

INSULATED GATE BIPOLAR TRANSISTOR

G C E Gate Collector Emitter

Applications

- Medium Power Drives
- UPS
- HEV Inverter
- Welding
- Induction Heating

Features	—→ Benefits
Low V _{CE(on)} and Switching Losses	High Efficiency in a Wide Range of Applications
10μs Short Circuit SOA	Durand Transient Bufamana
Square RBSOA	Rugged Transient Performance
Maximum Junction Temperature 175°C	Increased Reliability
Positive V _{CE(on)} Temperature Coefficient	For all and Comment Objections in Broadled Comments on
Integrated Gate Resistor	Excellent Current Sharing in Parallel Operation

Base part number	Package Type	Standard Pack		Orderable part number
-		Form	Quantity	-
IRG7CH73K10EF-R	Die on Film	Wafer	1	IRG7CH73K10EF-R

Mechanical Parameter

Die Size	9.0 x 9.0	mm ²			
Minimum Street Width	75	μm			
Emiter Pad Size (Included Gate Pad)	See Die Drawing	mm ²			
Gate Pad Size	1.0 x 1.7				
Area Total / Active	81.0 / 57.7				
Thickness	140	μm			
Wafer Size	200	mm			
Notch Position	0	Degrees			
Maximum-Possible Chips per Wafer	326 pcs.	•			
Passivation Front side	Silicon Nitride				
Front Metal	Al, Si (4µm)	Al, Si (4μm)			
Backside Metal	Al (0.1μm), Ti (0.1μm), Ni (0.4μm), Ag (0.6μm)				
Die Bond	Electrically conductive epoxy or solder				
Reject Ink Dot Size	0.25 mm diameter minimu	0.25 mm diameter minimum			

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, T _J =25°C	1200	V
I _C	DC Collector Current	①	Α
I _{LM}	Clamped Inductive Load Current ④	300	Α
V_{GE}	Gate Emitter Voltage	± 30	V
T _J , T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

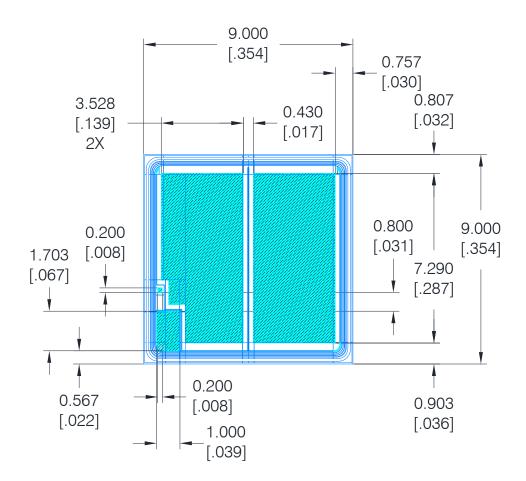
Static Characteristics (Tested on wafers) . T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	1200			V	$V_{GE} = 0V, I_{C} = 250\mu A$
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.4	1.6		$V_{GE} = 15V, I_{C} = 20A, T_{J} = 25^{\circ}C$
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	5.0		7.5		$I_C = 3.5 \text{mA}$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 400	nA	$V_{CE} = 0V$, $V_{GE} = \pm 30V$
R _{G INTERNAL}	Internal Gate Resistance	1.9	2.5	3.1	Ω	

Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.9	2.3	V	$V_{GE} = 15V, I_{C} = 75A, T_{J} = 25^{\circ}C$ (§
			2.5			V _{GE} = 15V, I _C = 75A , T _J = 175°CS
SCSOA	Short Circuit Safe Operating Area	10			μs	V _{GE} =15V, V _{CC} =600V ②
						$R_G=5.0\Omega, V_P \le 1200V, T_J=150^{\circ}C$
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			$T_J = 175^{\circ}C, I_C = 300A$	
					V _{CC} = 960V, Vp ≤1200V	
						Rg = 5.0Ω , V _{GE} = +20V to 0V
C _{iss}	Input Capacitance		8700		pF	V _{GE} = 0V
C_{oss}	Output Capacitance		320			V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		210			f = 1.0MHz
Q_g	Total Gate Charge (turn-on)	_	420	_	nC	I _C = 75A ⑥
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	100	_		V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	280	_		V _{CC} = 600V

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)


OWIGHIN	ownshing ondiacteristics (inductive Load Not subject to production test verified by design/ondiacterization)							
	Parameter	Min.	Тур.	Max.	Units	Conditions 3		
$t_{d(on)}$	Turn-On delay time	-	105	_		I _C = 75A, V _{CC} = 600V		
t _r	Rise time	—	115	_		$R_G = 5.0\Omega$, $V_{GE} = 15V$, $L = 210\mu H$		
$t_{d(off)}$	Turn-Off delay time	_	45	_		$T_J = 25^{\circ}C$		
t _f	Fall time	-	60	_	no			
$t_{d(on)}$	Turn-On delay time	—	100	_		$I_{\rm C}$ = 75A, $V_{\rm CC}$ = 600V		
t _r	Rise time	_	115	_		$R_G = 5.0\Omega$, $V_{GE} = 15V$, $L = 210\mu H$		
$t_{d(off)}$	Turn-Off delay time	_	470	_		T _J = 175°C		
t _f	Fall time	_	230					

- ① The current in the application is limited by T_{JMax} and the thermal properties of the assembly.
- ② Not subject to production test- Verified by design / characterization.
- 3 Values influenced by parasitic L and C in measurement.
- Φ V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 210μH, R_G = 5.0Ω.
- ⑤ Die level characterization.
- © Pulse width ≤ $400\mu s$; duty cycle ≤ 2%.

www.irf.com

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WIDTH AND LENGTH TOLERANCE: -0.0508 [.002]
- 4. DIE THICKNESS = 0.140 [.0055]

REFERENCE: IRG7CH73K10B-R

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/