STD4LN80K5

N-channel 800 V, 2.1 Ω typ., 3 A MDmesh™ K5 Power MOSFET in a DPAK package

Datasheet - production data

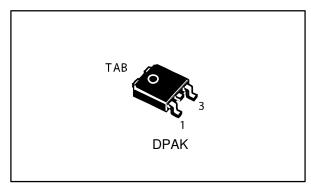
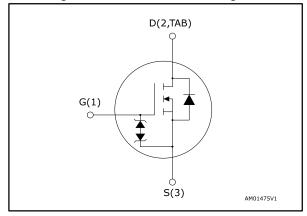



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STD4LN80K5	800 V	2.6 Ω	3 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on resistance and ultra low gate charge for application requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STD4LN80K5	4LN80K5	DPAK	Tape and reel

STD4LN80K5 Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) packing information	12
5	Revisio	n history	14

STD4LN80K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 30	V
I_D	Drain current (continuous) at T _C = 25 °C	3	Α
ID	Drain current (continuous) at T _C = 100 °C	1.9	Α
I _D ⁽¹⁾	Drain current (pulsed)	12	Α
P _{TOT}	Total dissipation at T _C = 25 °C	60	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	MOSFET dv/dt ruggedness 50	
T _{stg}	Storage temperature range	- 55 to 150 °C	
Tj	Operating junction temperature range	- 55 to 150	30

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.08	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	0.8	А
Eas	(Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	160	mJ

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 3$ A, di/dt \leq 100 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD} = 400 V.

 $^{^{(3)}}V_{DS} \le 640 \text{ V}$

⁽¹⁾When mounted on FR-4 board of 1 inch², 2 oz Cu

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			٧
	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			1	μΑ
IDSS		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 1 A		2.1	2.6	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	122	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	11	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	0.3	1	рF
C _{o(tr)} (1)	Equivalent capacitance time related	V _{DS} = 0 to 640 V,	-	23	-	рF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{GS} = 0 V	-	9	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	18	-	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 2.5 \text{ A},$	-	3.7	1	nC
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge behavior")	-	1	-	nC
Q _{gd}	Gate-drain charge		-	2.2	-	nC

Notes:

 $^{^{\}left(1\right)}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 400 \text{ V}, I_D = 1.25 \text{ A}$	-	7	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	9	-	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times"	-	31	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	25	-	ns

Table 8: Source drain diode

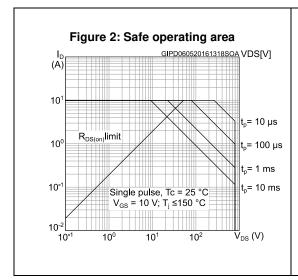
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		3	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		12	Α
V _{SD} (2)	Forward on voltage	I_{SD} = 2.5 A, V_{GS} = 0 V,	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 2.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	230		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	1.04		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	9		Α
t _{rr}	Reverse recovery time	$I_{SD} = 2.5 \text{ A}$, $di/dt = 100 \text{ A/µs}$, $V_{DD} = 60 \text{ V}$, $T_j = 150 ^{\circ}\text{C}$ (see Figure 16: "Test circuit for	-	368		ns
Qrr	Reverse recovery charge		-	1.53		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	8		Α

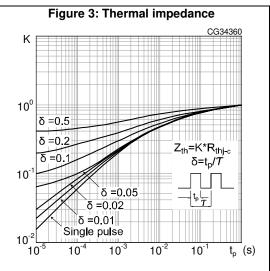
Notes:

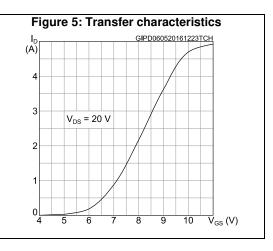
Table 9: Gate-source Zener diode

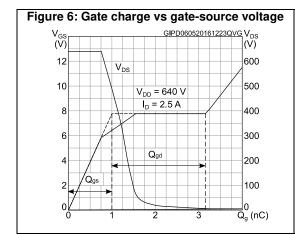
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_{D} = 0 \text{ A}$	30		-	V

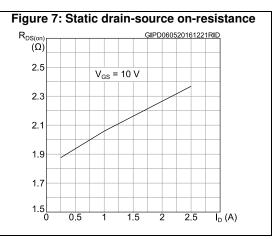
The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.




⁽¹⁾Pulse width is limited by safe operating area


 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%


2.1 Electrical characteristics (curves)


Electrical characteristics

STD4LN80K5 Electrical characteristics

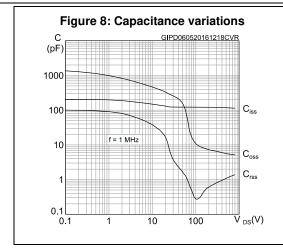


Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)} GIPD060520161227VTH

1.2

1 I_D = 100 μA

0.8

0.6

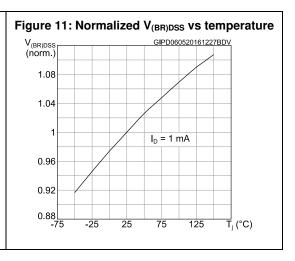
0.4

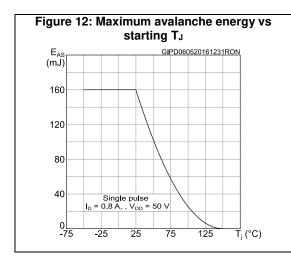
-75 -25 25 75 125 T_j (°C)

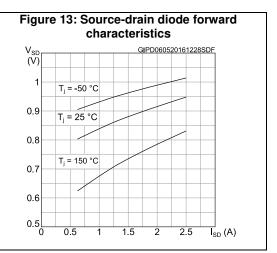
Figure 10: Normalized on-resistance vs temperature $R_{DS(on)}$ GIPD060520161229RON (norm.)

2.6

2.2


1.8 $V_{GS} = 10 \text{ V}$ 1.4


1

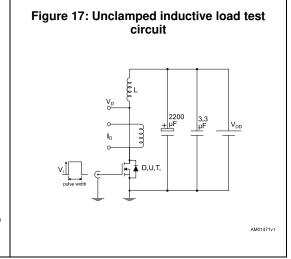

0.6

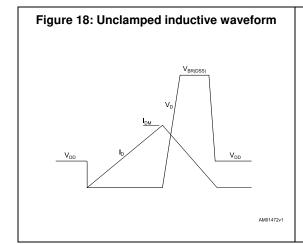
0.2

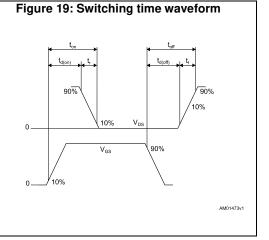
-75
-25
25
75
125 T_{j} (°C)

Test circuits STD4LN80K5

3 Test circuits


Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


Vost pulse width 2200 PF 47 kΩ

AM014699v10

Figure 16: Test circuit for inductive load switching and diode recovery times

577

STD4LN80K5 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A package information

THERMAL PAD <u>c</u>2 L2 <u>b(</u>2x) R SEATING PLANE (L1) 0,25 0068772_A_21

Figure 20: DPAK (TO-252) type A package outline

Table 10: DPAK (TO-252) type A mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
Е	6.40		6.60		
E1	4.60	4.70	4.80		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

STD4LN80K5 Package information

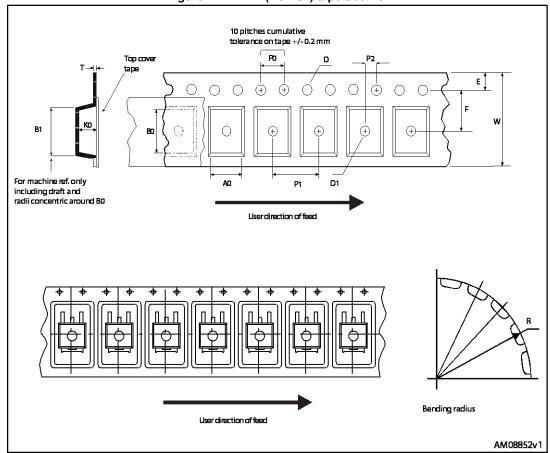



Figure 21: DPAK (TO-252) recommended footprint (dimensions are in mm)

4.2 DPAK (TO-252) packing information

Figure 22: DPAK (TO-252) tape outline

40mm min. access hole at slot location С Ν G measured Tape slot at hub in core for Full radius tape start 2.5mm min.width

Figure 23: DPAK (TO-252) reel outline

Table 11: DPAK (TO-252) tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty. 2500		2500
P1	7.9	8.1	Bulk qty. 2500		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

AM06038v1

Revision history STD4LN80K5

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
22-May-2015	1	First release.	
18-May-2016	2	Document status promoted from preliminary data to production data. Updated Figure 1: "Internal schematic diagram". Updated Section 1: "Electrical ratings", Section 2: "Electrical characteristics". Added Section 2.1: "Electrical characteristics (curves)". Updated Section 3: "Test circuits". Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

