

N-channel TrenchMOS standard level FET Rev. 2 — 21 April 2011

Product data sheet

1. **Product profile**

1.1 General description

Standard level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- AEC Q101 compliant
- Suitable for standard level gate drive sources
- **1.3 Applications**
 - 12 V loads
 - Automotive systems

- Suitable for thermally demanding environments due to 175 °C rating
- General purpose power switching

nexperia

Motors, lamps and solenoids

1.4 Quick reference data

Table 1.	Quick reference data						
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	30	V
I _D	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 4</u>	[1]	-	-	75	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	255	W
Static cha	aracteristics						
R _{DSon}	drain-source on-state resistance	$\label{eq:GS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \text{ °C}; \\ \text{see } \underline{\text{Figure 12}}; \text{ see } \underline{\text{Figure 13}} \end{array}$		-	2.9	3.4	mΩ
Avalanch	e ruggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 75 \text{ A}; \text{V}_{sup} \leq 30 \text{V}; \\ R_{GS} &= 50 \Omega; \text{V}_{GS} = 10 \text{V}; \\ T_{j(\text{init})} &= 25 ^\circ\text{C}; \text{ unclamped} \end{split} $		-	-	1.3	J

[1] Continuous current is limited by package.

N-channel TrenchMOS standard level FET

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		<u>_</u>
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

3. Ordering information

Table 3. Ordering information						
Type number	Package					
	Name	Description	Version			
BUK763R4-30B	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404			

N-channel TrenchMOS standard level FET

4. Limiting values

Table 4. Limiting values

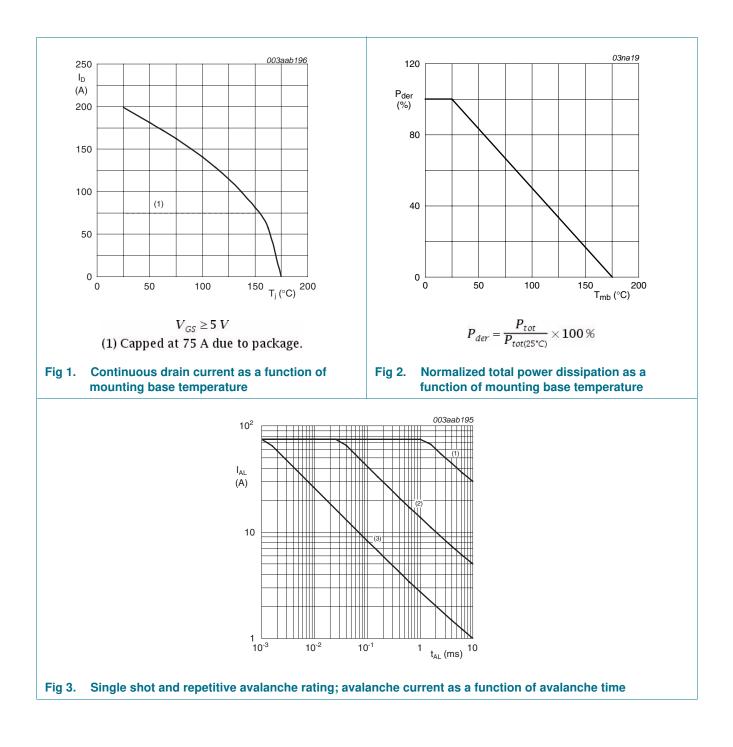
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
-			IVIIII	-	
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	30	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	30	V
V _{GS}	gate-source voltage		-20	20	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 4</u>	<u>[1]</u> -	75	A
		T_{mb} = 100 °C; V_{GS} = 10 V; see Figure 1	[1] -	75	А
		$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 4}};$	<u>[2][3]</u> _	198	A
I _{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \ \mu s$; see <u>Figure 4</u>	-	794	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	255	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-drain	n diode				
ls	source current	T _{mb} = 25 °C	[2][3]	198	Α
			<u>[1]</u> _	75	А
I _{SM}	peak source current	pulsed; t _p ≤ 10 μs; T _{mb} = 25 °C	-	794	А
Avalanche ru	uggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\label{eq:ld} \begin{array}{l} I_{D} = 75 \; A; \; V_{sup} \leq 30 \; V; \; R_{GS} = 50 \; \Omega; \\ V_{GS} = 10 \; V; \; T_{j(init)} = 25 \; ^{\circ}C; \; unclamped \end{array}$	-	1.3	J
E _{DS(AL)R}	repetitive drain-source avalanche energy	see Figure 3	<u>[4][5][6][</u> - <u>7]</u>	-	J

