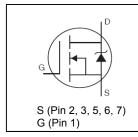
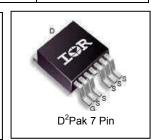


AUTOMOTIVE GRADE

AUIRF1324S-7P


Features


- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- · Fast Switching
- Repetitive Avalanche Allowed up to Timax
- · Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and wide variety of other applications.

V _{DSS}	24V
R _{DS(on)} typ.	0.8mΩ
max.	1.0mΩ
D (Silicon Limited)	429A①
D (Package Limited)	240A

G	D	S
Gate	Drain	Source

Page Port Number	Bookaga Typa	Standar	d Pack	Orderable Part Number
Base Part Number Package Type Fo		Form	Quantity	Orderable Part Number
AUIRF1324S-7P	D ² Pak 7 Pin	Tube	50	AUIRF1324S-7P

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	429①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	303①] ,
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	240	Α
I _{DM}	Pulsed Drain Current ②	1640	1
P _D @T _C = 25°C	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ③	230	mJ
I _{AR}	Avalanche Current ②	See Fig.14,15, 18a, 18b	Α
E _{AR}	Repetitive Avalanche Energy		mJ
dv/dt	Peak Diode Recovery ④	1.6	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ hetaJC}$	Junction-to-Case		0.50	°C/W
$R_{\scriptscriptstyle{ hetaJA}}$	Junction-to-Ambient ®		40	C/VV

HEXFET® is a registered trademark of Infineon.

2015-9-30

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	24			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.023		V/°C	Reference to 25°C, I _D = 5mA S
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.80	1.0	mΩ	V _{GS} = 10V, I _D = 160A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	190			S	V _{DS} = 15V, I _D = 160A
R_G	Gate Resistance		3.0		Ω	
ı	Drain to Course Leakers Current			20		V_{DS} =24V, V_{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	V_{DS} =24V, V_{GS} = 0V V_{DS} =19V, V_{GS} = 0V, T_{J} =125°C
ı	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	ПА	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

•		 •	/		
Q_g	Total Gate Charge	 180	252		I _D = 75A
Q_{gs}	Gate-to-Source Charge	 47		0	V _{DS} = 12V V _{GS} = 10V⑤
Q_{gd}	Gate-to-Drain Charge	 58		nC	V _{GS} = 10V⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})	 122			
$t_{d(on)}$	Turn-On Delay Time	 19			V _{DD} = 16V
t _r	Rise Time	 240		no	I _D = 160A
$t_{d(off)}$	Turn-Off Delay Time	 86		ns	$R_G = 2.7\Omega$
t _f	Fall Time	 93			V _{GS} = 10V⑤
C_{iss}	Input Capacitance	 7700			$V_{GS} = 0V$
Coss	Output Capacitance	 3380			V _{DS} = 19V
C _{rss}	Reverse Transfer Capacitance	 1930		рF	f = 1.0MHz, See Fig. 5
Coss eff.(ER)	Effective Output Capacitance (Energy Related)	 4780			V _{GS} = 0V, V _{DS} = 0V to 19V⑦
C _{oss eff.(TR)}	Effective Output Capacitance (Time Related)	 4970			V _{GS} = 0V, V _{DS} = 0V to 19V6

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ı	Continuous Source Current			429 ①		MOSFET symbol
Is	(Body Diode)			429U		showing the
	Pulsed Source Current			1640	A	integral reverse
I _{SM}	(Body Diode) ②			1040		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 160A, V_{GS} = 0V $ §
4	Deverse Desever Time		71	107	no	$T_J = 25^{\circ}C$ $V_{DD} = 20V$
t _{rr}	Reverse Recovery Time		74	110	ns	$T_J = 125^{\circ}C$ $I_F = 160A$,
0	Poverse Pecevery Charge		83	120	nC	$T_J = 25^{\circ}C$ di/dt = 100A/µs \odot
Q_{rr}	Reverse Recovery Charge		92	140	IIC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		2.0		Α	T _J = 25°C
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- ③ Limited by T_{Jmax} , starting T_J = 25°C, L = 0.018mH, R_G = 25 Ω , I_{AS} = 160A, V_{GS} =10V. Part not recommended for use above this value.
- \bigcirc Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \odot C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

