D.D. 5V FCT BAL. AND HIGH DRIVE 5V FCT BAL. # CD74FCT16511T, CD74FCT162511T Fast CMOS 16-Bit Registered/Latched **Transceivers with Parity** December 1996 #### Features - These Devices are High-speed, Low Power Devices with High Current Drive - V_{CC} = 5V ±10% - · Hysteresis on All Inputs - CD74FCT16511T - High Output Drive: IOH = -32mA; IOL = 64mA - Power Off Disable Outputs Permit "Live Insertion" - Typical VOLP (Output Ground Bounce) < 1.0V at V_{CC} = 5V, T_A = 25°C - · CD74FCT162511T - Balanced Output Drivers: ±24mA - Open Drain Parity Error Allows Wire-OR - Typical VOLP (Output Ground Bounce) < 1.0V at V_{CC} = 5V, T_A = 25°C #### Pinout CD74FCT16511T, CD74FCT162511T (SSOP, TSSOP) TOP VIEW ### Description Harris' CD74FCT16511T and CD74FCT162511T are produced in an advanced 0.8 micron CMOS technology, achieving industry leading speed grades. The CD74FCT16511T and CD74FCT162511T are highspeed, low-power 16-bit registered/latched transceiver with parity which combines D-type latches and D-type flip-flops to allow data flow in transparent, latched or clocked modes. It has a parity generator/checker in the A-to-B direction and a parity checker in the B-to-A direction. Error checking is done at the byte level with separate parity bits for each byte. One error flag for each direction (A-to-B or B-to-A) exists to indicate an error for either byte in either direction. The parity error flags which are open drain outputs, can be tied together and/or tied with flags from other devices to form a single error flag or interrupt. To disable the error flag during combinational transitions, a designer can disable the parity error flag by the OEXX control pins. The operation in A-to-B direction is controlled by LEAB, CLKAB and OEAB control pins, and the operation in B-to-A direction is controlled by LEBA, CLKBA and OEBA control pins. GEN/CHK is used to select the operation of A-to-B direction, while B-to-A direction is always in checking mode. The ODD/EVEN select is common between the two directions. Independent operation can be achieved between the two directions by using the corresponding control lines except for the ODD/EVEN control. ### Ordering Information | PART NUMBER | TEMP.
RANGE
(°C) | PACKAGE | PKG.
NO. | |-------------------|------------------------|-------------|-------------| | CD74FCT16511ATSM | -40 to 85 | 56 Ld SSOP | M56.300-P | | CD74FCT16511TSM | -40 to 85 | 56 Ld SSOP | M56.300-P | | CD74FCT162511ATMT | -40 to 85 | 56 Ld TSSOP | M56.240-P | | CD74FCT162511ATSM | -40 to 85 | 56 Ld SSOP | M56.300-P | | CD74FCT162511TMT | ~40 to 85 | 56 Ld TSSOP | M56.240-P | | CD74FCT162511TSM | -40 to 85 | 56 Ld SSOP | M56.300-P | NOTE: When ordering, use the entire part number. Add the suffix 96 to obtain the varient in the tape and reel. ### Simplified Functional Block Diagram TRUTH TABLE (NOTES 1, 2) | | INPUTS | | | | | | | |------|--------|-------|----|------------|--|--|--| | OEAB | LEAB | CLKAB | Aχ | Вх | | | | | _ н | Х | Х | Х | Z | | | | | L | Н | Х | L | L | | | | | L | Н | Х | Н | н | | | | | L | _ L | 1 | L | L | | | | | L | L | 1 | Н | Н | | | | | L | L | L | Х | B (Note 3) | | | | | L | L | н | Х | B (Note 4) | | | | #### NOTES: - 1. H = High Voltage Level - L = Low Voltage Level - X = Don't Care or irrelevant - Z = High Impedance - 1 = LOW-to-HIGH Transition - A-to-B data flow is shown. B-to-A flow control is the same, except using OEBA, LEBA, and CLKBA. - Output level before the indicated steady-state input conditions were established. - Output level before the indicated steady-state input conditions were established, assuming CLKAB was HIGH before LEAB went LOW. #### TRUTH TABLE (PARITY GENERATION) (NOTES 5, 6, 7, 8, 9) | TOTAL NUMBER OF INPUTS
THAT ARE HIGH, A ₀ - A ₇ | ODD/EVEN | PB ₁ | |--|----------|-----------------| | 1, 3, 5 or 7 | L | Н | | 1, 3, 5 or 7 | Н | L | | 0, 2, 4, 6 or 8 | L | L | | 0, 2, 4, 6 or 8 | Н | H | #### NOTES: - 5. Conditions shown are for GEN/CHK = L, OEAB = L, OEBA = H. - A-to-B parity generation is shown. B-to-A can check parity while A-to-B is performing generation. B-to-A will not generate parity. - The response shown is for LEAB = H. If LEAB = L, then CLKAB will control as an edge triggered clock. - Conditions shown are for the byte A0-A7. The byte A8-A15 is similar but will output the parity on PB2. - 9. The error flag PERB will remain in a high state during parity generation ### TRUTH TABLE (PARITY CHECKING) (NOTES 10, 11, 12, 13) | TOTAL NUMBER OF INPUTS THAT ARE HIGH, A ₀ - A ₇ AND PA ₁ (NOTE 14) | ODD/
EVEN | PB ₁ | |---|--------------|-----------------| | 1, 3, 5, 7 or 9 | L | L | | 1, 3, 5, 7 or 9 | Н | H (Note 15) | | 0, 2, 4, 6 or 8 | L | H (Note 15) | | 0, 2, 4, 6 or B | Н | Ļ | - 10. Conditions shown are for GEN/CHK = H, OEAB = L, OEBA = H. - A-to-B parity checking is shown. B-to-A parity checking is same but uses OEBA = L, OEAB = H and errors will be indicated on PERA. - In parity checking mode the parity bits will be transmitted unchanged along with the corresponding data regardless of parity errors. (PB₁ = PA₁) - The response shown is for LEAB = H. If LEAB = L, then CLK-AB will control as an edge triggered clock. - 14. Conditions shown are for the byte A_0 - A_7 and PA_1 . The byte A_8 - A_{15} and PA_2 is same. - The parity error flag PERB is a combined flag for both bytes A₀-A₇ and A₈-A₁₅. If a parity error occurs on either byte PERB will go low. # Pin Descriptions | PIN NAME | DESCRIPTION | |---------------------------|--| | ŌĒĀB | A-to-B Output Enable Input (Active LOW) | | OEBA | B-to-A Output Enable Input (Active LOW) | | CLKAB | A-to-B Clock Input | | CLKBA | B-to-A Clock Input | | LEAB | A-to-B Latch Enable Input | | LEBA | B-to-A Latch Enable Input | | PERA | Parity Error (Open Drain) on A Outputs | | PERB | Parity Error (Open Drain) on B Outputs | | Aχ | A-to-B Data Inputs or B-to-A Three State Outputs | | ВХ | B-to-A Data Inputs or B-to-A Three State Outputs | | ODD/EVEN
(Note 16) | Parity Mode Selection Input | | GEN/CHK