[1] Continuous current is limited by package.

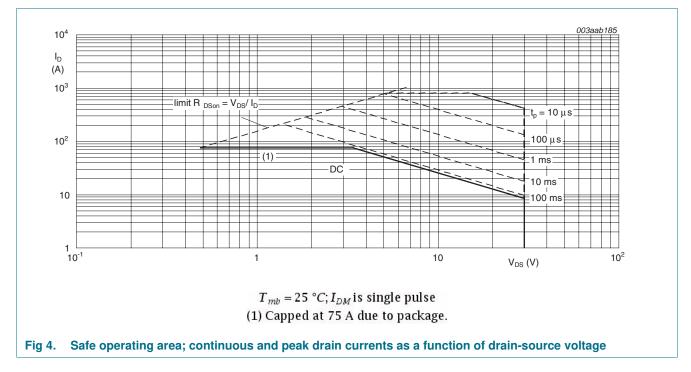
[2] Current is limited by power dissipation chip rating.

[3] Refer to document 9397 750 12572 for further information.


[4] Maximum value not quoted. Repetitive rating defined in avalanche rating figure.

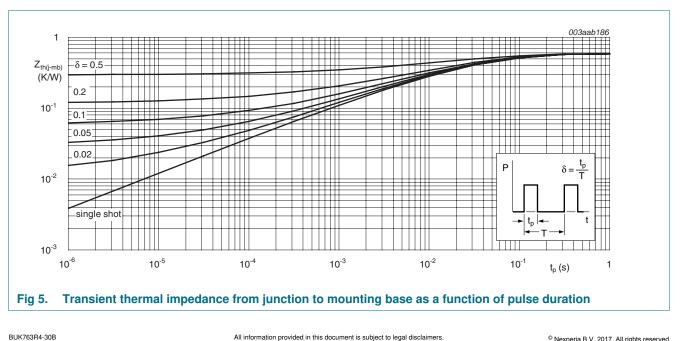
[5] Single-shot avalanche rating limited by maximum junction temperature of 175 °C.

[6] Repetitive avalanche rating limited by an average junction temperature of 170 °C.


[7] Refer to application note AN10273 for further information.

BUK763R4-30B

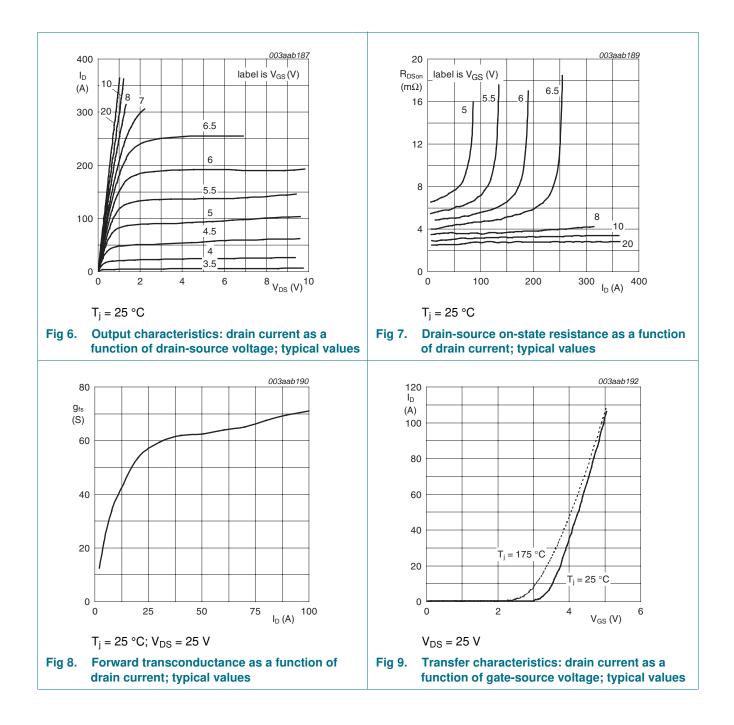
BUK763R4-30B


N-channel TrenchMOS standard level FET

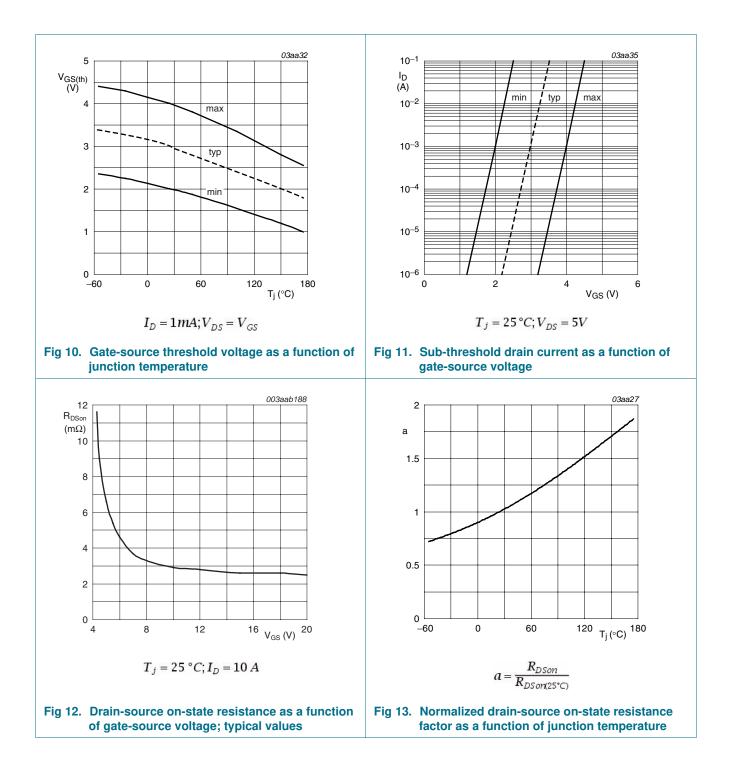
Thermal characteristics 5.

Table 5. **Thermal characteristics**

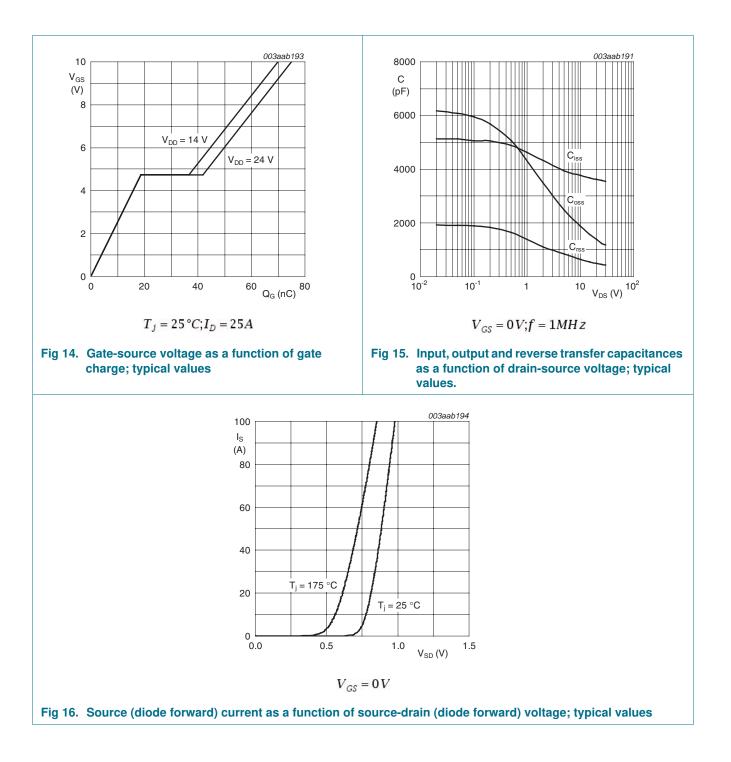
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base		-	-	0.59	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on a printed-circuit board; minimum footprint; vertical in still air	-	50	-	K/W



N-channel TrenchMOS standard level FET


6. Characteristics

	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	-	racteristics					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			I _D = 250 μA; V _{GS} = 0 V; T _i = 25 °C	30	-	-	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2.1)200			27	-	-	V
voltage see Figure 10; see Figure 11 I - - loss drain leakage current Vos = 30 V; Vos = 0 V; Tj = 25 °C - 0.05 10 loss gate leakage current Vos = 30 V; Vos = 0 V; Tj = 25 °C - 2 100 Roso drain leakage current Vos = 20 V; Vos = 0 V; Tj = 25 °C - 2 100 Roso drain-source on-state ese Figure 12; see Figure 13 - - 6.5 Poss drain leakage current Vos = 30 V; Vos = 0 V; Tj = 25 °C - 2.9 3.4 loss drain leakage current Vos = 30 V; Vos = 0 V; Tj = 175 °C - - 6.5 loss drain leakage current Vos = 30 V; Vos = 0 V; Tj = 175 °C - 2.9 3.4 loss drain leakage current Vos = 30 V; Vos = 0 V; Tj = 175 °C - - 500 Dynamic characteristics - see Figure 14 - - 75 - Octo gate-drain charge Io = 25 A; Vos = 25 V; F = 1 MHz; - 3713 4951 </td <td>V_{GS(th)}</td> <td>-</td> <td></td> <td>2</td> <td>3</td> <td>4</td> <td>V</td>	V _{GS(th)}	-		2	3	4	V
	V _{GSth}			-	-	4.4	V
				1	-	-	V
$ \begin{array}{ c c c c c c } \hline V_{GS} = -20 \ V; \ V_{DS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}\ C & - & 2 & 100 \\ \hline V_{GS} = 10 \ V; \ I_{D} = 25 \ A; \ T_{j} = 175 \ ^{\circ}\ C; & - & - & 6.5 \\ \hline see \ Figure 12; \ see \ Figure 13 & V_{GS} = 10 \ V; \ I_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}\ C; & - & - & 500 \\ \hline Dynamic \ characteristics & & & & & & & & & & & & & & & & & & &$	I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.05	10	μA
	I _{GSS}	gate leakage current	V _{GS} = 20 V; V _{DS} = 0 V; T _j = 25 °C	-	2	100	nA
$ \begin{array}{ c c c c } & \text{resistance} & \begin{array}{ c c } & \text{see Figure 12} \\ \hline & V_{GS} = 10 \ V; \ _{D} = 25 \ A; \ T_{J} = 25 \ ^{\circ}\text{C}; \\ & \text{see Figure 13} \\ \hline & V_{DS} = 30 \ V; \ V_{GS} = 0 \ V; \ T_{J} = 175 \ ^{\circ}\text{C} & - & - & 500 \\ \hline & \text{Dynamic characteristics} \\ \hline & & & & & & & & & & & & & & & & & &$			V _{GS} = -20 V; V _{DS} = 0 V; T _i = 25 °C	-	2	100	nA
$see Figure 12; see Figure 13$ $l_{DSS} drain leakage current V_{DS} = 30 V; V_{GS} = 0 V; T_j = 175 °C - 500$ $\begin{array}{c c c c c c } \hline Dynamic characteristics \\ \hline Q_{G(tot)} total gate charge I_D = 25 A; V_{DS} = 24 V; V_{GS} = 10 V; - 75 - 986 Figure 14 - 19 - 986 Figure 15 - 1249 - 1499 - 986 Figure 15 - 1249 - 1499 - 986 Figure 15 - 1249 - 1499 - 1499 Figure 15 - 1249 - 1499 Figure 16 - 71 - 1249 Figure 16 - 71 - 71 - 71 - 71 - 71 - 71 - 71 -$	R _{DSon}			-	-	6.5	mΩ
Dynamic characteristics $Q_{G(tot)}$ total gate charge $I_D = 25 \text{ Å; } V_{DS} = 24 \text{ V; } V_{GS} = 10 \text{ V;}$ see Figure 14-75- Q_{GS} gate-source charge-2319- Q_{GD} gate-drain charge-2323- C_{iss} input capacitance $V_{GS} = 0 \text{ V; } V_{DS} = 25 \text{ V; } f = 1 \text{ MHz;}$ $T_j = 25 \text{ °C; see Figure 15}$ -12491499 C_{rss} reverse transfer capacitance-460630 C_{rss} reverse transfer capacitance-460630 $t_{d(on)}$ turn-on delay time $V_{DS} = 30 \text{ V; } R_L = 1.2 \Omega; V_{GS} = 10 \text{ V;}$ $T_j = 25 \text{ °C;}$ -32- $t_{d(on)}$ turn-off delay time $V_{DS} = 30 \text{ V; } R_L = 1.2 \Omega; V_{GS} = 10 \text{ V;}$ $T_j = 71 \text{ or } 0.889 \text{ or } 0.283 \text{ or } 0.28$				-	2.9	3.4	mΩ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic o	haracteristics					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V}; V_{GS} = 10 \text{ V};$	-	75	-	nC
