HM-6518 February 1992 ## 1024 x 1 CMOS RAM #### Features - Low Power Standby......50μW Max. • Low Power Operation 20mW/MHz Max. Fast Access Time...... 180ns Max. - TTL Compatible Input/Output - · High Output Drive 2 TTL Loads - · High Noise Immunity - · On-Chip Address Register - Two-Chip Selects for Easy Array Expansion - Three-State Output # Description The HM-6518 is a 1024 x 1 static CMOS RAM fabricated using self-aligned silicon gate technology. Synchronous circuit design techniques are employed to achieve high performance and low power operation. On chip latches are provided for address and data outputs allowing efficient interfacing with microprocessor systems. The data output buffers can be forced to a high impedance state for use in expanded memory arrays. The HM-6518 is a fully static RAM and may be maintained in any state for an indefinite period of time. Data retention supply voltage and supply current are guaranteed overtemperature. ## Ordering Information | PACKAGE | TEMPERATURE RANGE | 180ns | 250ns | | | |-------------|-------------------|---------------|--------------|--|--| | Plastic DIP | -40°C to +85°C | HM3-6518B-9 | HM3-6518-9 | | | | Ceramic DIP | -40°C to +85°C | HM1-6518B-9 | HM1-6518-9 | | | | */883 | -55°C to +125°C | HM1-6518B/883 | HM1-6518/883 | | | ^{*} Respective /883 specifications are included at the end of this data sheet. # **Pinout** 18 LEAD DIP TOP VIEW | PIN | DESCRIPTION | | | | | |-----|---------------|--|--|--|--| | Α | Address Input | | | | | | Ē | Chip Enable | | | | | | ₩ | Write Enable | | | | | | s | Chip Select | | | | | | D | Data Input | | | | | | Q | Data Output | | | | | ## Functional Diagram **ALL LINES POSITIVE LOGIC - ACTIVE HIGH** THREE STATE BUFFERS: - OUTPUT ACTIVE A HIGH - DATA LATCHES: → Q = D L HIGH -Q LATCHES ON RISING EDGE OF L ADDRESS LATCHES AND GATED DECODERS: LATCH ON FALLING EDGE OF E GATE ON FALLING EDGE OF E ## Specifications HM-6518 #### Absolute Maximum Ratings Reliability Information Thermal Resistance Input, Output or I/O Voltage GND-0.3V to VCC+0.3V Ceramic DIP Package 75°C/W 18°C/W Storage Temperature Range-65°C to +150°C Maximum Package Power Dissipation at +125°C Gate Count1936 Gates Lead Temperature (Soldering 10s).....+300°C CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent darnage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. **Operating Conditions** HM-6518B-9, HM-6518-9-40°C to +85°C # DC Electrical Specifications VCC = 5V \pm 10%; T_A = -40°C to +85°C (HM-6518B-9, HM-6518-9) | | | LIMITS | | | | | |-----------------------------------|------------|---------|---------|------|-------------------------|--| | PARAMETER | | SYMBOL | MIN | MAX | UNITS | TEST CONDITIONS | | Standby Supply Current | | ICCSB | - | 10 | μА | IO = 0mA, VI = VCC or GND,
VCC = 5.5V | | Operating Supply Current (Note 1) | | ICCOP | - | 4 | mA | E = 1MHz, IO = 0mA, VI = VCC or
GND, VCC = 5.5V | | Data Retention Supply | HM-6518B-9 | ICCDR | - | 5 | μΑ | VCC = 2.0V, IO = 0mA, VI = VCC or | | Current | HM-6518-9 | 1 | - | 10 | μА | GND, E = VCC | | Data Retention Supply V | oltage | VCCDR | 2.0 | - | ٧ | | | Input Leakage Current | | 11 | -1.0 | +1.0 | μА | VI = VCC or GND, VCC = 5.5V | | Output Leakage Current | | IOZ | -1.0 | +1.0 | μА | VO = VCC or GND, VCC = 5.5V | | Input Low Voltage | | VIL | -0.3 | 0.8 | ٧ | VCC = 4.5V | | Input High Voltage | VIH | VCC-2.0 | VCC+0.3 | ٧ | VCC = 5.5V | | | Output Low Voltage | VOL | - | 0.4 | V | IO = 3.2mA, VCC = 4.5V | | | Output High Voltage | voн | 2.4 | | V | IO = -0.4mA, VCC = 4.5V | | #### Capacitance TA = +25°C | PARAMETER | SYMBOL MAX | | UNITS | TEST CONDITIONS | |-----------------------------|------------|----|-------|--------------------------------| | Input Capacitance (Note 2) | CI | 6 | pF | f = 1MHz, All measurements are | | Output Capacitance (Note 2) | со | 10 | pF | referenced to device GND | #### NOTES: - 1. Typical derating 1.5mA/MHz increase in ICCOP. - 2. Tested at initial design and after major design changes. # Specifications HM-6518 # AC Electrical Specifications $VCC = 5V \pm 10\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (HM-6518B-9, HM-6518-9) | | | LIMITS | | | | | | |------------------------------------|------------|------------|-----|-----------|-----|-------|-----------------| | | | HM-6518B-9 | | HM-6518-9 | | | TEST | | PARAMETER | SYMBOL | MIN | MAX | MIN | MAX | UNITS | CONDITIONS | | Chip Enable Access Time | (1) TELQV | • | 180 | | 250 | ns | (Notes 1, 3) | | Address Access Time | (2) TAVQV | • | 180 | • | 250 | ns | (Notes 1, 3, 4) | | Chip Select Output Enable Time | (3) TSLQX | 5 | 120 | 5 | 160 | ns | (Notes 2, 3) | | Write Enable Output Disable Time | (4) TWLQZ | • | 120 | • | 160 | ns | (Notes 2, 3) | | Chip Select Output Disable Time | (5) TSHQZ | • | 120 | • | 160 | ns | (Notes 2, 3) | | Chip Enable Pulse Negative Width | (6) TELEH | 180 | - | 250 | • | ns | (Notes 1, 3) | | Chip Enable Pulse Positive Width | (7) TEHEL | 100 | • | 100 | • | ns | (Notes 1, 3) | | Address Setup Time | (8) TAVEL | 0 | - | 0 | | ns | (Notes 1, 3) | | Address Hold Time | (9) TELAX | 40 | | 50 | - | ns | (Notes 1, 3) | | Data Setup Time | (10) TDVWH | 80 | • | 110 | • | пѕ | (Notes 1, 3) | | Data Hold Time | (11) TWHDX | 0 | - | 0 | • | ns | (Notes 1, 3) | | Chip Select Write Pulse Setup Time | (12) TWLSH | 100 | | 130 | • | ns | (Notes 1, 3) | | Chip Enable Write Pulse Setup Time | (13) TWLEH | 100 | • | 130 | | ns | (Notes 1, 3) | | Chip Select Write Pulse Hold Time | (14) TSLWH | 100 | | 130 | | ns | (Notes 1, 3) | | Chip Enable Write Pulse Hold Time | (15) TELWH | 100 | - | 130 | | ns | (Notes 1, 3) | | Write Enable Pulse Width | (16) TWLWH | 100 | - | 130 | - | ns | (Notes 1, 3) | | Read or Write Cycle Time | (17) TELEL | 280 | - | 350 | - | ns | (Notes 1, 3) | ### NOTES: - 1. Input pulse levels: 0.8V to VCC 2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, CL = 50pF (min) for CL greater than 50pF, access time is derated by 0.15ns per pF. - 2. Tested at initial design and after major design changes. - 3. VCC = 4.5V and 5.5V. - 4. TAVQV = TELQV + TAVEL. # **Timing Waveforms** TRUTH TABLE | TIME | | | INPUTS | | | OUTPUTS | | |-----------|----|----|--------|---|---|---------|--| | REFERENCE | Ē | Sî | ₩ | A | D | Q | FUNCTION | | -1 | н | н | × | × | х | z | Memory Disabled | | 0 | ام | × | н | v | х | z | Cycle Begins, Addresses are Latched | | 1 | L | L | н | х | Х | х | Output Enabled | | 2 | L | L | н | × | х | V | Output Valid | | 3 | 4 | L | н | × | Х | V | Output Latched | | 4 | н | н | х | × | х | Z | Device Disabled, Prepare for Next Cycle (Same as -1) | | 5 | 7 | X | Ħ | ٧ | х | Z | Cycle Ends, Next Cycle Begins
(Same as 0) | NOTE: 1. Device selected only if both $\overline{S1}$ and $\overline{S2}$ are low, and deselected if either $\overline{S1}$ or $\overline{S2}$ are high In the HM-6518 read cycle the address information is latched into the on chip registers on the falling edge of \overline{E} (T = 0). Minimum address setup and hold time requirements must be met. After the required hold time the addresses may change state without affecting device operation. In order for the output to be read $\overline{S1}$, $\overline{S2}$ and \overline{E} must be low, \overline{W} must be high. When \overline{E} goes high the output data is latched into an on chip register. Taking either or both $\overline{S1}$ or $\overline{S2}$ high forces the output buffer to a high impedance state. The output data may be re-enabled at any time by taking $\overline{S1}$ and $\overline{S2}$ low. On the falling edge of \overline{E} the data will be unlatched. # TRUTH TABLE | TIME | | | INPUTS | | | OUTPUTS | | |-----------|----|----|--------|---|---|---------|---| | REFERENCE | Ē | S1 | W | A | D | Q | FUNCTION | | -1 | Н | Х | Х | х | х | Z | Memory Disabled | | 0 | 1 | Х | х | ٧ | х | Z | Cycle Begins, Addresses are Latched | | 1 | L | L | L | Х | V | Z | Write Mode has Begun | | 2 | L | | L | × | V | Z | Data is Written | | 3 | | Х | Х | × | х | Z | Write Completed | | 4 | Н | Х | × | X | х | Z | Prepare for Next Cycle (Same as -1) | | 5 | لم | Х | Х | ٧ | X | Z | Cycle Ends, Next Cycle Begins (Same as 0) | NOTE: 1. Device selected only if both \$\overline{S1}\$ and \$\overline{S2}\$ are low, and deselected if either \$\overline{S1}\$ or \$\overline{S2}\$ are high The write cycle is initiated by the falling edge of \overline{E} which latches the address information into the on chip registers. The write portion of the cycle is defined as \overline{E} , \overline{W} , $\overline{S1}$ and $\overline{S2}$ being low simultaneously. \overline{W} may go low anytime during the cycle provided that the write enable pulse setup time (TWLEH) is met. The write portion of the cycle is terminated by the first rising edge of either \overline{E} , \overline{W} , $\overline{S1}$ or $\overline{S2}$. Data setup and hold times must be referenced to the terminating signal. If a series of consecutive write cycles are to be performed, the \overline{W} line may remain low until all desired locations have been written. When this method is used, data setup and hold times must be referenced to the rising edge of \overline{E} . By positioning the \overline{W} pulse at different times within the \overline{E} low time (TELEH), various types of write cycles may be performed. If the \overline{E} low time (TELEH) is greater than the \overline{W} pulse (TWLWH) plus an output enable time (TSLQX), a combination read write cycle is executed. Data may be modified an indefinite number of times during any write cycle (TELEH). The data input and data output pins may be tied together for use with a common I/O data bus structure. When using the RAM in this method allow a minimum of one output disable time (TWLQZ) after \overline{W} goes low before applying input data to the bus. This will insure that the output buffers are not active. ## **Test Load Circuit**