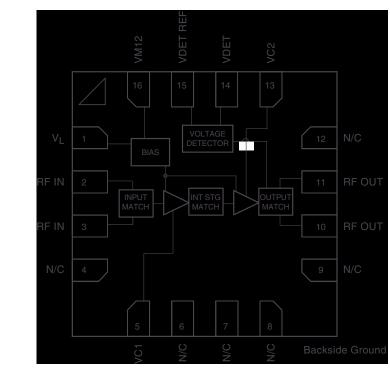
July 2004

RMPA2453

2.4–2.5 GHz InGaP HBT Linear Power Amplifier

General Description


The RMPA2453 power amplifier is designed for high performance WLAN applications in the 2.4–2.5 GHz frequency band. The low profile 16 pin 3 x 3 x 0.9 mm package with internal matching on both input and output to 50 Ω minimizes next level PCB space and allows for simplified integration. The on-chip detector provides power sensing capability while the logic control provides power saving shutdown options. The PA's low power consumption and excellent linearity are achieved using our InGaP Heterojunction Bipolar Transistor (HBT) technology.

Features

- 26dB small signal gain
- 26.5dBm output power @ 1dB compression
- 2.5% EVM at 18dBm modulated output power
- 3.5% EVM at 19dBm modulated output power
- 3.3V single positive supply operation
- Two power saving shutdown options (bias and logic control)
- Integrated power detector with 20dB dynamic range
- Low profile 16 pin 3 x 3 x 0.9 mm leadless package
- Internally matched to 50Ω and DC blocked RF input/ output
- · Optimized for use in 802.11b/g applications

Functional Block Diagram

Pin	Description
1	V _L (logic)
2	RF IN
3	RF IN
4	N/C
5	VC1
6	N/C
7	N/C
8	N/C
9	N/C
10	RF OUT
11	RF OUT
12	N/C
13	VC2
14	VDET
15	VDET REF
16	VM12

©2004 Fairchild Semiconductor Corporation

Symbol	Parameter	Ratings	Units	
VC1, VC2	Positive Supply Voltage	5	V	
IC1, IC2	Supply Current			
	IC1	120	mA	
	IC2	700	mA	
VM12	Positive Bias Voltage	4.0	V	
VL	Logic Voltage	5	V	
P _{IN}	RF Input Power	10	dBm	
T _{CASE}	Case Operating Temperature	-40 to +85	°C	
T _{STG}	Storage Temperature	-55 to +150	°C	

Notes:

1: No permanent damage with only one parameter set at extreme limit. Other parameters set to typical values

Electrical Characteristics^{1, 3} 802.11g OFDM Modulation (RF framed with 176ms burst time 100ms idle time) 54Mbps Data Rate 16.7MHz Bandwidth

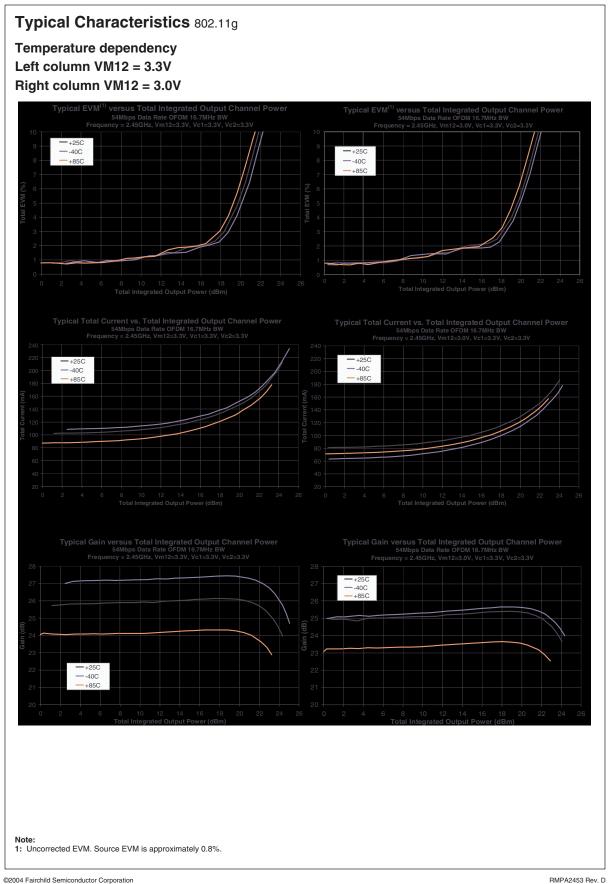
Parameter	Min	Тур	Max	Units	
Frequency	2.4		2.5	GHz	
Supply Voltage	3.0	3.3	3.6	V	
Gain	24.5	26	29	dB	
Total Current @ 18dBm P _{OUT}		133	160	mA	
Total Current @ 19dBm P _{OUT}		145	165	mA	
EVM @ 18dBm P _{OUT} ²		2.5	3.5 ³	%	
EVM @ 19dBm P _{OUT} ²		3.5	4.5 ³	%	
Detector Output @ 19dBm P _{OUT}		515	600	mV	
Detector Threshold ⁴		5.0	7.0	dBm	
P _{OUT} Spectral Mask Compliance ⁵		21.0		dBm	