(Note 16) | A-to-B Port Generate or Check Mode Input | | PA _X (Note 17) | A-to-B Parity Input, B-to-A Parity Output | | PBX | B-to-A Parity Input, A-to-B Parity Output | | GND | Ground | | Vcc | Power | ### NOTES: - ODD/EVEN and GEN/CHK should be tied to V_{CC} or GND with no resistor for optimum results. - 17. The PA_X pin input is internally disabled during parity generation. This means that when generating parity in the A-to-B direction, there is no need to add a pull-up resistor to guarantee state. The pin will still function properly as the parity output for the B-to-A direction. | Absolute Maximum Ratings | Thermal Information | |--|---| | DC Input Voltage -0.5V to 7.0V DC Output Current 120mA | Thermal Resistance (Typical, Note 18) θ _{JA} (°C/W) TSSOP Package 85 | | Operating Conditions | SSOP Package | | Operating Temperature Range40°C to 85°C Supply Voltage to Ground Potential Inputs and V _{CC} Only0.5V to 7.0V Supply Voltage to Ground Potential Outputs and D/O Only0.5V to 7.0V | Maximum Junction Temperature | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE 18. θ_{JA} is measured with the component mounted on an evaluation PC board in free air. ### **Electrical Specifications** | PARAMETER | SYMBOL | (NOTE 19)
TEST CONDITION | MIN | (NOTE 20)
TYP | MAX | UNITS | | |--|-----------------|--|-----------------------------------|------------------|--------------------------|-------|---------------| | DC ELECTRICAL SPE | CIFICATION | IS Over the Operating Range, TA | = -40°C to 85°C, V _C | c = 5.0V ±10 |)% | | | | Input HIGH Voltage | VIH | Guaranteed Logic HIGH Level | | 2.0 | - | • | V | | Input LOW Voltage | V _{IL} | Guaranteed Logic LOW Level | • | - | | 0.8 | V | | Input HIGH Current
(Input Pins) | lн | V _{CC} = Max | V _{IN} = Vcc | - | - | 1 | μΑ | | Input HIGH Current
(I/O Pins) | I _{IH} | V _{CC} = Max | V _{IN} = Vcc | - | - | -1 | μА | | Input LOW Current
(Input Pins) | IIL | V _{CC} = Max | V _{IN} = GND | - | - | 1 | μА | | Input LOW Current
(I/O Pins) | IIL | V _{CC} = Max | V _{IN} = GND | - | - | -1 | μА | | High Impedance | lozн | V _{CC} = Max | V _{OUT} = 2.7V | - | - | 1 | μА | | Output Current | lozL | V _{CC} = Max | V _{OUT} = 0.5V | | • | -1 | μА | | Clamp Diode Voltage | VIK | V _{CC} = Min, I _{IN} = -18mA | - | • | -0.7 | -1.2 | ٧ | | Short Circuit Current
(I/O Pins) | los | V _{CC} = Max (Note 21), V _{OUT} = G | -80 | -140 | -225 | mA | | | Output Drive Current
(I/O Pins) | ю | V _{CC} ≈ Max (Note 21), V _{OUT} ≈ 2 | .5V | -50 | - | -180 | mA | | Output Leakage
Current (Open Drain) | OFF | V _{CC} = Max, V _{OUT} = 4.5V | | | - | ±100 | μА | | Input Hysteresis - | VH | | | - | 100 | - | mV | | CD74FCT16511T OUT | PUT DRIVE | SPECIFICATIONS Over the Ope | rating Range, T _A = -4 | 0°C to 85°C | , V _{CC} = 5.0V | ±10% | - | | Output HIGH Voltage | V _{OH} | $V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$ | 1 _{OH} = -3.0mA | 2.5 | 3.5 | - | V | | | | | I _{OH} = -15.0mA | 2.4 | 3.5 | • | V | | | | | I _{OH} = -32.0mA | 2.0 | 3.0 | | V | | Output LOW Voltage | VOL | V _{CC} = Min, V _{IN} = V _{IH} or V _{IL} | I _{OL} = 64mA | | 0.2 | 0.55 | V | | Power Down Disable | loff | V _{CC} = 0V, V _{IN} or V _{OUT} ≤ 4.5V | | - | | ±100 | μА | | CD74FCT162511T OU | TPUT DRIV | E SPECIFICATIONS Over the Op | erating Range, T _A = - | 40°C to 85° | C, V _{CC} = 5.0 | /±10% | | | Output HIGH Voltage | V _{OH} | V _{CC} = Min, V _{IN} = V _{IH} or V _{IL} | I _{OH} = -24.0mA | 2.4 | 3.3 | - | T v | | Output LOW Voltage | V _{OL} | V _{CC} = Min, V _{IN} = V _{IH} or V _{IL} | I _{OL} = 24mA | - | 0.3 | 0.55 | V | | Output LOW Current | IODL | V _{CC} = 5V, V _{IN} = V _{IH} or V _{IL} , V _{OL} | _{JT} = 1.5V (Note 21) | 60 | 115 | 150 | mA | | Output HIGH Current | IODH | V _{CC} = 5V, V _{IN} = V _{IH} or V _{IL} , V _{OL} | r = 1.5V (Note 21) | -60 | -115 | -150 | mA | # **Electrical Specifications** (Continued) | PARAMETER | SYMBOL | (NOTE 19
