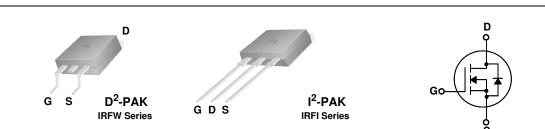
November 2001

IRFW840B / IRFI840B

IRFW840B / IRFI840B 500V N-Channel MOSFET

General Description


FAIRCHILD SEMICONDUCTOR

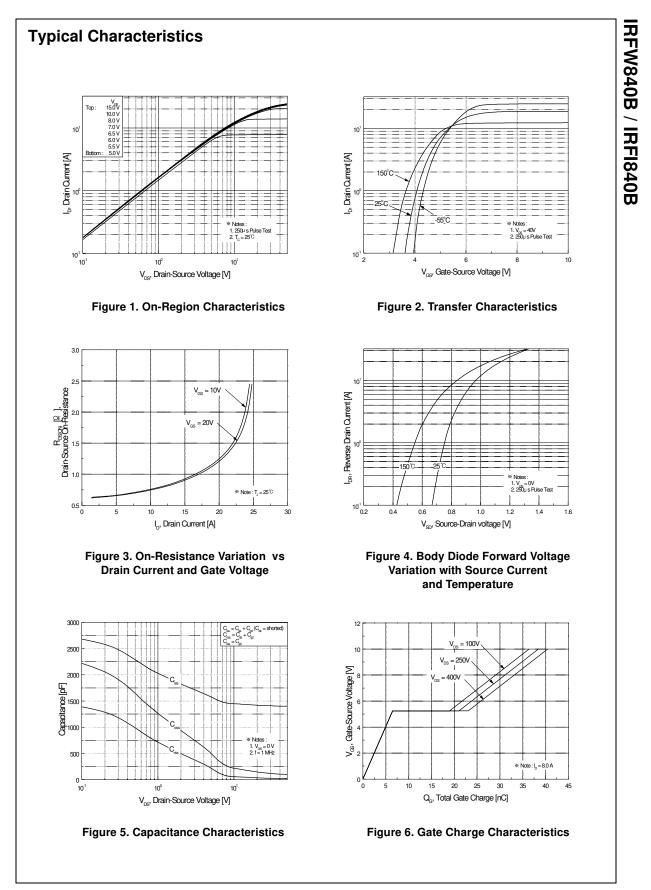
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

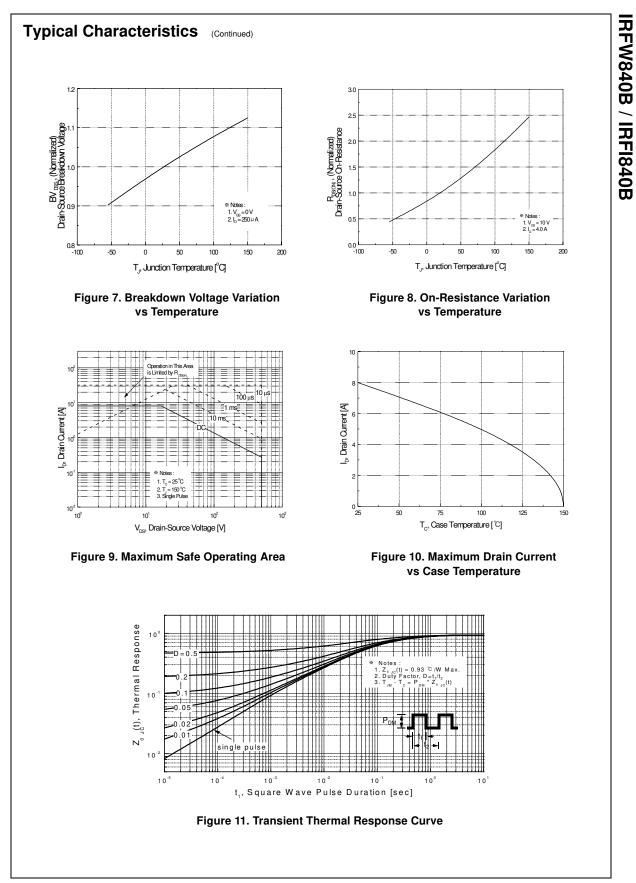
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies, power factor correction and electronic lamp ballasts based on half bridge.