$\begin{array}{c c c c c c c } \hline V_{GS} = 0 \ V; \ V_{DS} = 25 \ V; \ f = 1 \ MHz; & & & & & & & & & & & & & & & & & & &$	Q _{GS}	gate-source charge	see Figure 14	-	19	-	nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _{GD}	gate-drain charge		-	23	-	nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{iss}	input capacitance		-	3713	4951	pF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 15</u>	-	1249	1499	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	460	630	pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{d(on)}	turn-on delay time		-	32	-	ns
$f_{f} = fall time + fall time + from contact screw on mounting base to centre of die + from upper edge of drain mounting base to centre of die + from upper edge of drain mounting base to centre of die + from drain lead 6 mm from package to centre of die + from source lead to source bonding + from source + from source lead to source bonding + from source + from sourc$	t _r	rise time	$R_{G(ext)} = 10 \ \Omega$	-	64	-	ns
$ \begin{array}{c} L_{D} \\ L_{D} $	t _{d(off)}	turn-off delay time		-	89	-	ns
$ \begin{array}{c} \mbox{inductance} \\ \mbox{inductance} $	t _f	fall time		-	71	-	ns
to centre of diefrom drain lead 6 mm from package to centre of die-4.5-Lsinternal source inductancefrom source lead to source bonding pad-7.5-Source-drain diodeV_{SD}source-drain voltageI_S = 25 A; V_{GS} = 0 V; T_j = 25 °C; see Figure 16-0.851.2trrreverse recovery timeI_S = 20 A; dIs/dt = -100 A/µs; V_{GS} = 0 V; C =70-	L _D		•	-	3.5	-	nH
centre of dieL_Sinternal source inductancefrom source lead to source bonding pad-7.5-Source-drain diodeIS = 25 A; V_{GS} = 0 V; T_j = 25 °C; see Figure 16-0.851.2trrreverse recovery timeIS = 20 A; dIS/dt = -100 A/µs; V_{GS} = 0 V; $- 70$ -70-				-	2.5	-	nH
inductancepadSource-drain diode V_{SD} source-drain voltage $I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ -0.851.2 see Figure 16- $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A}/\mu s; V_{GS} = 0 \text{ V};$ -70-				-	4.5	-	nH
$V_{SD} \qquad source-drain voltage \qquad I_{S} = 25 \text{ A}; V_{GS} = 0 \text{ V}; \text{ T}_{j} = 25 \text{ °C}; \qquad - \qquad 0.85 \qquad 1.2$ $see \frac{Figure 16}{I_{S}} \qquad reverse recovery time \qquad I_{S} = 20 \text{ A}; dI_{S}/dt = -100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V}; \qquad - \qquad 70 \qquad - \qquad$	L _S			-	7.5	-	nH
see Figure 16 I_{Srr} reverse recovery time $I_S = 20 \text{ A}; \text{ dI}_S/\text{dt} = -100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V};$ - 70 -	Source-dr	ain diode					
	V _{SD}	source-drain voltage		-	0.85	1.2	V
	t _{rr}	reverse recovery time		-	70	-	ns
Q_r recovered charge $V_{DS} = 30$ V - 58 -	Q _r	recovered charge	V _{DS} = 30 V	-	58	-	nC
R4-30B All information provided in this document is subject to legal disclaimers. © Nexoeria B.V. 2017.		a sheet	Bev. 2 — 21 April 2011		пелре	ria B.V. 2017. /	6 (