TEST CONDIT | MIN | (NOTE 20) | мах | UNITS | | |--|---|--|--|-----------|------------------|-------------------|------------| | CAPACITANCE TA = 2 | 25 ⁰ C, f = 1MH | | | | | | | | Input Capacitance
(Note 22) | C _{IN} | V _{IN} = 0V | | - | 4.5 | 6.0 | pF | | I/O Capacitance
(Note 22) | C _{1/O} | V _{OUT} = 0V | | | 5.5 | 8.0 | pF | | Open Drain
Capacitance (Note 22) | c _O | V _{OUT} = 0V | | • | 4.5 | 6.0 | рF | | POWER SUPPLY SPE | CIFICATION | is | | | | | | | Quiescent Power
Supply Current | I _{CCL}
I _{CCH} I _{CCZ} | V _{CC} = Max | V _{IN} = GND
or V _{CC} | | 0.1 | 500 | μΑ | | Supply Current per
Input at TTL HIGH | ΔI _{CC} | V _{CC} = Max | V _{IN} = 3.4V
(Note 23) | | 0.5 | 1.5 | mA | | Supply Current per
Input per MHz
(Note 24) | ICCD | V _{CC} = Max, Outputs Open OEAB = GND OEBA = VCC One Bit Toggling 50% Duty Cycle | V _{IN} = V _{CC}
V _{IN} = GND | - | 75 | 120 | иA/
MHz | | Total Power Supply
Current (Note 26) | lc | V _{CC} = Max, Outputs Open
f _{CP} = 10MHz (CLKAB) | V _{IN} = V _{CC}
V _{IN} = GND | - | 0.8 | 1.7
(Note 25) | mA | | | 50% Duty Cycle LEAB = ŌĒĀB = GND ŌĒBĀ = V _{CC} | V _{IN} = 3.4V
V _{IN} = GND | - | 1.3 | 3.2
(Note 25) | mA | | | : | | V _{CC} = Max, Outputs Open
f _{CP} = 10MHz (CLKAB) | V _{IN} = V _{CC}
V _{IN} = GND | | 3.8 | 6.5
(Note 25) | mA | | | | 50% Duty Cycle LEAB = ŌĒĀB = GND ŌĒBĀ = V _{CC} f ₁ = 2.5MHz 18 Bits Toggling | V _{IN} = 3.4V
V _{IN} = GND | | 9.0 | 21.8
(Note 25) | mA | # Switching Specifications Over Operating Range (Propagation Delays) | | 1 | (NOTE 27) | T | | A1 | · | | | |---|--------------------------------------|--|---------------|------|-----------|-----|-------|--| | PARAMETER | SYMBOL | TEST
CONDITIONS | (NOTE 28) MAX | | (NOTE 28) | MAX | UNITS | | | Propagation Delay PA_X to PB_X | t _{PLH}
t _{PHL} | C _L = 50pF
R _L = 500Ω | 1.5 | 6.5 | 1.5 | 5.7 | ns | | | Propagation Delay A_X to B_X or B_X to A_X , PB_X to PA_X | t _{PLH}
t _{PHL} | C _L = 50pF
R _L = 500Ω | 1.5 | 6.5 | 1.5 | 5.0 | ns | | | Propagation Delay
A _X to PB _X | t _{PLH}
t _{PHL} | C _L = 50pF
R _L = 500Ω | 1.5 | 9.0 | 1.5 | 7.5 | ns | | | Propagation Delay | †PLH | e 29) R _L = 500Ω | 1.5 | 10.5 | 1.5 | 9.0 | ns | | | A _X to PERB, PA _X to PERB | (Note 29)
tphL | | 1.5 | 9.5 | 1.5 | 8.0 | ns | | | Propagation Delay | t _{PLH} | | 1.5 | 10.5 | 1.5 | 9.0 | ns | | | B _X to PERA, PB _X to PERA | (Note 29)
t _{PHL} | | 1.5 | 9.5 | 1.5 | 8.0 | ns | | | Propagation Delay
LEBA to A _X and PA _X ,
LEAB to B _X and PB _X | t _{PLH}
t _{PHL} | C _L = 50pF
R _L = 500Ω | 1.5 | 6.0 | 1.5 | 5.6 | ns | | | Propagation Delay | t _{PLH} | C _L = 50pF | 1.5 | 7.5 | 1.5 | 7.0 | ns | | | LEBA to PERA, LEAB to PERB | (Note 29)
tphL | R _L = 500Ω | 1.5 | 6.5 | 1.5 | 6.0 | ns | | # Switching Specifications Over Operating Range (Propagation Delays) (Continued) | | | (NOTE 27) | т | | A1 | AT | | | |--|--------------------------------------|--|------------------|------|------------------|------|-------|--| | PARAMETER | SYMBOL | TEST
