<u>Onsemí</u>,

PNP Epitaxial Silicon Transistor

KSA1381

Features

- High Voltage: $V_{CEO} = -300 \text{ V}$
- Low Reverse Transfer Capacitance: $C_{re} = 2.3 \text{ pF}$ at $V_{CB} = -30 \text{ V}$
- Excellent Gain Linearity for Low THD
- High Frequency: 150 MHz
- Full Thermal and Electrical Spice Models are Available
- Complement to KSC3503
- This is a Pb–Free Device

Applications

- Audio, Voltage Amplifier and Current Source
- CRT Display, Video Output
- General Purpose Amplifier

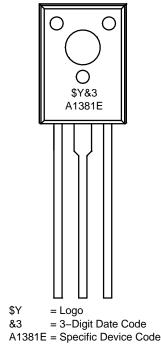
ABSOLUTE MAXIMUM RATINGS (T_a = 25° C unless otherwise noted)

Symbol	Parameter	Ratings	Units	
BV _{CBO}	Collector–Base Voltage –300			
BV _{CEO}	Collector-Emitter Voltage	-300	V	
BV _{EBO}	Emitter-Base Voltage	-5	V	
Ι _C	Collector Current (DC)	-100	mA	
I _{CP}	I _{CP} Collector Current (Pulse) –20		mA	
P _C	P_{C} Total Device Dissipation, $T_{C}=25^{\circ}C$ 7 $T_{C}=125^{\circ}C$ 1.2		W W	
T _J , T _{STG}	J, T _{STG} Junction and Storage Temperature -55~+		°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (Note 1)

(T_a = 25°C unless otherwise noted)


Symbol	Parameter	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	17.8	°C/W

1. Device mounted on minimum pad size.

1. Emitter 2.Collector 3.Base

CASE 340AS

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

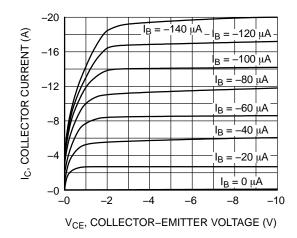
KSA1381

Symbol	Characteristic	Test Condition	Min	Тур	Max	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = -10 \ \mu A, \ I_{E} = 0$	-300	-	-	V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -1 {\rm mA}, I_{\rm B} = 0$	-300	-	-	V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = -10 \ \mu A, \ I_{C} = 0$	-5	-	-	V
I _{CBO}	Collector Cut-off Current	$V_{CB} = -200 \text{ V}, I_E = 0$	-	-	-0.1	μΑ
I _{EBO}	Emitter Cut-off Current	$V_{EB} = -4 V, I_{C} = 0$	_	-	-0.1	μΑ
h _{FE}	DC Current Gain	$V_{CE} = -10 \text{ V}, I_{C} = -10 \text{ mA}$	100	-	200	
V _{CE} (sat)	Collector–Emitter Saturation Voltage	$I_{\rm C} = -20$ mA, $I_{\rm B} = -2$ mA	-	-	-0.6	V
V _{BE} (sat)	Base–Emitter Saturation Voltage	$I_{\rm C} = -20$ mA, $I_{\rm B} = -2$ mA	-	-	-1	V
f _T	Current Gain Bandwidth Product	$V_{CE} = -30 \text{ V}, I_{C} = -10 \text{ mA}$	-	150	-	MHz
C _{ob}	Output Capacitance	V _{CB} = -30 V, f = 1 MHz	-	3.1	-	pF
C _{re}	Reverse Transfer Capacitance	$V_{CB} = -30 \text{ V}, \text{ f} = 1 \text{ MHz}$	_	2.3	_	pF

ELECTRICAL CHARACTERISTICS (Note 2) (Ta = 25°C unless otherwise noted)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%


ORDERING INFORMATION

Part Number (Note 3, 4)	Marking	Package	Shipping	Remarks
KSA1381ESTU	A1381E	TO-126-3LD (Pb-Free)	1920 Units / Tube	HFE1 E Grade

3. Affix "-S-" means the standard TO126 Package.(see package dimensions). If the affix is "-STS-" instead of "-S-", that mean the short-lead TO126 package.
Suffix "-TU" means the tube packing, The Suffix "TU" could be replaced to other suffix character as packing method.

KSA1381

TYPICAL CHARACTERISTICS

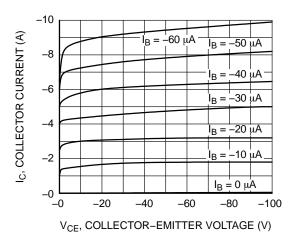


Figure 2. Static Characteristic

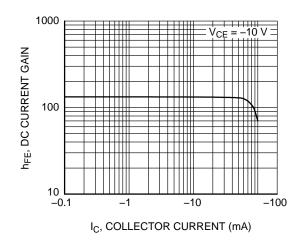


Figure 3. DC Current Gain

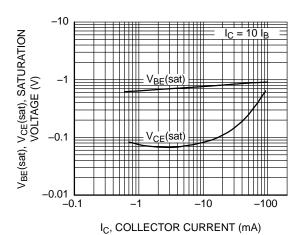
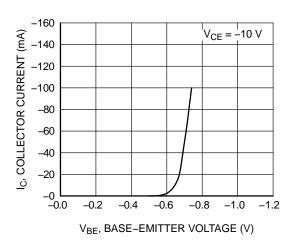
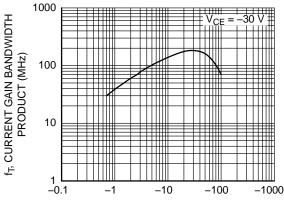
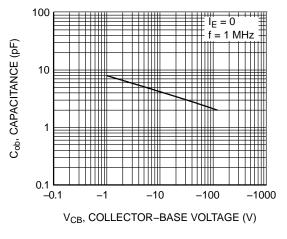
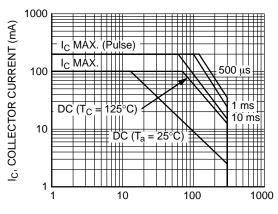


Figure 4. Base–Emitter Saturation Voltage Collector–Emitter Saturation Voltage


Figure 6. Base–Emitter On Voltage


 $\mathsf{I}_\mathsf{C},$ COLLECTOR CURRENT (mA)

KSA1381

TYPICAL CHARACTERISTICS (Continued)

V_{CE}, COLLECTOR–EMITTER VOLTAGE (V)

Figure 9. Safe Operating Area

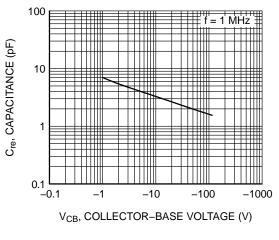


Figure 8. Reverse Transfer Capacitance

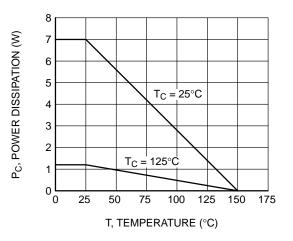
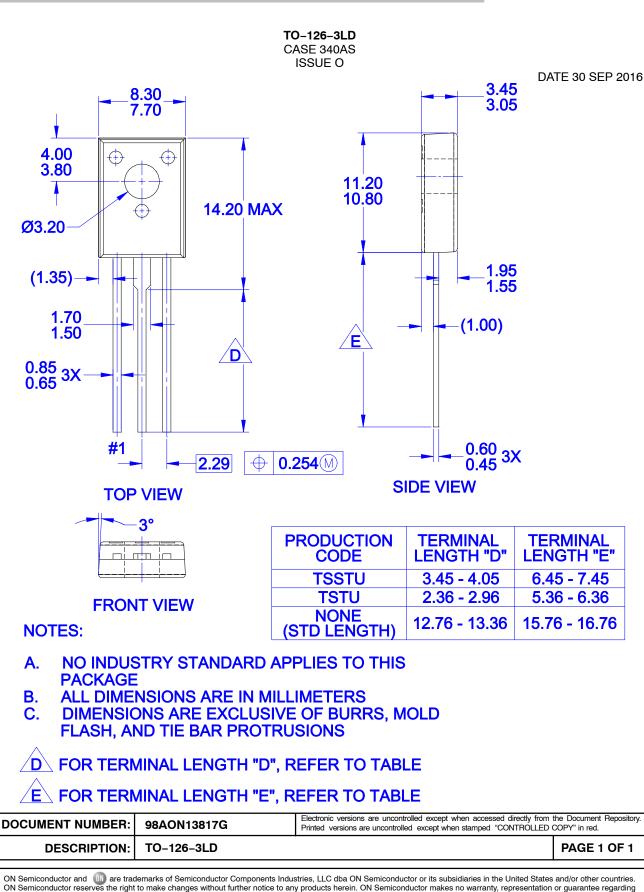



Figure 10. Power Derating

the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales