Model LS460-RH

LCD Backlight Driver

12 Volt Input

Dual Tube CCFT Inverter

Brightness Control

Physical Specifications*

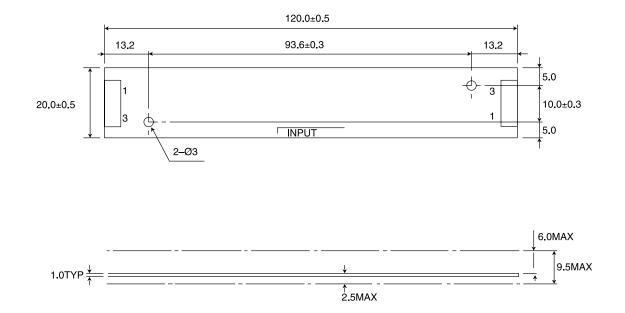
Dimensions:	20mm x 120mm x 9.5mm (0.787" x 4.72" x 0.374")
Weight:	20g (0.704 oz)
Operating Temp:	0 to 55°C, convection cooling
Relative Humidity:	20% to 90%, non-condensing
Storage:	-20 to 85°C/5-95% RH
Impact Resistance:	50G half wave per 2 msec
Vibration Resistance:	10-55-10 Hz/min @ 1.5mm

Input Specifications

Item	Condition	Standard
Input Voltage Rated Tolerance	— Continuous Operation Starting Condition (Discharge Starting Voltage)	12 Vdc 10.8 Vdc - 13.2 Vdc 10.8 Vdc - 13.2 Vdc
Max. Input Current	V⊪ = 10.8 Vdc Luminance @ Max.	0.65A
Input Current	Control Terminal H = Viℕ Viℕ = 13.2 Vdc	3.0 μA (Lamp Off)
Max. Rush Current	V⊪ = 13.2 Vdc Luminance @ Max.	3.0 Azero-p/0.3 ms
Max. Input Power	V⊪ = 12 Vdc Luminance @ Max.	7.0W
Control Terminal Input Current	Control Terminal L = 0.0 - 0.4 Vdc V_{IN} = 13.2 Vdc	ILOW = -0.4mA over (Lamp Lighting)
	Control Terminal H = Open	 (Lamp Off)

*Above specifications occur @ 25 \pm 5°C.

Output Specifications*

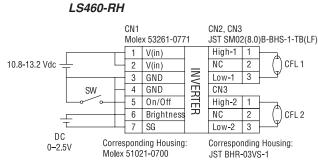

Item	Condition	Stand	Standard	
		MIN	ТҮР	MAX
Output Voltage (Vrms)	V _{IN} = 12.0 Vdc		1300	
Tube Current (mArms)	Vcont = 0.0 V Vcont = 2.5 V	4.2	4.7 2.4	5.2
Max. Power Output (W)	V _{IN} = 12 Vdc/Luminance @ Max.		_	5.5
Ignition Frequency (kHz)	Luminance @ Max.		47	
DC/DC Converter Frequency (kHz)	Luminance @ Max.	_	90	—

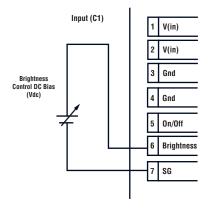
*Above specifications occur @ 25 \pm 5°C & VIN = 10.8 - 13.2 Vdc.

Model LS460-RH

Insulating Withstand Voltage

Item	Rating Description	
Insulating Withstand Voltage	Primary - Secondary	1.5 KVa Impulse
Insulating Resistance	Primary - Secondary	500 Vdc
	Winding - Core	More than $100M\Omega$

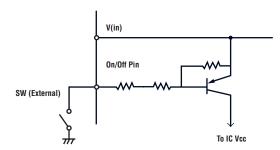

 $^{\odot}$ Copyright 2007 TAIYO YUDEN (U.S.A.), INC. Specifications subject to change without notice.

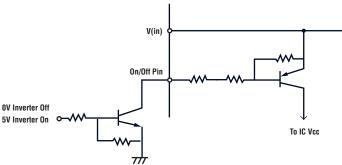

Model LS460-RH Tech Notes

Connection Diagram

Output Current Optimization Method

Maximum output current can be adjusted by applying bias voltage between brightness control pins as shown below.




DC Bias	Typical Output Current	Maximum Output Current
0.00 V	4.8 mA	5.2 mA
0.80 V	4.5 mA	5.0 mA
1.20 V	4.0 mA	4.5 mA
1.60 V	3.5 mA	4.0 mA
2.00 V	3.0 mA	3.5 mA
2.40 V	2.5 mA	3.0 mA

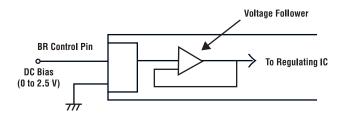
On/Off Control

The on/off control is achieved by using the on/off pin on the input side of LS460. The circuit for the remote on/off circuitry consists of an active low TTL switch. When the circuit is open, the V(in) is cut off. When the circuit is closed, V(in) is activated. A mechanical switch or a TTL/CMOS gate needs to be placed between the remote on/off pin and ground creating a condition where the circuit is closed to activate the inverter. Either one of the following will be required for the inverter to operate:

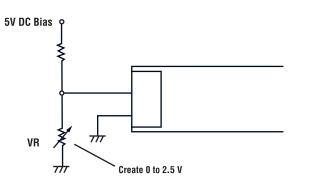
One recommended use of logic switch for remote on/off is shown in the diagram below. Electrical specification for on/off terminal is Low 0 to 0.4V, -0.4 mA or higher when switch is closed.

1. Tie on/off pin to ground.

2. Add mechanical switch between on/off pin and ground, close switch.


 Add TTL/CMOS switch between on/off and ground. Circuit must be closed for unit to operate (as shown above right).

LS460-RH


Tech Notes

Brightness Control Using a Potentiometer

The LS460 brightness control is done by applying a DC bias of 0 to 2.5V to the brightness control pins. Unlike the single tube inverters like the LS380s, brightness control for dual tube inverters cannot be accomplished with a potentiometer. The reason for this is that the LS460 has a voltage follower, or a sub-regulator built into the unit to synchronize both outputs. This voltage follower compensates for resistive load to the brightness control circuitry.

However, by using a voltage separator circuit consisting of a potentiometer, a virtual brightness control by potentiometer can be achieved.

Note that current which will run between the brightness control pin will be in a trivial 3.0µA range.

Mean Time Between Failures (MTBF)

By using the MIL-HDBK 217E Condition Ground Benign method, the MTBF for the LS460 is calculated at 787,407 hours.

© Copyright 2007 TAIYO YUDEN (U.S.A.), INC. Specifications subject to change without notice.

