

High-Speed Dual SPDT Switch UM9636 QFN10 1.8×1.4

General Description

The UM9636 is a high-speed, low-power dual single-pole/double-throw (SPDT) analog switch that operates from a single +2.7V to +12V supply.

The UM9636 features 720MHz -3dB bandwidth, -67dB crosstalk and -58dB off-isolation at 10MHz frequency. Wide bandwidth and low on-resistance allow it to pass high-speed differential signal with good signal integrity. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its high channel-to-channel crosstalk rejection results in minimal noise interference. Key applications for the UM9636 are logic level translation, pulse generator, and high speed or low noise signal switching in precision instrumentations and portable device designs.

The switch is available in Pb-free QFN10 1.8×1.4 package.

Applications

Features

- High-End Data Acquisition
- Medical Instruments
- Precision Instruments
- High Speed Communications Applications
- Automated Test Equipment
- Sample and Hold Applications
- Ron is Typically 83Ω at V_{CC}=12V
- Channel On-Capacitance: 6.5pF (Typical)
- Typically 720MHz -3dB Bandwidth (or Data Frequency)
- Low Crosstalk: Typically -67dB (10MHz)
- Low Off-Isolation: Typically -58dB (10MHz)
- Low Voltage, 1.65 V CMOS/TTL Compatible
- Low Current Consumption: 1µA
- V_{CC} Operating Range: +2.7V to +12V
- Lead(Pb)-Free QFN10 Package

Pin Configurations

Top View

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM9636	QFN10 1.8×1.4	AJ	3000pcs/7 Inch Tape & Reel

Truth Table

Select	On Switches	
A1	A0	UM9636
Х	0	D1 to S1A
Х	1	D1 to S1B
0	Х	D2 to S2A
1	Х	D2 to S2B

Pin Description

Pin	Name	Function
1	GND	Ground Connection
2	S1A	Data Ports
3	S1B	Data Ports
4	D1	Data Ports
5	D2	Data Ports
6	S2B	Data Ports
7	S2A	Data Ports
8	V+	Positive Supply Voltage
9	A1	Select Input
10	A0	Select Input

Absolute Maximum Ratings

Symbol	Parameter	Limit	Unit	
V+	Supply Voltage	-0.5 to +14V		
V _{IS}	Analog Switch Input Voltage	-0.5 to (V_{CC} +0.3)	V	
V _{IN}	Digital Select Input Voltage	-0.5 to $(V_{CC}+0.3)$		
ID	Continuous DC Current	50		
P _P	Peak Current, S or D (Pulsed 1 ms, 10 % Duty Cycle)	100	шА	
P _D	Power Dissipation	0.28	W	
To	Operating Temperature Range	-40 to +85	°C	
T _{STG}	Storage Temperature Range	-65 to +150	C	
	HBM			
ESD	I/O to GND	4000	V	
	All Pins	2000		

Electrical Characteristics

~				_	Limits (-40°C to 85°C)			
Symbol	Parameter	Parameter Test Conditions V+ (V) Temp		Temp	Min	Typ (Note 1)	Max	Unit
DC Electrical	l Characteristics							
V _{ANALOG}	Analog Signal Range			Full			12	V
I _{CC}	Quiescent Supply Current	V _{IN} =0V or V+	12	Room Full		0.01	0.5 1	цА
I _{GND}	Ground Current		12	Room Full	-0.5 -1	-0.01		μαι
$I_{\rm IH}$	Input Leakage Current, V _{IN} High	V _{AX} =1.65V	12	Full	-0.1	0.01	0.1	μΑ
I _{IL}	Input Leakage Current, V _{IN} Low	V _{AX} =0.5V	12	Full	-0.1	0.01	0.1	μΑ
I _{D(on)}	Channel On Leakage Current	V+=12V, V _D =V _S 11V/1V	12	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{D(off)}$	OFF State Leakage	V += 12V, V = 1V/(11)V	12	Room Full	-11.0	±0.01	11.0 15.0	μΑ
$I_{S(\mathrm{off})}$	(Note 2)	$V_{\rm D} = 1 V / 11 V$, $V_{\rm S} = 11 V / 1 V$	12	Room Full	-11.0	±0.01	11.0 15.0	μΑ
V _{IH}	Input High Voltage		12	Full	1.65			V
V _{IL}	Input Low Voltage		12	Full			0.5	V
R _{ON}	On-Resistance (Note 3)	V _D =11.3V I _S =1mA	12	Room Full		83	110 125	Ω
$\Delta R_{\rm ON}$	On Resistance Match Between Channels (Note 3, 4, 5)	$V_D=11.3V$ $I_S=1mA$	12	Room Full		2	4 6	Ω
R _{FLAT}	On Resistance Flatness (Note 3, 4, 6)	V _D =0.7, 6.5, 11.3V I _S =1mA	12	Room Full		33	45 50	Ω
AC Electrical	Characteristics					•		
t _{ON}	Turn On Time	R_L =300 Ω , C_L =35pF	12	Room Full		30	70 80	ns
t _{OFF}	Turn Off Time	R_L =300 Ω , C_L =35pF	12	Room Full		15	55 65	ns
t _{BBM}	Break Before Make Time (Note 7)	$\begin{array}{c} R_L = 300\Omega, \\ C_L = 35 pF \end{array}$	12	Room Full	5 2	15		ns
THD	Total Harmonic Distortion	Signal= $1V_{RMS}$, 20Hz to 20kHz, R_L =600 Ω	12	Room		0.01		%
Charge Injection	Q _{INJ}	$C_L=1nF, R_{GEN}=0\Omega, V_{GEN}=0V$	12	Room		23.5		pC
O _{IRR}	Off Isolation (Note 8)	$\begin{array}{c} R_L = 50\Omega, \ C_L = 5pF, \\ f = 10MHz \end{array}$	12	Room		-58		dB
X _{TALK}	Crosstalk	$\begin{array}{c} R_L = 50\Omega, \ C_L = 5pF, \\ f = 10MHz \end{array}$	12	Room		-67		dB
BW	-3dB Bandwidth	$R_L=50\Omega$	12	Room		720		MHz
Capacitance								
C _{IN}	Control Pin Input Capacitance	f=1MHz		Room		3		pF
C _{OFF}	Switch Off Capacitance	f=1MHz	12	Room		2.0		pF
C _{ON}	Switch On Capacitance	f=1MHz	12	Room		7.7		pF

Note 1: Typically values are at $T_A = +25^{\circ}C$.

Note 2: The high OFF State Leakage Current is because of pull down resistor

Note 3: Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

Note 4: Parameter is characterized but not tested in production.

Note 5: $\Delta R_{ON} = |R_{ON(S1A/S1B)} - R_{ON(S2A/S2B)}|$ measured at identical V_{CC}, temperature and voltage levels.

Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

Note 7: Guaranteed by design. Note 8: Off Isolation=20log10 [V_D/V_{SA/SB}].

Electrical Characteristics

					Limits (-40°C to 85°C)			
Symbol	Parameter	Test Conditions	V+ (V)	Temp	Min	Typ (Note 1)	Max	Unit
DC Electrical	l Characteristics							
V _{ANALOG}	Analog Signal Range			Full			5	V
I _{CC}	Quiescent Supply Current	Vr.=0V or V+	5	Room Full		0.01	0.5 1	
I _{GND}	Ground Current	V _{IN} -0V, 01V	5	Room Full	-0.5 -1	-0.01		μΑ
I _{IH}	Input Leakage Current, V _{IN} High	V _{AX} =1.4V	5	Full	-0.1	0.01	0.1	μΑ
I _{IL}	Input Leakage Current, V _{IN} Low	V _{AX} =0.5V	5	Full	-0.1	0.01	0.1	μΑ
I _{D(on)}	Channel On Leakage Current	V+=5.5V, V _D =V _S 4.5V/1V	5.5	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{D(off)}$	OFF State Leakage	V += 5.5V, $V_{2} = 1V/4.5V$	5.5	Room Full	-3.0	±0.01	3.0 5.0	μΑ
$I_{S(\mathrm{off})}$	(Note 2)	$V_{\rm S} = 4.5 V/1 V$	5.5	Room Full	-3.0	±0.01	3.0 5.0	μΑ
V_{IH}	Input High Voltage		5	Full	1.4			V
V _{IL}	Input Low Voltage		5	Full			0.5	V
R _{ON}	On-Resistance (Note 3)	V _D =4V I _S =1mA	5	Room Full		300	350 400	Ω
$\Delta R_{\rm ON}$	On Resistance Match Between Channels (Note 3, 4, 5)	V _D =4V I _S =1mA	5	Room Full		6	12 15	Ω
AC Electrical	l Characteristics							
t _{ON}	Turn On Time	R_L =300 Ω , C_L =35pF	5	Room Full		55		ns
t _{OFF}	Turn Off Time	R_L =300 Ω , C_L =35pF	5	Room Full		30		ns
t _{BBM}	Break Before Make Time (Note 6)	$\begin{array}{c} R_L=300\Omega,\\ C_L=35pF \end{array}$	5	Room Full		36		ns
THD	Total Harmonic Distortion	Signal= $1V_{RMS}$, 20Hz to 20kHz, R_L =600 Ω	5	Room		2.2		%
Charge Injection	Q _{INJ}	$C_L=1nF, R_{GEN}=0\Omega, V_{GEN}=0V$	5	Room		10		pC
O _{IRR}	Off Isolation (Note 7)	$\begin{array}{c} R_L = 50\Omega, \ C_L = 5pF, \\ f = 10MHz \end{array}$	5	Room		-58		dB
X _{TALK}	Crosstalk	$\begin{array}{c} R_L = 50\Omega, \ C_L = 5pF, \\ f = 10MHz \end{array}$	5	Room		-68		dB
BW	-3dB Bandwidth	$R_L=50\Omega$	5	Room		610		MHz
Capacitance								
C _{IN}	Control Pin Input Capacitance	f=1MHz		Room		3		pF
C _{OFF}	Switch Off Capacitance	f=1MHz	5	Room		2.1		pF
C _{ON}	Switch On Capacitance	f=1MHz	5	Room		8.1		pF

Note 1: Typically values are at T_A=+25°C. Note 2: The high OFF State Leakage Current is because of pull down resistor Note 3: Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

Note 4: Parameter is characterized but not tested in production.

Note 5: $\Delta R_{ON} = |R_{ON(S1A/S1B)} - R_{ON(S2A/S2B)}|$ measured at identical V_{CC}, temperature and voltage levels.

Note 6: Guaranteed by design. Note 7: Off Isolation=20log10 $[V_D/V_{SA/SB}]$.

Electrical Characteristics

				T	Limits (-40°C to 85°C)			
Symbol	Parameter	Test Conditions	V + (V)	Temp	Min	Typ (Note 1)	Max	Unit
DC Electrica	l Characteristics							
V _{ANALOG}	Analog Signal Range			Full			3	V
I _{CC}	Quiescent Supply Current	Vr.=0V or V+	3	Room Full		0.01	0.5 1	
I _{GND}	Ground Current	V _{IN} -0V, 01V	5	Room Full	-0.5 -1	-0.01		μΑ
$I_{\rm IH}$	Input Leakage Current, V _{IN} High	V _{AX} =1.4V	3	Full	-0.1	0.01	0.1	μΑ
I _{IL}	Input Leakage Current, V _{IN} Low	V _{AX} =0.5V	3	Full	-0.1	0.01	0.1	μΑ
I _{D(on)}	Channel On Leakage Current	V+=3.3V, V _D =V _S 3V/1V	3.3	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{D(off)}$	OFF State Leakage	V = 3.3V, V = 1V/3V	3.3	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{S(\mathrm{off})}$	Current	$V_{\rm D}$ -1V/3V, $V_{\rm S}$ =3V/1V	3.3	Room Full	-1.0	±0.01	1.0 2.0	μΑ
V _{IH}	Input High Voltage		3	Full	1.4			V
V _{IL}	Input Low Voltage		3	Full			0.5	V
R _{ON}	On-Resistance (Note 2)	V _D =1.5V I _S =1mA	3	Room Full		500	550 650	Ω
$\Delta R_{\rm ON}$	On Resistance Match Between Channels (Note 2, 3, 4)	V _D =1.5V I _S =1mA	3	Room Full		10	14 18	Ω
AC Electrica	l Characteristics							
t _{ON}	Turn On Time	$\begin{array}{c} R_L=300\Omega,\\ C_L=35 pF \end{array}$	3	Room Full		96		ns
t _{OFF}	Turn Off Time	R _L =300Ω, C _L =35pF	3	Room Full		60		ns
t _{BBM}	Break Before Make Time (Note 5)	$\begin{array}{c} R_L = 300\Omega, \\ C_L = 35 p F \end{array}$	3	Room Full		77		ns
THD	Total Harmonic Distortion	Signal= $1V_{RMS}$, 20Hz to 20kHz, R_L =600 Ω	3	Room		2.2		%
Charge Injection	Q _{INJ}	$C_L=1nF, R_{GEN}=0\Omega, V_{GEN}=0V$	3	Room		6.6		pC
O _{IRR}	Off Isolation (Note 6)	$\begin{array}{c} R_L = 50\Omega, \ C_L = 5pF, \\ f = 10MHz \end{array}$	3	Room		-57		dB
X _{TALK}	Crosstalk	$\begin{array}{c} R_L = 50\Omega, \ C_L = 5pF, \\ f = 10MHz \end{array}$	3	Room		-69		dB
BW	-3dB Bandwidth	$R_L=50\Omega$	3	Room		525		MHz
Capacitance								
C _{IN}	Control Pin Input Capacitance	f=1MHz		Room		3.1		pF
C _{OFF}	Switch Off Capacitance	f=1MHz	3	Room		2.1		pF
C _{ON}	Switch On Capacitance	f=1MHz	3	Room		8.3		pF

Note 1: Typically values are at T_A =+25°C. Note 2: Guaranteed by design. Resistance measurements do not include test circuit or package resistance. Note 3: Parameter is characterized but not tested in production.

Note 4: $\Delta R_{ON} = |R_{ON(S1A/S1B)} - R_{ON(S2A/S2B)}|$ measured at identical V_{CC}, temperature and voltage levels. Note 5: Guaranteed by design.

Note 6: Off Isolation=20log10 [V_D/V_{SA/SB}].

Package Information

UM9636: QFN10 1.80×1.40

Outline Drawing

DIMENSIONS								
Symbol	MILLIMETERS			INCHES				
Symbol	Min	Тур	Max	Min	Тур	Max		
А	0.50	0.55	0.60	0.020	0.022	0.024		
A1	0.00	_	0.05	0.000	_	0.002		
A3	0.15REF			0).006RE!	F		
b	0.15	0.20	0.25	0.006	0.008	0.010		
D	1.35	1.40	1.45	0.053	0.055	0.057		
Е	1.75	1.80	1.85	0.069	0.071	0.073		
e	().40BS	С	0	0.016BS	2		
L	0.30	0.40	0.50	0.012	0.016	0.020		
L1	0.40	0.50	0.60	0.016	0.020	0.024		

Land Pattern

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc Add: Unit 606, No.570 Shengxia Road, Shanghai 201210 Tel: 021-51093966 Fax: 021-51026018 Website: www.union-ic.com