 $\ \$ $\ \ \,$ $\ \$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$

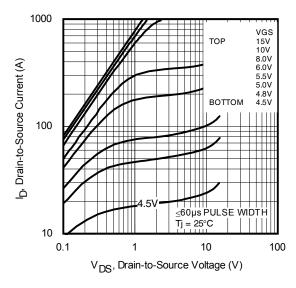


Fig. 1 Typical Output Characteristics

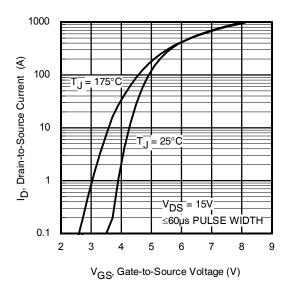


Fig. 3 Typical Transfer Characteristics

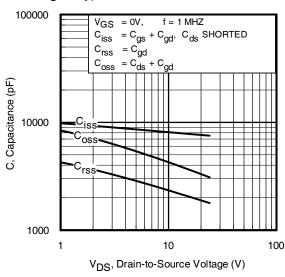


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

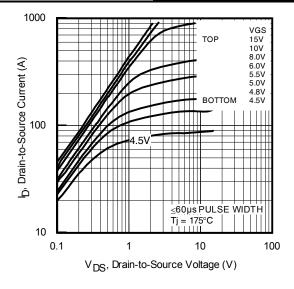


Fig. 2 Typical Output Characteristics

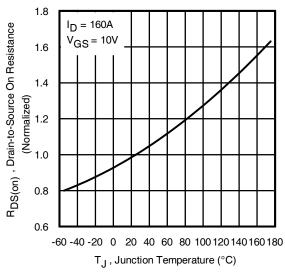


Fig. 4 Normalized On-Resistance vs. Temperature

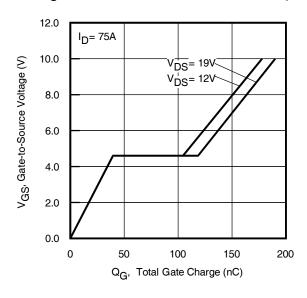


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

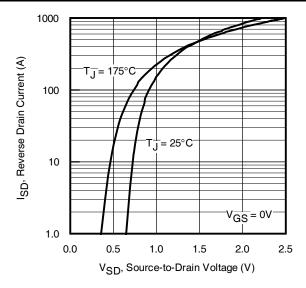


Fig. 7 Typical Source-to-Drain Diode Forward Voltage 450 400 Limited By Package 350 I_D, Drain Current (A) 300 250 200 150 100 50 0 75 25 50 100 125 150 175 T_C , Case Temperature (°C)

Fig 9. Maximum Drain Current vs. Case Temperature

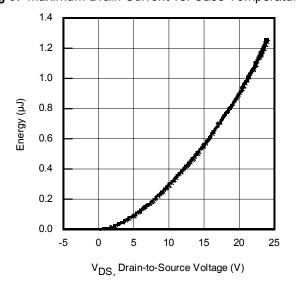


Fig 11. Typical Coss Stored Energy

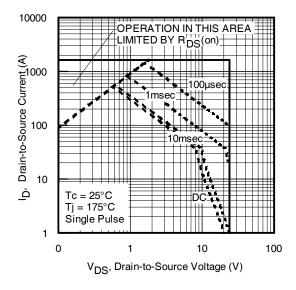


Fig 8. Maximum Safe Operating Area

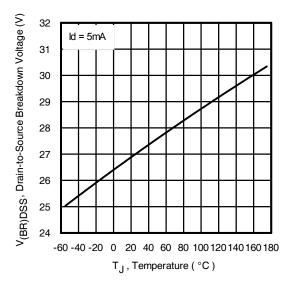


Fig 10. Drain-to-Source Breakdown Voltage

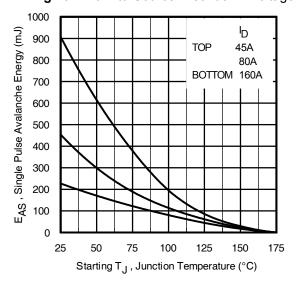


Fig 12. Maximum Avalanche Energy vs. Drain Current

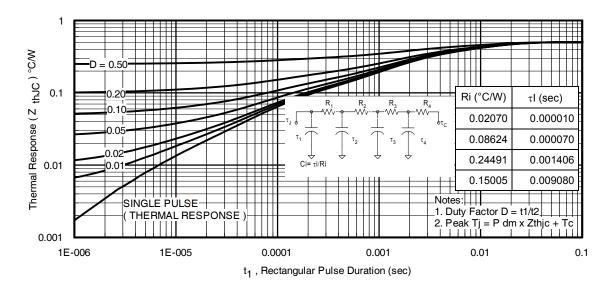


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

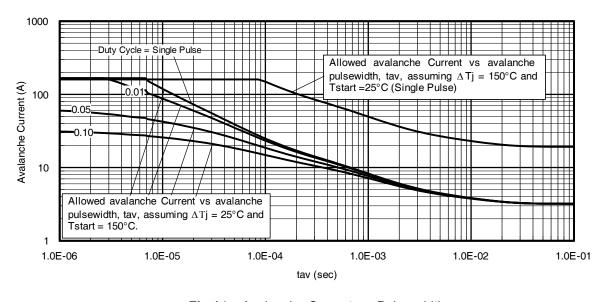
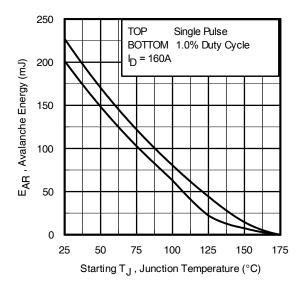



Fig 14. Avalanche Current vs. Pulse width

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Fig 15. Maximum Avalanche Energy vs. Temperature

