{IN} H2		STBY pin	1.4			V
Low-level input voltage 2	V _{IN} L2	STBY pin	0		0.2	V
LED Driver Block						
Minimum output current	IMIN	When the serial data is 0000001, $V_O = 0.5V$	0.0	0.2	1.0	mA
Maximum output current	IMAX	When the serial data is 1111111, $V_O = 0.5V$	23.0	25.4	28.0	mA
LED current value accuracy	IDIF	When current value is set to 4mA (0010011)	-8		8	%
Differential linearity error DLE		*2	-2		2	LSB
LED pin saturation voltage VLED		At the maximum current setting			0.3	V
Leakage current	ILEAK	Drivers : off, V _O = 5V			1	μΑ


 V_O : LED pin voltage.

Package Dimensions

unit: mm (typ)

3318



^{*1.} The sum of the $V_{\mbox{CC}}$ and $V_{\mbox{DD}}$ current drain values.

^{*2.} Differential linearity error: The difference between the actual and ideal amounts when one low-order bit value is added.

Block Diagram

Note 1: The TEST pin must be tied to ground.

Pin Functions

Pin No.	Pin name	Function
1	TEST	Test signal input: This pin must be connected to ground.
2	GND	Ground
3	RT	Reference current setting resistor connection
4	LEDON	External LED control pin
5	NC5	No connection
6	NC6	No connection
7	V _{CC}	Circuit system power supply
8	SDAI	Serial data signal input
9	SCLI	Serial clock signal input
10	NC10	No connection
11	NC11	No connection
12	V _{DD}	Power supply for logic system
13	STBY	Standby mode control
14	RLED	Red LED driver output
15	GLED	Green LED driver output
16	BLED	Blue LED driver output

Pin Functions

Pin Fun		D	For the last about
Pin No.	Symbol	Description Description	Equivalent circuit
4	LEDON	Control inputs for the three external colored LEDs. When an RSW, GSW, or BSW bit in the serial data is set to 1, the corresponding LED will be on when the voltage applied to the corresponding pin is high,	V _{CC} V _{DD}
		and off when the voltage applied is low.	LEDON TO NO. 10kΩ
			GND
8 9	SDAI SCLI	I ² C signal inputs	V _{CC} V _{DD}
			Each input 10kΩ
			GND
3	RT	Reference current setting resistor connection. A reference current is created by connecting an external resistor between this pin and ground. The pin voltage is roughly 1.2V. The LED driver current can be changed by changing this current value.	VCC $30pF$ RT $35k\Omega$ 000
			GND
14 15 16	RLED GLED BLED	Driver outputs for the three color LEDs. Feedback is applied to control the current flowing in the output transistors to be the set value. Each of the driver output current levels can be set independently with the serial data.	RLED VCC
			GND \$ \$

Continued on next page.

Pin No.	Symbol	Description	Equivalent circuit
1	TEST	Test signal input. This pin must be connected to ground.	VCC TEST $50k\Omega$ $50k\Omega$ GND
13	STBY	Standby mode pin. The LV5217GP goes to standby mode when the STBY pin is at the low level.	VCC VDD STBY 10kΩ
7	V _{CC}	Circuit system power supply	
12	VDD	Power supply for Logic	
3	GND	Ground	

Power Supply Application

- 1. Either bring up V_{CC} and V_{DD} at the same time, or bring up V_{CC} first then V_{DD} .
- 2. Then, set the serial data. (After the serial data has been set, a period of about 2µs is required as the startup time for the IC internal circuits.)
- 3. Finally, clear the STBY pin states.

Serial Data Map

	Register address									Data						
A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	0			0 0 -	RSW R[6:0]								
0	U	U	U	0	U	U	U	0	0	0	0	0	0	0	0	
		0	0	0		0		GSW				G[6:0]				
0	0	U	U	0	U	U		0	0	0	0	0	0	0	0	
		•	•					BSW				B[6:0]				
0	Ü	0	0	0	Ü	1	Ü	0	0	0	0	0	0	0	0	

Upper row : Register name, Lower row : default value

Serial Data Mode Settings

R mode

	0	0	0	0	0	0	0	0	D7	D6	D5	D4	D3	D2	D1	D0
L	-									_	_		_			_

LEDR output setting

D7	RSW
0	OFF (default)
1	ON

G mode

<u> </u>															
0	0	0	0	0	0	0	1	D7	D6	D5	D4	D3	D2	D1	D0

LEDR output setting

D7	GSW
0	OFF (default)
1	ON

B mode

	_														
0	0	0	0	0	0	1	0	D7	D6	D5	D4	D3	D2	D1	D0

LEDR output setting

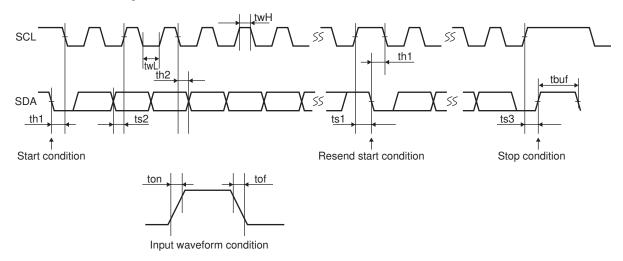
D7	BSW
0	OFF (default)
1	ON

D6-D0 current setting (Common to R, G and B)

D6	D5	D4	D3	D2	D1	D0	Current [mA]
0	0	0	0	0	0	0	0.1 (Default) *1
0	0	0	0	0	0	1	0.31
0	0	0	0	0	1	0	0.52
0	0	0	0	0	1	1	0.72
0	0	0	0	1	0	0	0.93
0	0	0	0	1	0	1	1.13
0	0	0	0	1	1	0	1.34
0	0	0	0	1	1	1	1.54
0	0	0	1	0	0	0	1.74
0	0	0	1	0	0	1	1.94
0	0	0	1	0	1	0	2.14
0	0	0	1	0	1	1	2.34
0	0	0	1	1	0	0	2.54
0	0	0	1	1	0	1	2.74
0	0	0	1	1	1	0	2.95
0	0	0	1	1	1	1	3.15
0	0	1	0	0	0	0	3.35
0	0	1	0	0	0	1	3.46
0	0	1	0	0	1	0	3.76
0	0	1	0	0	1	1	3.97
0	0	1	0	1	0	0	4.17
0	0	1	0	1	0	1	4.37
0	0	1	0	1	1	0	4.57
0	0	1	0	1	1	1	4.76
0	0	1	1	0	0	0	4.97
0	0	1	1	0	0	1	5.17
0	0	1	1	0	1	0	5.37
0	0	1	1	0	1	1	5.57
0	0	1	1	1	0	0	5.78
0	0	1	1	1	0	1	5.98
0	0	1	1	1	1	0	6.18
0	0	1	1	1	1	1	6.39
0	1	0	0	0	0	0	6.60
0	1	0	0	0	0	1	6.80
0	1	0	0	0	1	0	6.99
0	1	0	0	0	1	1	7.19
0	1	0	0	1	0	0	7.39
0	1	0		1	0		7.60
0	1	0	0	1	1	0	7.80
0	1	0	0	1	1	1	7.99
0	1	0	1	0	0	0	8.19
0	1	0	1	0	0	1	8.40
0	1	0	1	0	1	0	8.60
0	1	0	1	0	1	1	8.80
0	1	0	1	1	0	0	9.00
0	1	0	1	1	0	1	9.20
0	1	0	1	1	1	0	9.40
0	1	0	1	1	1	1	9.60
0	1	1	0	0	0	0	9.80
0	1	1	0	0	0	1	10.00
0	1	1	0	0	1	0	10.20
0	1	1	0	0	1	1	10.40
0	1	1	0	1	0	0	10.60
0	1	1	0	1	0	1	10.80
			i		1		I.

Continued on next page.

D6	D5	D4	D3	D2	D1	D0	Current [mA]
0	1	1	0	1	1	0	11.00
0	1	1	0	1	1	1	11.20
0	1	1	1	0	0	0	11.40
0	1	1	1	0	0	1	11.60
0	1	1	1	0	1	0	11.80
0	1	1	1	0	1	1	12.00
0	1	1	1	1	0	0	12.20
0	1	1	1	1	0	1	12.40
0	1	1	1	1	1	0	12.60
0	1	1	1	1	1	1	12.80
1	0	0	0	0	0	0	12.99
1	0	0	0	0	0	1	13.19
1	0	0	0	0	1	0	13.39
1	0	0	0	0	1	1	13.59
1	0	0	0	1	0	0	13.79
1	0	0	0	1	0	1	13.98
1	0	0	0	1	1	0	14.18
1	0	0	0	1	1	1	14.38
1	0	0	1	0	0	0	14.58
1	0	0	1	0	0	1	14.78
1	0	0	1	0	1	0	14.97
1	0	0	1	0	1	1	15.17
1	0	0	1	1	0	0	15.37
1	0	0	1	1	0	1	15.57
1	0	0	1	1	1	0	15.77
1	0	0	1	1	1	1	15.96
1	0	1	0	0	0	0	16.16
1	0	1	0	0	0	1	16.36
1	0	1	0	0	1	0	16.56
1	0	1	0	0	1	1	16.76
1	0	1	0	1	0	0	16.96
<u>'</u> 1	0	1	0	1	0	1	17.15
1	0	1	0	1	1	0	17.35
1	0	1	0	1	1	1	17.55
1	0	1	1	0	0	0	17.75
1	0	1	1	0	0	1	17.95
1	0	1	1	0	1	0	18.15
1	0	1	1	0	1	1	18.34
1	0	1	1	1	0	0	18.54
1	0	1	1	1	0	1	18.74
1	0	1	1	1	1	0	18.94
1	0	1	1	1	1	1	19.14
1	1	0	0	0	0	0	19.33
1	1	0	0	0	0	1	19.53
1	1	0	0	0	1	0	19.73
1	1	0	0	0	1	1	19.93
1	1	0	0	1	0	0	20.13
1	1	0	0	1	0	1	20.32
1	1	0	0	1	1	0	20.52
1	1	0	0	1	1	1	20.72
1	1	0	1	0	0	0	20.92
1	1	0	1	0	0	1	21.12
1	1	0	1	0	1	0	21.31
1	1	0	1	0	1	1	21.51
						1 I	(1.31


Continued on next page.

D6	D5	D4	D3	D2	D1	D0	Current [mA]
1	1	0	1	1	0	1	21.91
1	1	0	1	1	1	0	22.11
1	1	0	1	1	1	1	22.30
1	1	1	0	0	0	0	22.50
1	1	1	0	0	0	1	22.70
1	1	1	0	0	1	0	22.90
1	1	1	0	0	1	1	23.10
1	1	1	0	1	0	0	23.29
1	1	1	0	1	0	1	23.49
1	1	1	0	1	1	0	23.69
1	1	1	0	1	1	1	23.89
1	1	1	1	0	0	0	24.09
1	1	1	1	0	0	1	24.29
1	1	1	1	0	1	0	24.48
1	1	1	1	0	1	1	24.68
1	1	1	1	1	0	0	24.88
1	1	1	1	1	0	1	25.08
1	1	1	1	1	1	0	25.28
1	1	1	1	1	1	1	25.48

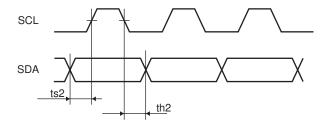
^{*} Note 1 : There is significant current variance, so care should be taken for use. The current value can be set when D7 is "0."

Serial Bus Communication Specifications

I²C serial transfer timing conditions

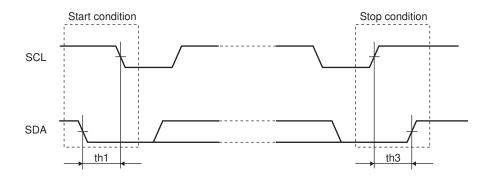
Standard mode

Parameter	symbol	Conditions	min	typ	max	unit
SCL clock frequency	fscl	SCL clock frequency	0		100	kHz
Data setup time	ts1	The SCL setup time from the SDA rising edge	4.7			μs
	ts2	The SDA setup time from the SCL rising edge	250			ns
	ts3	The SCL setup time from the SDA rising edge	4.0			μs
Data hold time	th1	The SCL hold time from the SDA falling edge	4.0			μs
	th2	The SDA hold time from the SCL falling edge	0			μs
Pulse width	twL	SCL low period pulse width	4.7			μs
	twH	SCL high period pulse width	4.0			μs
Input waveform conditions	ton	SCL, SDA (input) rising time			1000	ns
	tof	SCL, SDA (input) falling time			300	ns
Bus free time	tbuf	Time between STOP and TART conditions	4.7			μs


High-speed mode

Parameter	Symbol	Conditions	min	typ	max	unit
SCL clock frequency	fscl	SCL clock frequency	0		400	kHz
Data setup time	ts1	The SCL setup time from the SDA rising edge	0.6			μs
	ts2	The SDA setup time from the SCL rising edge	100			ns
	ts3	The SCL setup time from the SDA rising edge	0.6			μs
Data hold time	th1	The SCL hold time from the SDA falling edge	0.6			μs
	th2	The SDA hold time from the SCL falling edge	0			μs
Pulse width	twL	SCL low period pulse width	1.3			μs
	twH	SCL high period pulse width	0.6			μs
Input waveform conditions	ton	SCL, SDA (input) rising time			300	ns
	tof	SCL, SDA (input) falling time			300	ns
Bus free time	tbuf	Time between STOP condition and TART condition	1.3			μs

I²C bus transmission method


START condition and STOP condition

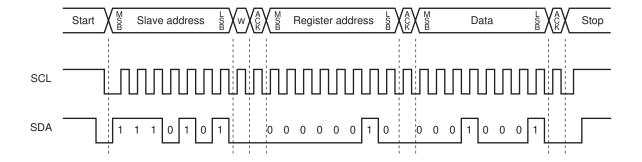
When transferring data over an I²C bus, SDA must basically be held in certain states while SCL is High, as shown in the figure below.

Both SCL and SDA are high when not performing data transfer.

When both SCL and SDA are high, changing SDA from high to low generates the START condition and starts access. Changing SDA from low to high while SCL is high generates the STOP condition and ends access.

Data transfer and confirmation response

After the START condition is generated, data is transferred one byte (8 bits) at a time. Data can be transferred continuously for any number of bytes. The ACK signal is sent from the receiving to the transmitting side each time 8 bits of data are transferred.


The transmitting side releases the SDA line immediately after the SCL clock pulse corresponding to the 8th data transfer bit as it falls to Low, and the receiving side then sends the ACK signal by setting SDA Low.

After the receiving side sends the ACK signal, if the next byte transfer is still in receive mode, the receiving side releases the SDA line at the falling edge of the 9th SCL clock.

The I²C bus does not have a CE signal, so instead a 7-bit slave address is assigned to each device. The first byte of each transfer is assigned to this 7-bit slave address and a command (R/W) indicating the transfer direction of the following data. Note that only Write mode is valid for this IC.

The 7-bit address is transferred in order from the MSB, and the 8th bit is Low to indicate Write mode.

The LV5217GP slave address is prescribed as "1110101."

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa