Document Number: MD7IC2755N Rev. 3, 9/2010

MD7IC2755NR1 MD7IC2755GNR1

√RoHS

# **RF LDMOS Wideband Integrated Power Amplifiers**

The MD7IC2755N wideband integrated circuit is designed with on-chip matching that makes it usable from 2500-2700 MHz. This multi-stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulations.

- Typical Doherty WiMAX Performance: V<sub>DD</sub> = 28 Volts, I<sub>DQ1A</sub> = I<sub>DQ1B</sub> = 80 mA, I<sub>DQ2B</sub> = 275 mA, V<sub>G2A</sub> = 1.7 Vdc, P<sub>out</sub> = 10 Watts Avg., f = 2700 MHz, OFDM 802.16d, 64 QAM <sup>3</sup>/<sub>4</sub>, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain 25 dB
   Power Added Efficiency 25%
   Device Output Signal PAR 8.5 dB @ 0.01% Probability on CCDF ACPR @ 8.5 MHz Offset -37 dBc in 1 MHz Channel Bandwidth
- Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 90 Watts CW Output Power (3 dB Input Overdrive from Rated Pout)
- Stable into a 10:1 VSWR. All Spurs Below –60 dBc @ 100 mW to 10 Watts CW  $\mathsf{P}_{out}$
- Typical P<sub>out</sub> @ 1 dB Compression Point ≃ 30 Watts CW

## Features

- Production Tested in a Symmetrical Doherty Configuration
- 100% PAR Tested for Guaranteed Output Power Capability
- Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source S-Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function <sup>(1)</sup>
- Integrated ESD Protection
- 225°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.





 Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

2. Peaking and Carrier orientation is determined by the test fixture design.



## Table 1. Maximum Ratings

| Rating                               | Symbol           | Value       | Unit |
|--------------------------------------|------------------|-------------|------|
| Drain-Source Voltage                 | V <sub>DS</sub>  | -0.5, +65   | Vdc  |
| Gate-Source Voltage                  | V <sub>GS</sub>  | -0.5, +10   | Vdc  |
| Operating Voltage                    | V <sub>DD</sub>  | 32, +0      | Vdc  |
| Storage Temperature Range            | T <sub>stg</sub> | -65 to +150 | °C   |
| Case Operating Temperature           | T <sub>C</sub>   | 150         | °C   |
| Operating Junction Temperature (1,2) | TJ               | 225         | °C   |
| Input Power                          | P <sub>in</sub>  | 30          | dBm  |

## **Table 2. Thermal Characteristics**

| Characteristic | Symbol | Value <sup>(2,3)</sup> | Unit |
|----------------|--------|------------------------|------|
|----------------|--------|------------------------|------|

## Final Doherty Application

| $R_{\theta JC}$ |                  | °C/W                                         |
|-----------------|------------------|----------------------------------------------|
|                 |                  |                                              |
|                 | 2.6              |                                              |
|                 | 1.8              |                                              |
|                 |                  |                                              |
|                 | 2.3              |                                              |
|                 | 1.1              |                                              |
|                 | R <sub>θJC</sub> | R <sub>θJC</sub><br>2.6<br>1.8<br>2.3<br>1.1 |

## **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class         |
|---------------------------------------|---------------|
| Human Body Model (per JESD22-A114)    | 1C (Minimum)  |
| Machine Model (per EIA/JESD22-A115)   | A (Minimum)   |
| Charge Device Model (per JESD22-C101) | III (Minimum) |

#### Table 4. Moisture Sensitivity Level

| Test Methodology                     |   | Package Peak Temperature | Unit |
|--------------------------------------|---|--------------------------|------|
| Per JESD22-A113, IPC/JEDEC J-STD-020 | 3 | 260                      | °C   |

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

| Characteristic                                                                                                                         |                       | Min | Тур  | Мах | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|------|-----|------|
| Stage 1 — Off Characteristics <sup>(1)</sup>                                                                                           |                       |     |      |     |      |
| Zero Gate Voltage Drain Leakage Current<br>(V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc)                                         | I <sub>DSS</sub>      |     | _    | 10  | μAdc |
| Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$                                            | I <sub>DSS</sub>      |     | _    | 1   | μAdc |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 1.5 Vdc, V <sub>DS</sub> = 0 Vdc)                                                    | I <sub>GSS</sub>      |     | _    | 1   | μAdc |
| tage 1 — On Characteristics                                                                                                            |                       |     |      |     |      |
| Gate Threshold Voltage (1)<br>( $V_{DS} = 10 \text{ Vdc}, I_D = 46 \mu \text{Adc}$ )                                                   | V <sub>GS(th)</sub>   | 1.2 | 1.9  | 2.7 | Vdc  |
| Gate Quiescent Voltage (1)<br>( $V_{DS} = 28 \text{ Vdc}, I_{DQ1A} = I_{DQ1B} = 80 \text{ mAdc}$ )                                     | V <sub>GS(Q)</sub>    | _   | 2.7  | _   | Vdc  |
| Fixture Gate Quiescent Voltage (2)<br>( $V_{DD}$ = 28 Vdc, $I_{DQ1A}$ = $I_{DQ1B}$ = 80 mAdc, Measured in Functional Tes               | t) V <sub>GG(Q)</sub> | 12  | 15   | 18  | Vdc  |
| tage 2 — Off Characteristics <sup>(1)</sup>                                                                                            |                       |     |      | •   |      |
| Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$                                            |                       |     | _    | 10  | μAdc |
| Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$                                            |                       |     | _    | 1   | μAdc |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 1.5 Vdc, V <sub>DS</sub> = 0 Vdc)                                                    |                       |     |      | 1   | μAdc |
| tage 2 — On Characteristics                                                                                                            |                       |     | •    |     |      |
| Gate Threshold Voltage <sup>(1)</sup><br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 185 μAdc)                                         | V <sub>GS(th)</sub>   | 1.2 | 1.9  | 2.7 | Vdc  |
| Gate Quiescent Voltage (1)<br>(V <sub>DS</sub> = 28 Vdc, I <sub>DQ2B</sub> = 275 mAdc)                                                 | V <sub>GS(Q)</sub>    |     | 2.7  | _   | Vdc  |
| Fixture Gate Quiescent Voltage <sup>(2)</sup><br>(V <sub>DD</sub> = 28 Vdc, I <sub>DQ2B</sub> = 275 mAdc, Measured in Functional Test) | V <sub>GG(Q)</sub>    | 12  | 15   | 18  | Vdc  |
| Drain-Source On-Voltage <sup>(1)</sup><br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 1 A)                                             |                       | 0.2 | 0.47 | 1.2 | Vdc  |
| tage 2 - Dynamic Characteristics <sup>(2,3)</sup>                                                                                      |                       |     | •    |     | •    |
|                                                                                                                                        | C <sub>oss</sub>      | —   | 111  |     | pF   |

| Power Gain                                               | G <sub>ps</sub> | 23 | 25  | 31  | dB  |
|----------------------------------------------------------|-----------------|----|-----|-----|-----|
| Power Added Efficiency                                   | PAE             | 23 | 25  | _   | %   |
| Output Peak-to-Average Ratio @ 0.01% Probability on CCDF | PAR             | 8  | 8.5 | _   | dB  |
| Adjacent Channel Power Ratio                             | ACPR            | _  | -37 | -35 | dBc |

1. Side A and Side B are tied together for this measurement.

2. Each side of device measured separately.

3. Part internally matched both on input and output.

Measurement made with device in a Symmetrical Doherty configuration.
 Measurement made with device in straight lead configuration before any lead forming operation is applied.

(continued)

## Table 5. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ (continued)

| Characteristic | Symbol | Min | Тур | Мах | Unit |
|----------------|--------|-----|-----|-----|------|
|                |        |     |     |     |      |

**Typical Performances** (In Freescale Doherty Test Fixture, 50 ohm system) V<sub>DD</sub> = 28 Vdc, I<sub>DQ1A</sub> = I<sub>DQ1B</sub> = 80 mA, I<sub>DQ2B</sub> = 275 mA, V<sub>G2A</sub> = 1.7 Vdc, 2500-2700 MHz Bandwidth

| Pout @ 1 dB Compression Point, CW                                                                                                                                                  | P1dB               | _ | 30    | _ | W      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---|-------|---|--------|
| IMD Symmetry @ 12 W PEP, P <sub>out</sub> where IMD Third Order<br>Intermodulation ≅ 30 dBc<br>(Delta IMD Third Order Intermodulation between Upper and Lower<br>Sidebands > 2 dB) | IMD <sub>sym</sub> |   | 70    | _ | MHz    |
| VBW Resonance Point<br>(IMD Third Order Intermodulation Inflection Point)                                                                                                          |                    | — | 85    | — | MHz    |
| Gain Flatness in 200 MHz Bandwidth @ Pout = 10 W Avg.                                                                                                                              | G <sub>F</sub>     | — | 1.6   | _ | dB     |
| Average Deviation from Linear Phase in 200 MHz Bandwidth<br>@ P <sub>out</sub> = 30 W CW                                                                                           | Φ                  | — | 2     | — | 0      |
| Average Group Delay @ P <sub>out</sub> = 30 W CW, f = 2600 MHz                                                                                                                     | Delay              | — | 2.7   | _ | ns     |
| Part-to-Part Insertion Phase Variation @ P <sub>out</sub> = 30 W CW,<br>f = 2600 MHz, Six Sigma Window                                                                             | $\Delta \Phi$      | _ | 3.6   | — | 0      |
| Gain Variation over Temperature<br>(-30°C to +85°C)                                                                                                                                | ΔG                 | _ | 0.039 | _ | dB/°C  |
| Output Power Variation over Temperature<br>(-30°C to +85°C)                                                                                                                        | ∆P1dB              |   | 0.03  |   | dBm/°C |



| Table 6. MD7IC2755N | R1(GNR1 | ) Test Circuit Cor | nponent Desian | ations and Values |
|---------------------|---------|--------------------|----------------|-------------------|
|                     |         |                    |                |                   |

| Part                                          | Description                          | Part Number       | Manufacturer |
|-----------------------------------------------|--------------------------------------|-------------------|--------------|
| C1, C2, C3, C4, C5, C6, C13,<br>C14, C19, C20 | 6.8 pF Chip Capacitors               | ATC600S6R8BT250XT | ATC          |
| C7, C8, C17, C18                              | 10 μF Chip Capacitors                | GRM55DR61H106KA88 | Murata       |
| C15, C16                                      | 1500 pF Chip Capacitors              | GRM1885C2A152JA01 | Murata       |
| C9, C10, C11, C12, C21, C22,<br>C23, C24      | 0.5 pF Chip Capacitors               | ATC600S0R5BT250XT | ATC          |
| Coupler 1                                     | 2500-2700 Hybrid 3 dB Coupler        | GSC356            | Soshin       |
| L1, L2                                        | Jumper Wires                         |                   |              |
| R4, R5, R7, R8                                | 75 Ω, 1/8 W Chip Resistors           | RK73B2ATTD750G    | KOA Speer    |
| R1, R10                                       | 300 $\Omega$ , 1/8 W Chip Resistors  | RK73B2ATTD301G    | KOA Speer    |
| R2, R11                                       | 2 k Ω, 1/8 W Chip Resistors          | RK73B2ATTD202G    | KOA Speer    |
| R3, R6, R9, R12                               | 12 k $\Omega$ , 1/8 W Chip Resistors | RK73B2ATTD123G    | KOA Speer    |
| R13                                           | 51 Ω, 1/8 W Chip Resistor            | RK73B2ATTD510G    | KOA Speer    |



Figure 4. MD7IC2755NR1(GNR1) Test Circuit Component Layout



Figure 5. Possible Circuit Topologies

## **TYPICAL CHARACTERISTICS**







Stage 1, Class AB

Figure 8. Power Gain versus Output Power — Stage 2, Class AB



Stage 2, Class C

## **TYPICAL CHARACTERISTICS**



## **TYPICAL CHARACTERISTICS**



Figure 13. Broadband Frequency Response



This above graph displays calculated MTTF in hours when the device is operated at V\_DD = 28 Vdc, P\_out = 10 W Avg., and PAE = 25%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 14. MTTF versus Junction Temperature

## WIMAX TEST SIGNAL



Figure 16. WiMAX Spectrum Mask Specifications



 $\label{eq:side} \begin{array}{l} \textbf{SIDE 1B --- Measured Data} \\ \textbf{V}_{DD} = 28 \; \textbf{Vdc}, \, \textbf{I}_{DQ1A} = \textbf{I}_{DQ1B} = 80 \; \textbf{mA}, \, \textbf{I}_{DQ2B} = 275 \; \textbf{mA}, \end{array}$ 

| Veet | – 1 7 Vdc  | P | 10 W  | Δνα  |
|------|------------|---|-------|------|
| VG2∆ | = 1.7 VUC, |   | 10 00 | Avy. |

| G2A = 111 val, 1 out = 10 tring. |                      |  |  |  |  |
|----------------------------------|----------------------|--|--|--|--|
| f<br>MHz                         | Z <sub>in</sub><br>Ω |  |  |  |  |
| 2500                             | 51.13 - j3.65        |  |  |  |  |
| 2525                             | 53.63 + j10.52       |  |  |  |  |
| 2550                             | 65.26 + j9.11        |  |  |  |  |
| 2575                             | 55.46 + j8.51        |  |  |  |  |
| 2600                             | 56.42 + j7.21        |  |  |  |  |
| 2625                             | 64.56 + j9.19        |  |  |  |  |
| 2650                             | 62.22 + j8.40        |  |  |  |  |
| 2675                             | 63.11 + j15.82       |  |  |  |  |
| 2700                             | 63.82 + j23.55       |  |  |  |  |
|                                  |                      |  |  |  |  |

Z<sub>in</sub> = Device input impedance as measured from gate to ground.







SIDE 2B — Simulated Data

 $V_{DD} = 28 \text{ Vdc}, I_{DQ1A} = I_{DQ1B} = 80 \text{ mA}, I_{DQ2B} = 275 \text{ mA},$ 

| $V_{G2A} = 1.7 \text{ vdc}, P_{out} = 10 \text{ W Avg}.$ |                        |  |  |  |  |  |
|----------------------------------------------------------|------------------------|--|--|--|--|--|
| f<br>MHz                                                 | Z <sub>load</sub><br>Ω |  |  |  |  |  |
| 2500                                                     | 4.48 - j1.14           |  |  |  |  |  |
| 2525                                                     | 4.44 - j0.93           |  |  |  |  |  |
| 2550                                                     | 4.40 - j0.70           |  |  |  |  |  |
| 2575                                                     | 4.38 - j0.46           |  |  |  |  |  |
| 2600                                                     | 4.36 - j0.25           |  |  |  |  |  |
| 2625                                                     | 4.34 - j0.14           |  |  |  |  |  |
| 2650                                                     | 4.32 + j0.17           |  |  |  |  |  |
| 2675                                                     | 4.31 + j0.33           |  |  |  |  |  |
| 2700                                                     | 4.30 + j0.57           |  |  |  |  |  |

 Device input impedance as measured rom gate to ground.



Zin



Figure 17. Series Equivalent Input and Load Impedance

## ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS - CLASS AB





|      | $Z_{source}$   | Z <sub>load</sub><br>Ω |  |
|------|----------------|------------------------|--|
| P1dB | 55.22 + j20.17 | 4.19 - j3.44           |  |

Figure 18. Pulsed CW Output Power versus Input Power @ 28 V @ 2500 MHz



NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V

Test Impedances per Compression Level

|      | Z <sub>source</sub><br>Ω | Z <sub>load</sub><br>Ω |  |  |
|------|--------------------------|------------------------|--|--|
| P1dB | 48.60 + j5.11            | 2.47 - j3.66           |  |  |

Figure 19. Pulsed CW Output Power versus Input Power @ 28 V @ 2700 MHz

NOTE: Measurement made on the Class AB, carrier side of the device.

| f    | S <sub>11</sub> |               | S <sub>21</sub> |               | S <sub>12</sub> |               | S <sub>22</sub> |               |
|------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|
| MHz  | S <sub>11</sub> | $\angle \phi$ | S <sub>21</sub> | $\angle \phi$ | S <sub>12</sub> | $\angle \phi$ | S <sub>22</sub> | $\angle \phi$ |
| 1500 | 0.569           | 74.4          | 0.002           | -64.1         | 0.00228         | 135.2         | 0.997           | -176.0        |
| 1550 | 0.575           | 51.5          | 0.004           | -51.1         | 0.00100         | -30.0         | 0.997           | -179.0        |
| 1600 | 0.593           | 34.0          | 0.009           | -87.0         | 0.000590        | -107.6        | 0.995           | 177.4         |
| 1650 | 0.618           | 21.8          | 0.032           | -84.4         | 0.00101         | -103.4        | 0.988           | 172.7         |
| 1700 | 0.623           | 14.3          | 0.092           | -94.6         | 0.00168         | -49.5         | 0.974           | 166.7         |
| 1750 | 0.601           | 7.6           | 0.209           | -111.8        | 0.00326         | -146.0        | 0.979           | 164.9         |
| 1800 | 0.540           | 1.5           | 0.452           | -140.8        | 0.00369         | -102.1        | 0.975           | 162.2         |
| 1850 | 0.426           | -6.8          | 0.885           | -175.9        | 0.00183         | -37.4         | 0.962           | 159.2         |
| 1900 | 0.275           | -12.9         | 1.539           | 151.6         | 0.00427         | -46.1         | 0.954           | 156.7         |
| 1950 | 0.058           | -69.7         | 2.773           | 120.2         | 0.00351         | 143.7         | 0.960           | 153.0         |
| 2000 | 0.154           | 121.2         | 4.188           | 93.2          | 0.00632         | -82.3         | 0.946           | 150.8         |
| 2050 | 0.150           | 79.4          | 7.347           | 72.7          | 0.00857         | -34.1         | 0.935           | 146.9         |
| 2100 | 0.064           | 64.0          | 9.595           | 43.3          | 0.0155          | -51.9         | 0.960           | 144.0         |
| 2150 | 0.607           | -131.3        | 24.560          | 26.9          | 0.0482          | -102.7        | 1.296           | 110.3         |
| 2200 | 0.406           | 81.7          | 28.776          | -77.6         | 0.0257          | 154.9         | 0.196           | -103.8        |
| 2250 | 0.166           | -68.2         | 22.037          | -116.7        | 0.00750         | 131.6         | 0.497           | -162.5        |
| 2300 | 0.184           | -76.9         | 19.823          | -156.5        | 0.00936         | 156.1         | 0.659           | -164.7        |
| 2350 | 0.232           | -154.0        | 16.761          | -179.7        | 0.00172         | -139.6        | 0.743           | -173.5        |
| 2400 | 0.182           | -94.9         | 16.827          | 153.2         | 0.00578         | 149.5         | 0.778           | -173.7        |
| 2450 | 0.114           | -38.6         | 15.801          | 128.7         | 0.00490         | 163.9         | 0.814           | -173.9        |
| 2500 | 0.277           | -52.4         | 19.305          | 89.9          | 0.00825         | 142.6         | 0.853           | -169.7        |
| 2550 | 0.261           | -3.1          | 11.891          | 58.7          | 0.00185         | 153.7         | 0.942           | -173.7        |
| 2600 | 0.208           | 10.3          | 8.941           | 47.6          | 0.00411         | 166.2         | 0.961           | -177.1        |
| 2650 | 0.568           | 28.8          | 8.433           | 40.6          | 0.00264         | -155.7        | 0.977           | -179.4        |
| 2700 | 0.797           | 25.0          | 7.430           | 15.9          | 0.00536         | 128.0         | 0.976           | 178.8         |
| 2750 | 0.358           | 26.5          | 5.138           | -5.8          | 0.00527         | 168.2         | 0.973           | 177.1         |
| 2800 | 0.384           | 33.8          | 4.654           | -18.4         | 0.00311         | -178.0        | 0.976           | 175.3         |
| 2850 | 0.420           | 40.4          | 4.257           | -28.4         | 0.000761        | 173.9         | 0.977           | 173.9         |
| 2900 | 0.337           | 25.5          | 3.973           | -41.8         | 0.00233         | -134.7        | 0.977           | 172.6         |
| 2950 | 0.166           | 27.4          | 3.240           | -53.3         | 0.00414         | -133.7        | 0.969           | 171.4         |
| 3000 | 0.194           | 23.2          | 2.641           | -52.2         | 0.00578         | -153.5        | 0.980           | 170.4         |
| 3050 | 0.186           | -9.6          | 2.337           | -61.6         | 0.00456         | 158.2         | 0.979           | 169.1         |
| 3100 | 0.241           | -59.0         | 2.189           | -74.9         | 0.00204         | -78.5         | 0.982           | 168.5         |
| 3150 | 0.344           | -81.9         | 2.394           | -90.8         | 0.00281         | -98.4         | 0.974           | 162.9         |
| 3200 | 0.392           | -95.8         | 2.636           | -105.7        | 0.00468         | -122.1        | 0.966           | 154.9         |
| 3250 | 0.363           | -95.2         | 3.397           | -117.6        | 0.00661         | -106.5        | 0.949           | 139.2         |
| 3300 | 0.312           | -84.4         | 5.196           | -146.4        | 0.0170          | -126.5        | 0.819           | 93.6          |
| 3350 | 0.430           | -65.7         | 5.347           | 144.0         | 0.0291          | 119.3         | 0.707           | -65.7         |

**Table 7. Class AB Common Source S-Parameters** (V<sub>DD</sub> = 28 V, I<sub>DQ1B</sub> = 80 mA, I<sub>DQ2B</sub> = 275 mA, T<sub>A</sub> = 25°C, 50 Ohm System)Measurement made on the Class AB, carrier side of the device.

(continued)

| f S <sub>11</sub> |                 | 11            | S <sub>21</sub> |               | \$ <sub>12</sub> |               | \$ <sub>22</sub> |               |
|-------------------|-----------------|---------------|-----------------|---------------|------------------|---------------|------------------|---------------|
| MHz               | S <sub>11</sub> | $\angle \phi$ | S <sub>21</sub> | $\angle \phi$ | S <sub>12</sub>  | $\angle \phi$ | S <sub>22</sub>  | $\angle \phi$ |
| 3400              | 0.434           | -56.5         | 2.527           | 100.7         | 0.00568          | 100.1         | 0.930            | -139.3        |
| 3450              | 0.499           | -50.1         | 1.448           | 92.0          | 0.00828          | 25.3          | 0.865            | -161.1        |
| 3500              | 0.546           | -52.3         | 1.394           | 68.4          | 0.000298         | -87.1         | 0.944            | -163.3        |
| 3550              | 0.518           | -56.8         | 1.073           | 52.6          | 0.00543          | 7.1           | 0.965            | -171.1        |
| 3600              | 0.492           | -68.4         | 0.834           | 39.8          | 0.00150          | -30.4         | 0.958            | -177.1        |

Table 7. Class AB Common Source S-Parameters ( $V_{DD}$  = 28 V,  $I_{DQ1B}$  = 80 mA,  $I_{DQ2B}$  = 275 mA,  $T_A$  = 25°C, 50 Ohm System)Measurement made on the Class AB, carrier side of the device. (continued)

## PACKAGE DIMENSIONS



| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | L OUTLINE                        | PRINT VERSION NO | T TO SCALE |
|---------------------------------------------------------|----------------------------------|------------------|------------|
| TITLE:                                                  | DOCUMENT NO: 98ASA10650D REV: A  |                  |            |
| 14 IFAD                                                 | CASE NUMBER: 1618–02 19 JUN 2007 |                  |            |
|                                                         | STANDARD: NO                     | N-JEDEC          |            |



VIEW Y-Y

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA    | L OUTLINE  | PRINT VERSION NO | T TO SCALE |
|---------------------------------------------------------|--------------|------------|------------------|------------|
| TITLE:                                                  | DOCUMENT NO  | REV: A     |                  |            |
| Ι ΙΟ-270 WIDE BOL<br>14 ΙΕΔΟ                            | CASE NUMBER  | 8: 1618–02 | 19 JUN 2007      |            |
|                                                         | STANDARD: NO | DN-JEDEC   |                  |            |

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

|                                           | INCH |      | MILLIMETER |       |                               |                 | INCH       | MILLIMETER       |            |  |
|-------------------------------------------|------|------|------------|-------|-------------------------------|-----------------|------------|------------------|------------|--|
| DIM                                       | MIN  | MAX  | MIN        | MAX   | DIM                           | MIN             | MAX        | MIN              | MAX        |  |
| А                                         | .100 | .104 | 2.54       | 2.64  | F                             | .025 BSC        |            | 0                | 0.64 BSC   |  |
| A1                                        | .039 | .043 | 0.99       | 1.09  | b                             | .154            | .160       | 3.9 <sup>-</sup> | 4.06       |  |
| A2                                        | .040 | .042 | 1.02       | 1.07  | b1                            | .010            | .016       | 0.25             | ō 0.41     |  |
| D                                         | .712 | .720 | 18.08      | 18.29 | c1                            | .007            | .011       | .18              | .28        |  |
| D1                                        | .688 | .692 | 17.48      | 17.58 | е                             | .c              | 20 BSC     | (                | D.51 BSC   |  |
| D2                                        | .011 | .019 | 0.28       | 0.48  | e1                            | .c              | 40 BSC     | 1                | .02 BSC    |  |
| D3                                        | .600 |      | 15.24      |       | e2                            | .1 <sup>.</sup> | 105 BSC    | 2.807 BSC        |            |  |
| Е                                         | .551 | .559 | 14         | 14.2  |                               |                 |            |                  |            |  |
| E1                                        | .353 | .357 | 8.97       | 9.07  | aaa                           |                 | .004       | .10              |            |  |
| E2                                        | .132 | .140 | 3.35       | 3.56  |                               |                 |            |                  |            |  |
| E3                                        | .124 | .132 | 3.15       | 3.35  |                               |                 |            |                  |            |  |
| E4                                        | .270 |      | 6.86       |       |                               |                 |            |                  |            |  |
| E5                                        | .346 | .350 | 8.79       | 8.89  |                               |                 |            |                  |            |  |
| © FREESCALE SEMICONDUCTOR, INC. MECHANICA |      |      |            |       | L OUT                         | LINE            | PRINT VERS | SION NO          | T TO SCALE |  |
| TITLE:                                    |      |      |            |       | DOCUMENT NO: 98ASA10650D REV: |                 |            | REV: A           |            |  |
| TO-270 WIDE BODY                          |      |      |            |       | CASE NUMBER: 1618–02 19 JUN   |                 |            | 19 JUN 2007      |            |  |
| I4 LEAD                                   |      |      |            |       | STANDARD: NON-JEDEC           |                 |            |                  |            |  |



Y Y

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICA                        | L OUTLINE   | PRINT VERSION NO | T TO SCALE |
|---------------------------------------------------------|----------------------------------|-------------|------------------|------------|
| TITLE: TO-270 WIDE BOD                                  | )Y                               | DOCUMENT NO | ): 98ASA10653D   | REV: A     |
| 14 LEAD                                                 | CASE NUMBER: 1621–02 19 JUN 2007 |             |                  |            |
| GULL WING                                               | STANDARD: NO                     | DN-JEDEC    |                  |            |



| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | L OUTLINE                        | PRINT VERSION NO | T TO SCALE     |        |
|---------------------------------------------------------|----------------------------------|------------------|----------------|--------|
| TITLE: TO-270 WIDE BOD                                  | )Υ                               | DOCUMENT NO      | ): 98ASA10653D | REV: A |
| 14 LEAD                                                 | CASE NUMBER: 1621-02 19 JUN 2007 |                  |                |        |
| GULL WING                                               | STANDARD: NO                     | N-JEDEC          |                |        |