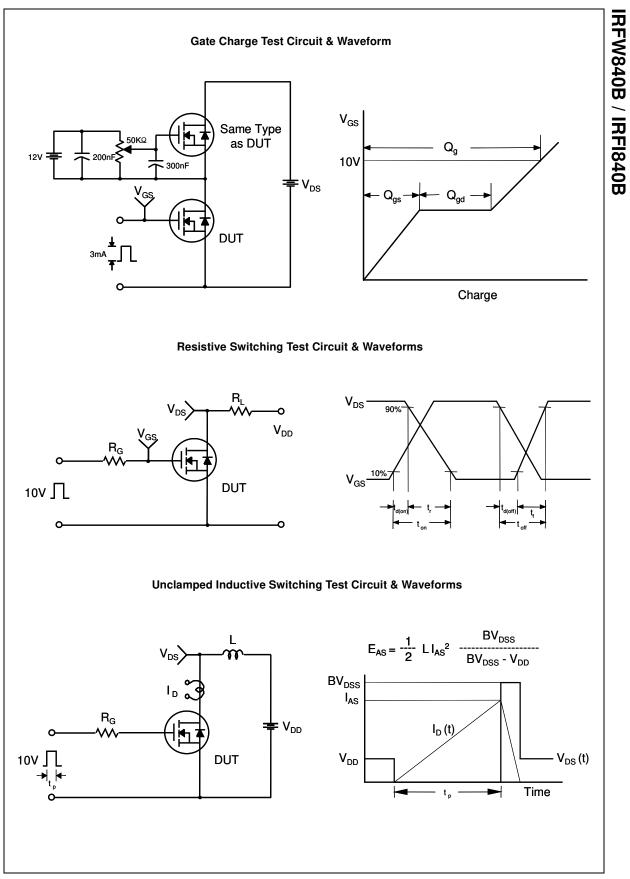
Features

- + 8.0A, 500V, $R_{DS(on)}$ = 0.8 Ω @V_{GS} = 10 V + Low gate charge (typical 41 nC)
- · Low Crss (typical 35 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