CONDITIONS | (NOTE 28)
MIN | MAX | (NOTE 28)
MIN | MAX | UNITS | | | Propagation Delay CLKBA to A_X and PA_X CLKAB to B_X and PB_X | t _{PLH} | C _L = 50pF
R _L = 500Ω | 1.5 | 6.0 | 1.5 | 5.6 | ns | | | Propagation Delay | t _{PLH} | C _L = 50pF | 1.5 | 7.5 | 1.5 | 7.0 | ns | | | CLKBA to PERA
CLKAB to PERB | (Note 29)
t _{PHL} | $R_L = 500\Omega$ | 1.5 | 6.5 | 1.5 | 6.0 | ns | | | Output Enable Time
OEBA to A _X and PA _X
OEAB to B _X and PB _X | [†] PZH
[†] PZL | C _L = 50pF
R _L = 500Ω | 1.5 | 7.0 | 1.5 | 6.0 | ns | | | Output Disable Time (Note 30) OEBA to Ax and PAx OEAB to Bx and PBx | t _{PHZ} | C _L = 50pF
R _L = 500Ω | 1.5 | 7.0 | 1.5 | 5.6 | ns | | | Parity ERROR Enable | ¹ PLZ | C _L = 50pF | 1.5 | 6.0 | 1.5 | 6.0 | ns | | | OEBA to PERA. OEAB to PERB | (Note 29)
t _{PZL} | $R_L = 500\Omega$ | 1.5 | 6.0 | 1.5 | 60 | ns | | | ODD/EVEN to PEAB | t _{PLH} | C _L = 50pF | 15 | 10.0 | 1.5 | 10.0 | ns | | | | t _{PHL} | R _L = 500Ω | 1.5 | 10.0 | 1.5 | 10.0 | rıs | | | ODD/EVEN to PBX | t _{PLH}
t _{PHL} | C _L = 50pF
R _L = 500Ω | 1.5 | 10.0 | 1.5 | 10.0 | ns | | ### Switching Specifications Over Operating Range (Setup Times) | | | , | (NOTES 27, 31) | | | T | А | T | | |--|---------------------|---------------------------|---------------------------|-------------------------|-----|-----|-----|-----|-------| | DESCRIPTION | SYMBOL | | CONDITIONS | | MIN | MAX | MIN | MAX | UNITS | | Setup Time | t _{SU} | GEN/CHK LOW | PB _X valid | C _L = 50pF | 6.5 | - | 4 | | ns | | HIGH or LOW
A _X to CLKAB | | | PB _X not valid | R _L ≈ 500Ω | 3 | - | 3 | - | ns | | | | GEN/CHK HIGH | PERB valid | C _L = 50pF | 6.5 | - | 4 | - | ns | | | | | PERB not valid | - R _L ≈ 500Ω | 3 | - | 3 | - | ns | | Setup Time | tsu | GEN/CHK HIGH | PERB valid | C _L = 50pF | 6.5 | - | 4 | - | ns | | PA _X to CLKAB | | | PERB not valid | - R _L = 500Ω | 3 | | 3 | | ns | | Setup Time | x to CLKBA RL = 500 | C _L = 50pF | 6.5 | - | 4 | - | ns | | | | PBX to CLKBA | | | PERA not valid | - H _L ≈ 500Ω | 3 | - | 3 | - | ns | | Setup Time | tsu | | PB _X valid | Cլ = 50pF | 6.5 | - | 3.5 | - | ns | | A _X to LEAB | | GEN/CHK LOW | PB _X not valid | - R _L = 500Ω | 3 | | 3 | | ns | | | | CLKAB LOW | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | ļ | GEN/CHK HIGH | PERB not valid | R _L = 500Ω | 3 | | 3 | - | ns | | | | CLKAB HIGH | PB _X valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | GEN/CHK L | GEN/CHK LOW | PB _X not valid | -R _L = 500Ω | 3 | - | 3 | | ns | | | | | CLKAB HIGH | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | GEN/CHK HIGH | PERB not valid | - R _L ≈ 500Ω | 3 | - | 3 | - | ns | ### Switching Specifications Over Operating Range (Setup Times) (Continued) | | | (NOTES 27, 31) | | | T | | AT | | | |---|-----------------|----------------|----------------|-----------------------|-----------------|---|-----|---------|----| | DESCRIPTION | SYMBOL | , | CONDITIONS | | MIN MAX MIN MAX | | MAX | X UNITS | | | Setup Time | ts∪ | CLKAB LOW | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | PAx to LEAB | | GEN/CHK HIGH | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | CLKAB HIGH | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | GEN/CHK HIGH | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | | ns | | Setup Time | t _{SU} | CLKBA LOW | PERA valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | B _X to LEBA
