
Incremental Hollow Shaft Encoder OPE1275H Single Channel (Tachometer) OPE2275H Dual Channel

Features:

- O.D. = 28mm [1.10"]
- Motor Shaft Diameter 2 mm [0.079"]
- Motor Shaft length 3.8 mm [0.150"] minimum
- Pulses per revolution 256 maximum
- Analog Output
- 100 5,000 RPM

Description:

The **OPE1275H** and **OPE2275H** are designed for small shafted motors with a shaft diameter of 2 mm [0.079"] and a minimum length of 3.8 mm [0.150"]. The **OPE1275H** provides a single channel analog output for speed of rotation while the **OPE2275H** provides a dual channel analog output for speed and direction of rotation.

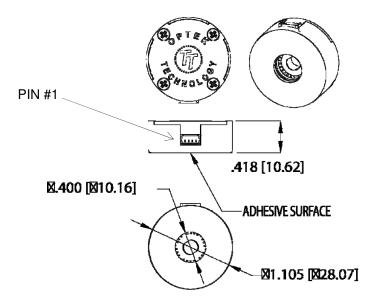
The output of the **OPE1275H** provides a rise and fall pulse providing the designer two slopes for each pulse doubling the count capability. The **OPE2275H** provides quadrature rise and fall pulse patterns providing the design engineer 4 times the pulse per revolution count.

The **OPE1275H** and **OPE2275H** are very easy to assemble on your motor shaft using a #1 Phillips screwdriver.

Power requirements are 5 volts ± .5 volts.

Electrical connection is achieved with a 4-pin Molex 53048-0410 connector providing V+, Ground and Output pins. The mating connector is a 4-pin Molex 51021-0400 (Terminal pin 50058 or 50079) or equivalent.

Mounting of the hollow shaft version of the **OPE1275 and OPE2275** is achieved with a stick-on transfer adhesive pre-applied to the back of the housing. Just peel off the protective base and press the encoder to your motor.


Frequency response is from DC to 25 kHz providing a maximum of 256 cycles per revolution (CPR)

This product is designed for general encoding for low-speed applications.

• Printer motors	S	Ordering Information OPE X 275 H - ZZZ			
Machine autoMachine safe			Resolution per revolution: 128 holes per revolution		
	Channels: 1 = Single channel		256 holes per revolution		
	2 = Dual Channel		Shaft Configuration:		
Pb	Motor Diameter- 27.5mm		H = Hollow Shaft		
RoHS	OPTEK reserves the right to make changes at any tin	ne in order to improve desi	ign and to supply the best product possible.		

OPE1275H OPE2275H

Pin Out				
1	2	3	4	
V _{CC}	CH A	CH B	GND	

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Incremental Hollow Shaft Encoder OPE1275H Single Channel (Tachometer) OPE2275H Dual Channel

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

	Maximum	Units
Storage Temperature Range	-40° C to +85°	С
Operating Temperature Range	0° C to +85°	С
Power Supply Voltage V _{CC}	4.5 to 5.5	V_{DC}
Power Dissipation ⁽²⁾	250	mW
Vibration (5 Hz to 2 kHz)	20	g
Shaft Axial Play	± 0.51 mm [0.02"]	
Off-Axis Mounting Tolerance	0.254 mm [0.01"]	
Acceleration	250,000	rad/sec ²

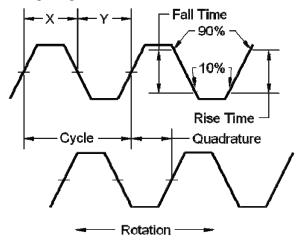
Mechanical Specifications:

	Dimensions	Units
Moment of Inertia	6.48 X 10 ⁻⁵	OZ-IN-S ²
Shaft Length	0.3 to 0.7	Inches

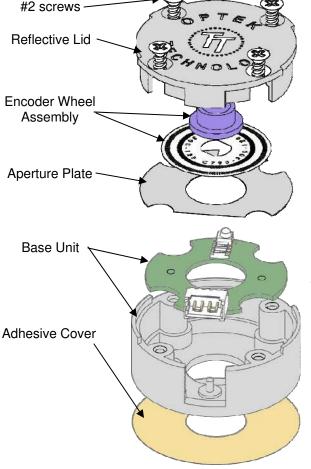
Electrical Characteristics (T_A = 25°C unless otherwise noted — for reference only)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{CC}	Supply Voltage	4.5	5.0	5.5	٧	
I _{CC}	Supply Current	1	21	27	mA	$V_{CC} = 5.0 \text{ volts}$
V _{OH}	High Level Output Voltage	Vcc-0.5	-	-	٧	$I_C = 100 \ \mu A$
V _{OL}	Low Level Output Voltage	ı	ı	0.4	V	I _C = 20 mA
TR	Rise Time	-	500	-	ns	10% to 90%, V _{CC} = 5.0 volts
TF	Fall Time	-	100	-	ns	10% to 90%, V _{CC} = 5.0 volts
FR	Frequency Response	-	-	60	kHz	
H.S.	Hole Size	0.10	-	-	inch	
Rotation	Maximum speed of rotation with 1024 holes per rotation	-	-	100	rev/sec	
Encoding	Encoding Characteristics:					
SE	Symmetry Error	0	16	75	°e	
QE	Quadrature Error—OPE2275H only	0	12	60	e	

Notes


OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

^{1.} All parameters measured using pulse technique, Vcc = 5.0 volts and $T_A = 25$ °C.


Incremental Hollow Shaft Encoder OPE1275H Single Channel (Tachometer) OPE2275H Dual Channel

Timing Diagram:

Hollow Shaft Assembly Instructions:

Timing Definitions:

PPR = Pulses Per Revolution

Electrical Degree (°e) = 1/360th of 1 cycle

Cycle = 360 electrical degrees (°e)

Symmetry = Relationship between X & Y in electrical degrees (°e).

Position Error = The difference between the actual shaft position and the position indicated by the encoder cycle count.

Quadrature: The lead or lag difference between channels "A" and "B" in electrical degrees (normally 90°e)

Cycle Error = The difference between the actual shaft rotational position and the cycle count rotational position.

Rise Time = Time required to switch between 10% and 90% of the highest to lowest signal levels.

Fall Time = Time required to switch between 90% and 10% of the highest to lowest signal levels.

Make sure the kit has all required parts:

- 1 each Base Unit
- 1 each Base Unit Alignment Tool
- 1 each Aperture Plate
- 1 each Encoder Wheel Assembly
- 1 each Wheel Assembly Alignment Tool
- 1 each Reflective Lid
- 4 each #2-56 self tapping screws
- Peal the protective covering from the adhesive on the back of the Base Unit.
- 2. To center the Base unit, carefully slide the Base Unit over the flange on the motor and press firmly.
- 3. Place the Aperture Plate on the Base Unit.
- 4. Slide the Encoder Wheel Assembly over the motor shaft until it almost touches the Aperture Plate.
- 5. Carefully place the Reflective Lid on the encoder (rotate as necessary to align) and attach with 4 #2 self tapping screws (provided).
- 6. Connect the electrical interface to the encoder.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.