BUK763R4-30B

BUK763R4-30B

BUK763R4-30B

N-channel TrenchMOS standard level FET

7. Package outline

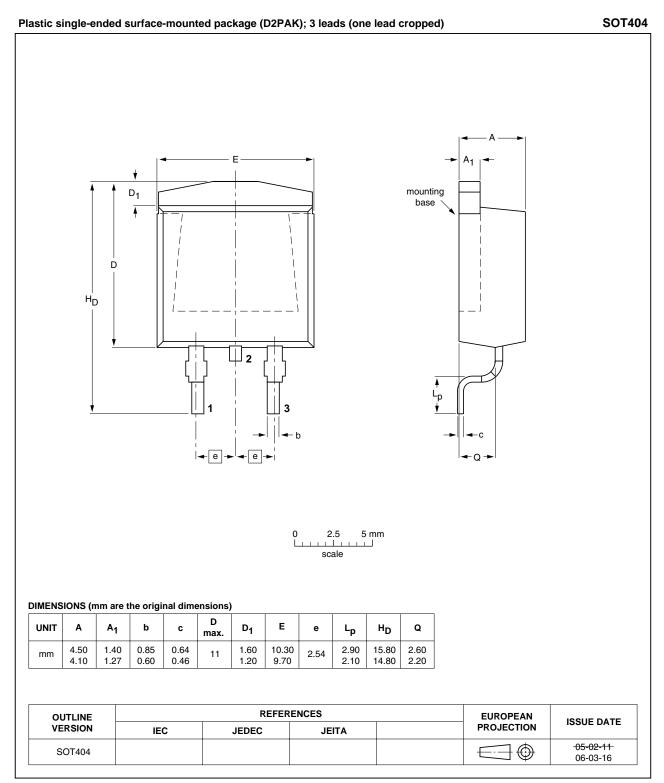


Fig 17. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

BUK763R4-30B

N-channel TrenchMOS standard level FET

8. Revision history

Table 7. Revision hi	istory				
Document ID	Release date	Data sheet status	Change notice	Supersedes	
BUK763R4-30B v.2	20110421	Product data sheet	-	BUK75_763R4-30B_1	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts have b 	een adapted to the new c	company name where ap	propriate.	
	 Type number BUK 	763R4-30B separated fro	om data sheet BUK75_7	63R4-30B_1.	
BUK75_763R4-30B_1	20060105	Product specification	-	-	

N-channel TrenchMOS standard level FET

9. Legal information

9.1 Data sheet status

Document status [1] [2]	Product status 3	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia.com</u>.

9.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the

N-channel TrenchMOS standard level FET

Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status12
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information13