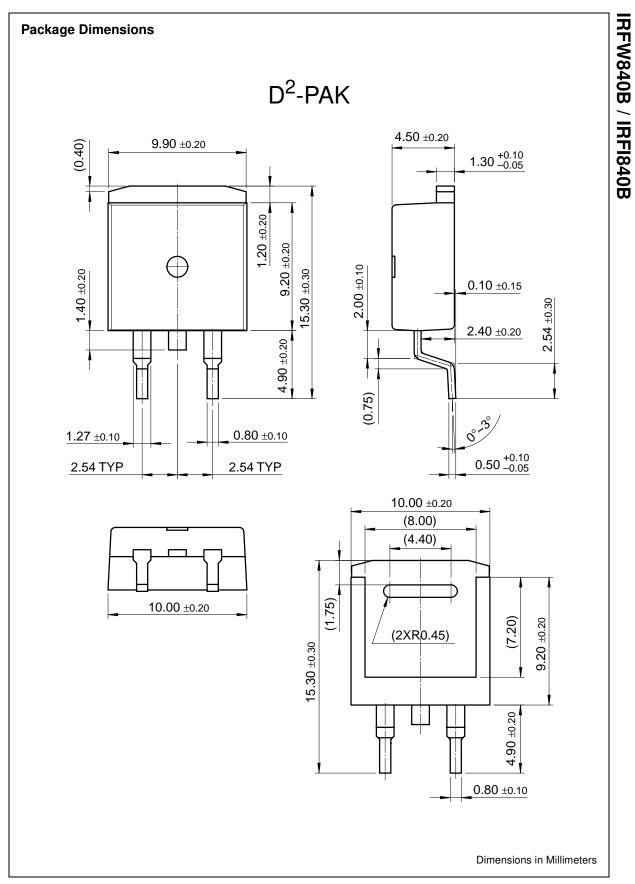

Symbol	Parameter		IRFW840B / IRFI840B	Units
V _{DSS}	Drain-Source Voltage		500	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		8.0	А
	- Continuous (T _C = 100°C)		5.1	А
I _{DM}	Drain Current - Pulsed	(Note 1)	32	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	320	mJ
I _{AR}	Avalanche Current	(Note 1)	8.0	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	13.4	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
PD	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.13	W
	Power Dissipation $(T_C = 25^{\circ}C)$		134	W
	- Derate above 25°C	+	1.08	W/°C
T _J , T _{stg}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

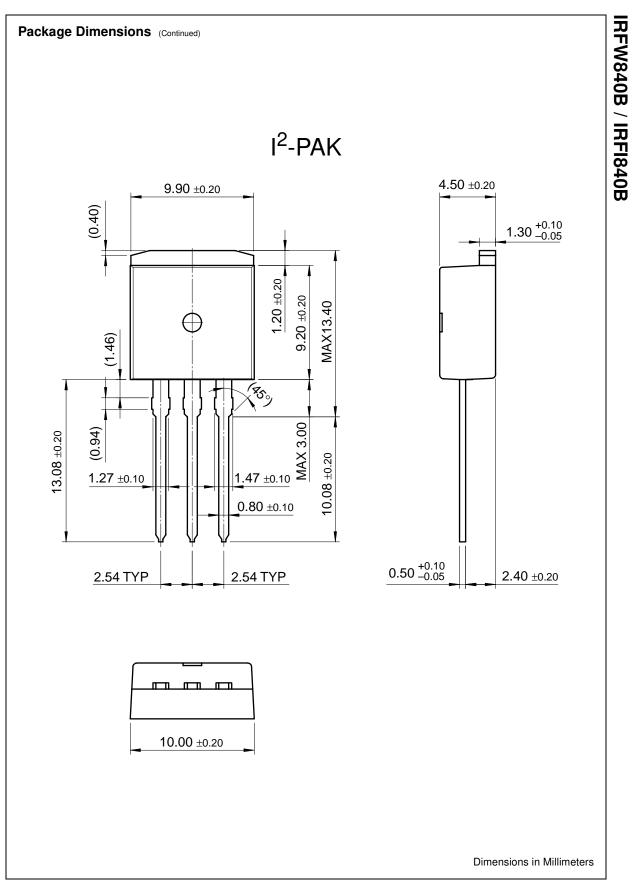

Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.93	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
)ff Cha	racteristics		·			
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	500			V
ΔT _{.1}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		0.55		V/°C
DSS		V _{DS} = 500 V, V _{GS} = 0 V			10	μA
	Zero Gate Voltage Drain Current	$V_{DS} = 400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			100	μΑ
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
	racteristics					
GS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 4.0 A		0.65	0.8	Ω
	On-Resistance Forward Transconductance	V _{DS} = 40 V, I _D = 4.0 A (Note 4)	7.3		S
FS	Torward Transconductance			7.5		5
Dynami	ic Characteristics					
Siss	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		1400	1800	pF
Soss	Output Capacitance	f = 1.0 MHz		145	190	pF
Srss	Reverse Transfer Capacitance	+		35	45	pF
d(on)	Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 250$ V, I _D = 8.0 A, R _G = 25 Ω		22 65	55 140	ns ns
d(off)	Turn-Off Delay Time	$R_{G} = 25 \Omega$		125	260	ns
:	Turn-Off Fall Time	(Note 4, 5	5)	75	160	ns
λ ^g	Total Gate Charge	V _{DS} = 400 V, I _D = 8.0 A,		41	53	nC
ر روم	Gate-Source Charge	$V_{GS} = 10 \text{ V}$		6.5		nC
λ ^{gd}	Gate-Drain Charge	(Note 4, 5	5)	17		nC
<u> </u>				1		
	ource Diode Characteristics an				0.0	•
S	Maximum Continuous Drain-Source Dic				8.0	A
						A
				200		•
						ns μC
SM r r r r r r r r	$\label{eq:main_source} \begin{array}{l} \mbox{Maximum Pulsed Drain-Source Diode F} \\ \mbox{Drain-Source Diode Forward Voltage} \\ \mbox{Reverse Recovery Time} \\ \mbox{Reverse Recovery Charge} \\ \mbox{ating : Pulse width limited by maximum junction temper} \\ \mbox{Ag} = 8.0A, V_{DD} = 50V, R_{G} = 25 \Omega, \mbox{Starting } T_{J} = 25^{\circ}\text{C} \\ \mbox{di/dt} \leq 300A/\mu s, V_{DD} \leq BV_{DSS}, \mbox{Starting } T_{J} = 25^{\circ}\text{C} \\ \mbox{Pulse width} \leq 300\mu s, \mbox{Duty cycle} \leq 2\% \\ \mbox{ndependent of operating temperature} \\ \end{array}$	$\label{eq:GS} \begin{array}{l} \mbox{Forward Current} \\ \mbox{V}_{GS} = 0 \ V, \ I_S = 8.0 \ A \\ \mbox{V}_{GS} = 0 \ V, \ I_S = 8.0 \ A, \\ \mbox{dI}_F \ / \ dt = 100 \ A / \mu s \end{array} \ (Note 4 \ A \ A \ A \ A \ A \ A \ A \ A \ A \$		 390 4.2	32 1.4 	


IRFW840B / IRFI840B





©2001 Fairchild Semiconductor Corporation

©2001 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E^2CMOS^{TM} EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MicroPak[™] MICROWIRE[™]

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SLIENT SWITCHER[®] SMART STARTVCXTMSTAR*POWERTMStealthTMSuperSOTTM-3SuperSOTTM-6SuperSOTTM-6SyncFETTMTruTranslationTMTinyLogicTMUHCTMUHCTMUltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor			tric Cross Reference
find products	Home >> Find products >>		
Products groups Analog and Mixed Signal Discrete Interface Logic Microcontrollers Non-Volatile Memory Optoelectronics Markets and applications New products Product selection and parametric search Cross-reference search	IRFI840B 500V N-Channel B-FET / Substitute of IRFI840A Contents General description Features Product status/pricing/packaging General description These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies, power factor correction and electronic	Datasheet Download this datasheet PDF e-mail this datasheet [E- This pagePrint version	Related Links Request samples Datted Line How to order products Datted Line Product Change Notices (PCNs) Datted Line Distributor and field sales representatives Datted Line Quality and reliability Datted Line Design tools
my Fairchild	lamp ballasts based on half bridge.	-	
company	Features		

- 8.0A, 500V, $R_{DS(on)} = 0.8\Omega @V_{GS} = 10V$
- Low gate charge (typical 41 nC)
- Low Crss (typical 35 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product Product status Pricing* Package type Leads Packing method	Product	Product status	Pricing*	Package type	Leads	Packing method
---	---------	----------------	----------	--------------	-------	----------------

I					
IRFI840BTU	Full Production	\$1.11	TO-262(I2PAK)	3	RAIL
* 1,000 piece Bud	getary Pricing				
back to top					
•					
Home Find produ	cts Technical inform	<u>nation Buy</u>	products		
Support Company	y <u>Contact us</u> <u>Site ir</u>	ndex Privacy	<u>y policy</u>		
 © Copyright 2002	Fairchild Semicondu	<u>ictor</u>			_