Electrical Characteristics^{3, 6} 802.11b CCK Modulation (RF not framed) 11Mbps Data Rate

22.0M	Hz E	Band	width
22.0101		Jana	wiath

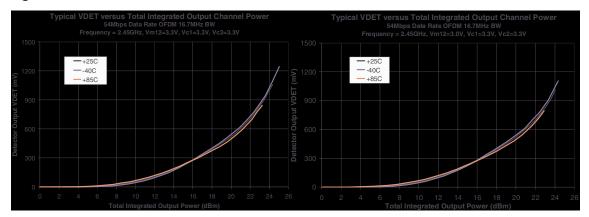
Parameter		Тур	Max	Units
Frequency	2.4		2.5	GHz
Supply Voltage	3.0	3.3	3.6	V
Gain	24.5	26	29	dB
Total Current		250		mA
First Sidelobe Power		-35		dBc
Second Sidelobe Power		-55		dBc
Max P _{OUT} Spectral Mask Compliance ⁷		24.0		dBm

Notes:

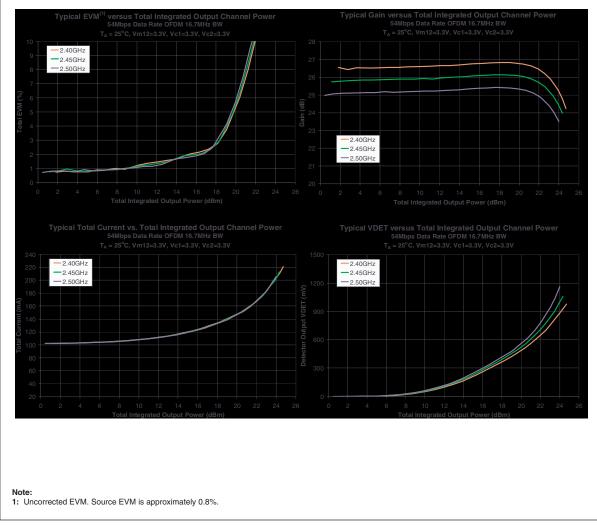

VC1,VC2, VM12 = 3.3V, T_C = 25°C, PA is constantly biased, 50Ω system.
 Percentage includes system noise floor of EVM = 0.8%.
 EVM not measured 100% in production.

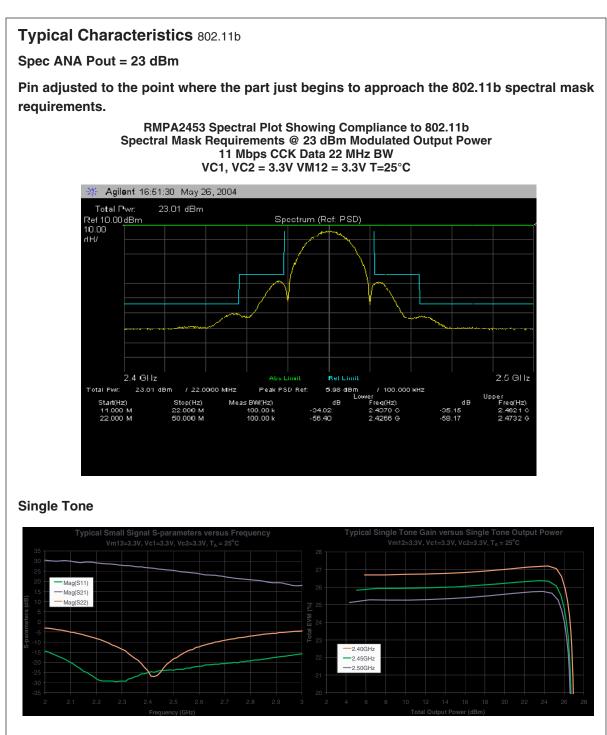
3: EVM not measured 10% in production.
4: P_{OUT} measured at P_{IN} corresponding to power detection threshold.
5: Measured at P_{IN} at which Spectral Mask Compliance is satisfied. Two-sample windowing length applied.
6: VC1,VC2, VM12 = 3.3V, T_C = 25°C, P_{OUT} = +23dBm, 50Ω system. Satisfies spectral mask.
7: P_{IN} is adjusted to point where spectral performance reaches maximum limit.

Parameter Min Тур Max Units Frequency 2.5 GHz 2.4 Supply Voltage V 3.0 3.3 3.6 Gain 24.5 26 29 dB Total Quiescent Current 105 135 mΑ Bias Current at pin VM12² 10.0 12.5 15.0 mΑ P1dB Compression 25 26.5 dBm Standby Current³ 0.7 mΑ Shutdown Current (VM12 = 0V) <1.0 μA Input Return Loss 19 dB Output Return Loss 22 dB Detector Output at P1dB Comp V 2.0 Detector POUT Threshold dBm 7.0 9.0 2nd Harmonic Output at P1dB -45 dBc 3rd Harmonic Output at P1dB -42 dBc Logic Shutdown Control (V₁): Device Off, Logic High Input 2.0 2.4 V Device On, Logic Low Input 0.0 0.8 V Logic Current 150 μΑ Turn-on Time⁴ <1 μS Turn-off Time <1 μS Spurious (Stability)⁵ dBc -65


Notes:
1: VC1,VC2, VM12 = 3.3V, T_C = 25°C, 50Ω system.
2: Bias current is included in the Total Quiescent Current.
3: VL is set to Input Logic Level High for PA Off operation.
4: Measured from Device On signal turn on (Logic Low) to the point where RF P_{OUT} stabilizes to 0.5dB.
5: Load VSWR is set to 8:1 and the angle is varied 360 degrees. P_{OUT} = -30dBm to P1dB.

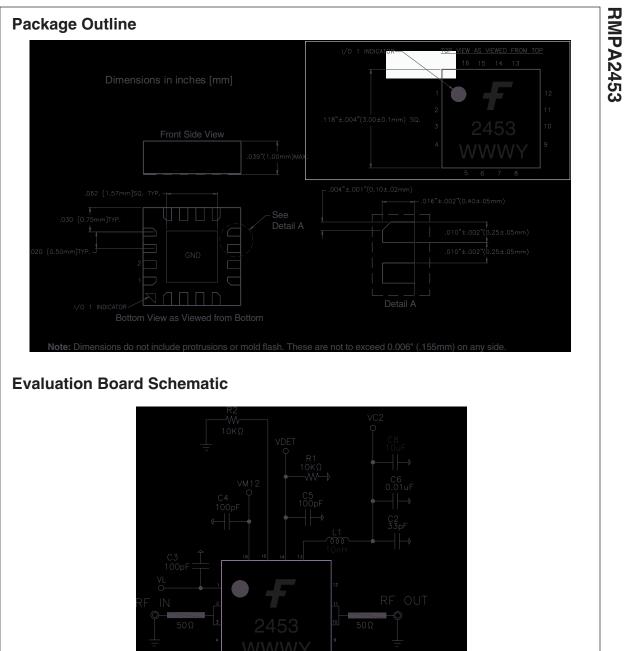
Electrical Characteristics¹ Single Tone




Typical Characteristics 802.11g (Continued)

Temperature Dependency Left column VM12 = 3.3V Right column VM12 = 3.0V

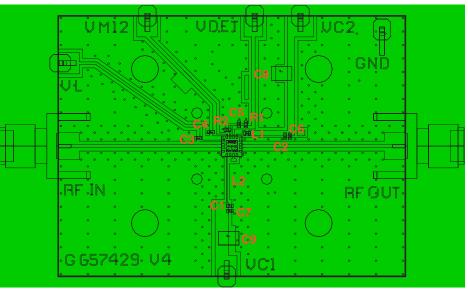
Frequency Dependency VM12 = 3.3V



Application Information

Precautions to Avoid Permanent Device Damage:

Static Sensitivity: Follow ESD precautions to protect against ESD damage.


- A properly grounded static-dissipative surface on which to place devices.
- Static-dissipative floor or mat.
- A properly grounded conductive wrist strap for each person to wear while handling devices.

©2004 Fairchild Semiconductor Corporation

Evaluation Board of Materials						
		MATERIALS LIST				
	QTY	ITEM ND.	PART NUMBER	DESCRIPTION	VENDOR	
	1	1	G657429	PC, BOARD	FAIRCHILD	
	2	2	#142-0701-841	SMA CONNECTOR	JOHNSON	
	6	3	#\$1322-XX-ND	RT ANGLE SGL M HEADER	DIGIKEY	
	REF	4	G657557	ASSEMBLY, RMPA2453	FAIRCHILD	
	5	5 (C1&C2)	GRM39C0G330J50∨	33 pF CAPACITOR	MURATA	
	3	6 (C3,C4&C5)	GRM36C0G101J50∨	100 pF CAPACITER	MURATA	
	5	7 (C6&C7)	GMC10X7R103M25NT	.01 uF CAPACITOR	MURATA	
	2	8 (C8&C9)	CC1206JX5R106M	10 uF CAPACITER (6.3V)	TDK	
	1	9 (L1)	LLV1005FB10NJ	10 nH INDUCTOR	ТОКО	
	5	10 (R1&R2)	RCI-0402-1002J	10K DHM RESISTER	IMS	
	A/R	11	SN63	SOLDER PASTE	INDIUM CORP.	
	A/R	12	SN96	SOLDER PASTE	INDIUM CORP.	

Evaluation Board Layout

Actual Board Size = 2.0" X 1.5"

Evaluation Board Turn-On Sequence¹

Recommended turn-on sequence:

1) Connect common ground terminal to the Ground (GND) pin on the board.

2) Apply low voltage 0.0 to +1.0 V to pin V_L.

3) Apply positive supply voltage VC1 (= 3.3V) to pin VC1 (first stage collector).

4) Apply positive supply voltage VC2 (= 3.3V) to pin VC2 (second stage collector).

5) Apply positive bias voltage VM12 (= 3.3V) to pin VM12 (bias networks).

6) At this point, you should expect to observe the following positive currents flowing into the pins:

Pin	Current
VM12	10.0 – 15.0 mA
VC1	35.0 – 55.0 mA
VC2	40.0 – 60.0 mA
VL	<1 nA

7) Apply input RF power to SMA connector pin RFIN. Currents in pins VC1 and VC2 will vary depending on the input drive level.

8) Vary positive voltage V_L on pin VREG from +0.5V to +2.4V to shut down the amplifier or alter the power level. Shut down current flow into the pins:

Pin	Current
VM12	<0.7 mA
VC1	<1 nA
VC2	<1 nA
VL	<0.25 mA

Recommended turn-off sequence:

Use reverse order described in the turn-on sequence above.

Note:

1: Turn on sequence is not critical and it is not necessary to sequence power supplies in actual system level design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FAST®		Power247 [™]	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT [™] -3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench®	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET®	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series [™]	TINYOPTO™
E ² CMOS [™]	l²C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	∝SerDes™	UltraFET [®]
FACT Quiet Serie	es™	OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX™
Across the board	d. Around the world.™	OPTOPLANAR™	SMART START™	
The Power Franchise [®]		PACMAN™	SPM™	
Programmable Active Droop™		POP™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I11