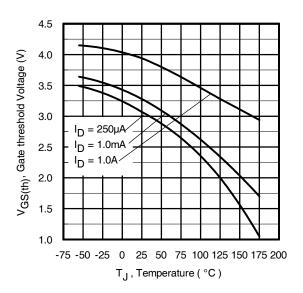


Fig 16. Threshold Voltage vs. Temperature

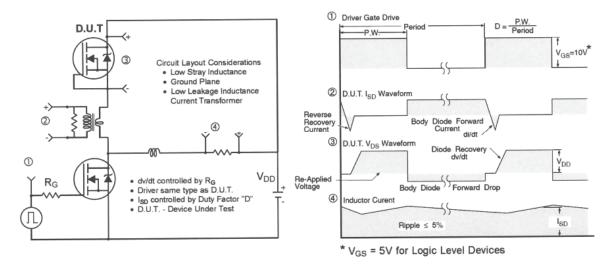


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

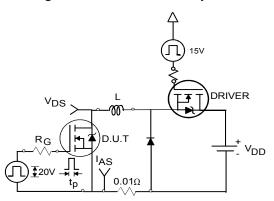


Fig 18a. Unclamped Inductive Test Circuit

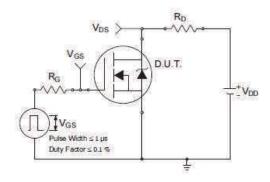


Fig 19a. Switching Time Test Circuit

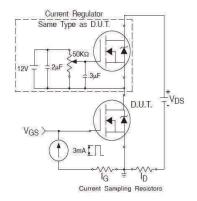


Fig 20a. Gate Charge Test Circuit

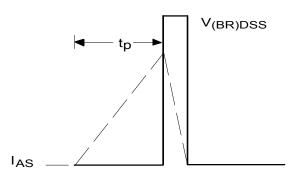


Fig 18b. Unclamped Inductive Waveforms

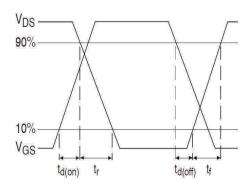


Fig 19b. Switching Time Waveforms

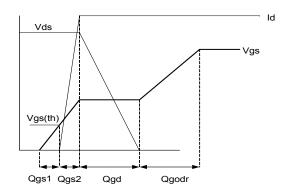
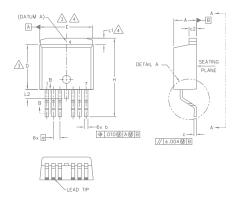
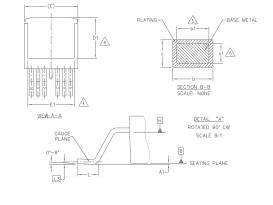




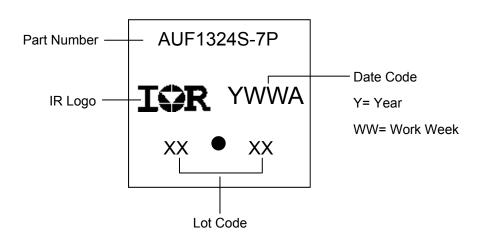
Fig 20b. Gate Charge Waveform

D²Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches))

S		DIMENSIONS					
M B O	MILLIM	IETERS	INC	HES	N O T E S		
L	MIN.	MAX.	MIN.	MAX.	E S		
А	4.06	4.83	.160	.190			
A1	_	0.254	_	.010			
Ь	0.51	0.99	.020	.036			
b1	0.51	0.89	.020	.032	5		
С	0.38	0.74	.015	.029			
c1	0.38	0.58	.015	.023	5		
c2	1.14	1.65	.045	.065			
D	8.38	9.65	.330	.380	3		
D1	6.86	7.42	.270	.292	4		
E	9.65	10.54	.380	.415	3,4		
E1	6.22	8.48	.245	.334	4		
е	1.27	BSC	.050	BSC			
Н	14.61	15.88	.575	.625			
L	1.78	2.79	.070	.110			
L1	-	1.68	_	.066	4		
L2	_	1.78	_	.070			
L3	0.25	BSC	.010	BSC	1		

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].


O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

D²Pak - 7 Pin Part Marking Information

Qualification Information

		Automotive (per AEC-Q101)				
Qualification Level Comments: This part number(s) passed Automotive qualification. Industrial and Consumer qualification level is granted by extension of t Automotive level.						
Moisture	isture Sensitivity Level D²-Pak 7 Pin MSL1					
	Marshire a Marshall		Class M4 [†]			
	Machine Model	AEC-Q101-002				
ECD	Human Dady Madal	Class H3A [†]				
ESD	Human Body Model	AEC-Q101-001				
Charged Davise Medal		Class C3 [†]				
	Charged Device Model		AEC-Q101-005			
RoHS Co	mpliant	Yes				

[†] Highest passing voltage.

Revision History

Date	Comments				
9/30/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. Updated typo on GFS on page 2. 				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.