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

|                                                         | INCH                    |      | MILLIMETER |       |                                    | INCH      |        | MILLIMETER  |            |
|---------------------------------------------------------|-------------------------|------|------------|-------|------------------------------------|-----------|--------|-------------|------------|
| DIM                                                     | MIN                     | MAX  | MIN        | MAX   | DIM                                | MIN       | MAX    | MIN         | MAX        |
| А                                                       | .100                    | .104 | 2.54       | 2.64  | L                                  | .018      | .024   | 0.46        | 6 0.61     |
| A1                                                      | .001                    | .004 | 0.02       | 0.10  | L1                                 | .010 BSC  |        | 0.25 BSC    |            |
| A2                                                      | .099                    | .110 | 2.51       | 2.79  | b                                  | .154      | .160   | 3.9         | 1 4.06     |
| D                                                       | .712                    | .720 | 18.08      | 18.29 | b1                                 | .010      | .016   | 0.25        | 5 0.41     |
| D1                                                      | .688                    | .692 | 17.48      | 17.58 | c1                                 | .007      | .011   | .18         | .28        |
| D2                                                      | .011                    | .019 | 0.28       | 0.48  | е                                  | .020 BSC  |        | 0.51 BSC    |            |
| D3                                                      | .600                    |      | 15.24      |       | e1                                 | .040 BSC  |        | 1.02 BSC    |            |
| Е                                                       | .429                    | .437 | 10.9       | 11.1  | e2                                 | .1105 BSC |        | 2.807 BSC   |            |
| E1                                                      | .353                    | .357 | 8.97       | 9.07  | t                                  | 2.        | 8'     | 2.          | 8.         |
| E2                                                      | .132                    | .140 | 3.35       | 3.56  |                                    |           |        |             |            |
| E3                                                      | .124                    | .132 | 3.15       | 3.35  | aaa                                | .004      |        | .10         |            |
| E4                                                      | .270                    |      | 6.86       |       |                                    |           |        |             |            |
| E5                                                      | .346                    | .350 | 8.79       | 8.89  |                                    |           |        |             |            |
| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. |                         |      |            |       | OUTLINE PRINT VERSION NOT TO SCALE |           |        |             | T TO SCALE |
| TITLE:                                                  | TITLE: TO-270 WIDE BODY |      |            |       |                                    | MENT NO   | REV: A |             |            |
| 14 LEAD                                                 |                         |      |            |       | CASE NUMBER: 1621-02               |           |        | 19 JUN 2007 |            |
| GULL WING                                               |                         |      |            |       | STANDARD: NON-JEDEC                |           |        |             |            |

## PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE

Refer to the following documents to aid your design process.

## **Application Notes**

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

## **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

#### Software

• Electromigration MTTF Calculator

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

## **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Jan. 2009  | Initial Release of Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1        | July 2009  | <ul> <li>Test Conditions clarified for Fig. 18, Pulsed CW Output Power versus Input Power @ 28 V @ 2500 MHz, and Fig. 19, Pulsed CW Output Power versus Input Power @ 28 V @ 2700 MHz, p. 12</li> <li>Added Electromigration MTTF Calculator availability to Product Software, p. 21</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2        | Sept. 2010 | <ul> <li>For P<sub>out</sub> = 10 W CW, changed Stage 1A, Stage 1B thermal resistance values from 4.0 (Stage 1A), 5.0 (Stage 1B) to 2.6°C/W and Stage 2A, Stage 2B thermal resistance values from 0.9 (Stage 2A), 2.1 (Stage 2B) to 1.8 in Thermal Characteristics table. For P<sub>out</sub> = 55 W CW, changed Stage 1A, Stage 1B thermal resistance values from 4.6 (Stage 1A), 4.2 (Stage 1B) to 2.3°C/W and Stage 2A, Stage 2B thermal resistance values from 1.2 (Stage 2A), 2.0 (Stage 2B) to 1.1 in Thermal Characteristics table. Thermal value now reflects the use of the combined dissipated power from the carrier amplifier and peaking amplifier, p. 2.</li> <li>Fig. 4, Test Circuit Component Layout, added labels to distinguish Carrier and Peaking side of amplifier, p. 6</li> </ul> |
| 3        | Sept. 2010 | • Fig. 3, Test Circuit Schematic, corrected labeling of C9 and C11 0.5 pF Chip Capacitors, p. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale <sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