PB _X to LEBA | | | PERA not valid | $R_L = 500\Omega$ | 3 | | 3 | - | ns | | | 1 | CLKAB HIGH | PERA valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | | PERA not valid | R _L = 500Ω | 3 | - | 3 | | ns | ### Switching Specifications Over Operating Range (Hold Times) | DESCRIPTION | SYMBOL | (NOTE 27) | т | | AT | | | |--|----------------|--------------------------------|-----|-----|-----|-----|-------| | | | | MIN | MAX | MIN | MAX | UNITS | | Hold Time HIGH or LOW A _X to LEAB, B _X to LEBA | ŧн | $C_L = 50pF$ $R_L = 500\Omega$ | 1 | - | 1 | - | ns | | Hold Time HIGH or LOW PAX to LEAB | t _H | | 1 | - | 1 | | ns | | Hold Time HIGH or LOW PBX to LEBA | ţн | | 1 | - | 1 | - | ns | | Hold Time A _X to CLKAB, PA _X to CLKAB | tн | | 1 | - | 1 | - | ns | | Hold Time B _X to CLKBA, PB _X to CLKBA | t _H | | 1 | | 1 | | ns | | LEAB or LEBA Pulse Width HIGH (Note 30) | tw | | 3 | - | 3 | - | ns | | CLKAB or CLKBA Pulse Width HIGH or LOW (Note 30) | tw | | 3 | - | 3 | - | ns | ### NOTES: - 19. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type. - 20. Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. - 21. Not more than one output should be shorted at one time. Duration of the test should not exceed one second. - 22. This parameter is determined by device characterization but is not production tested. - 23. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND. - 24. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations. - 25. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested. - 26. IC = IQUIESCENT + INPUTS + IDYNAMIC $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_{CP}/2 + f_I N_I)$ I_{CC} = Quiescent Current ΔICC = Power Supply Current for a TTL High Input (V_{IN} = 3.4V) D_H = Duty Cycle for TTL Inputs High N_T = Number of TTL Inputs at D_H I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices) f_I = Input Frequency N_I ≈ Number of Inputs at f_I All currents are in milliamps and all frequencies are in megahentz. - 27. See test circuit and wave forms. - 28. Minimum limits are guaranteed but not tested on Propagation Delays. - 29. On Open Drain Outputs t_{PLH} is measured up to $V_{OUT} = V_{OL} + 0.3V$. - 30. This parameter is guaranteed but not production tested. - 31. "Not Valid" means the setup time indicated is not sufficient to assure proper funtioning of this output; however, the set-up time indicated will assure proper functioning of the A-to-B or B-to-A port respective to the indicated direction. ## Test Circuits and Waveforms ### tehz, tezh, telh, tehl DEFINITIONS: TEST tPLZ, tPZL C_L = Load capacitance, includes jig and probe capacitance. R_T ≈ Termination resistance, should be equal to Z_{OUT} of the Pulse Generator. **SWITCH POSITION** SWITCH Closed Open #### NOTE: Pulse Generator for All Pulses: Rate ≤ 1.0MHz; Z_{OUT} ≤ 50Ω; t_f, t_r ≤ 2.5ns. FIGURE 1. TEST CIRCUIT FIGURE 2. SETUP, HOLD, AND RELEASE TIMING FIGURE 4. ENABLE AND DISABLE TIMING FIGURE 5. PROPAGATION DELAY