

NHD-1.27-Breakout

Breakout Board for 1.27" Color OLED Glass

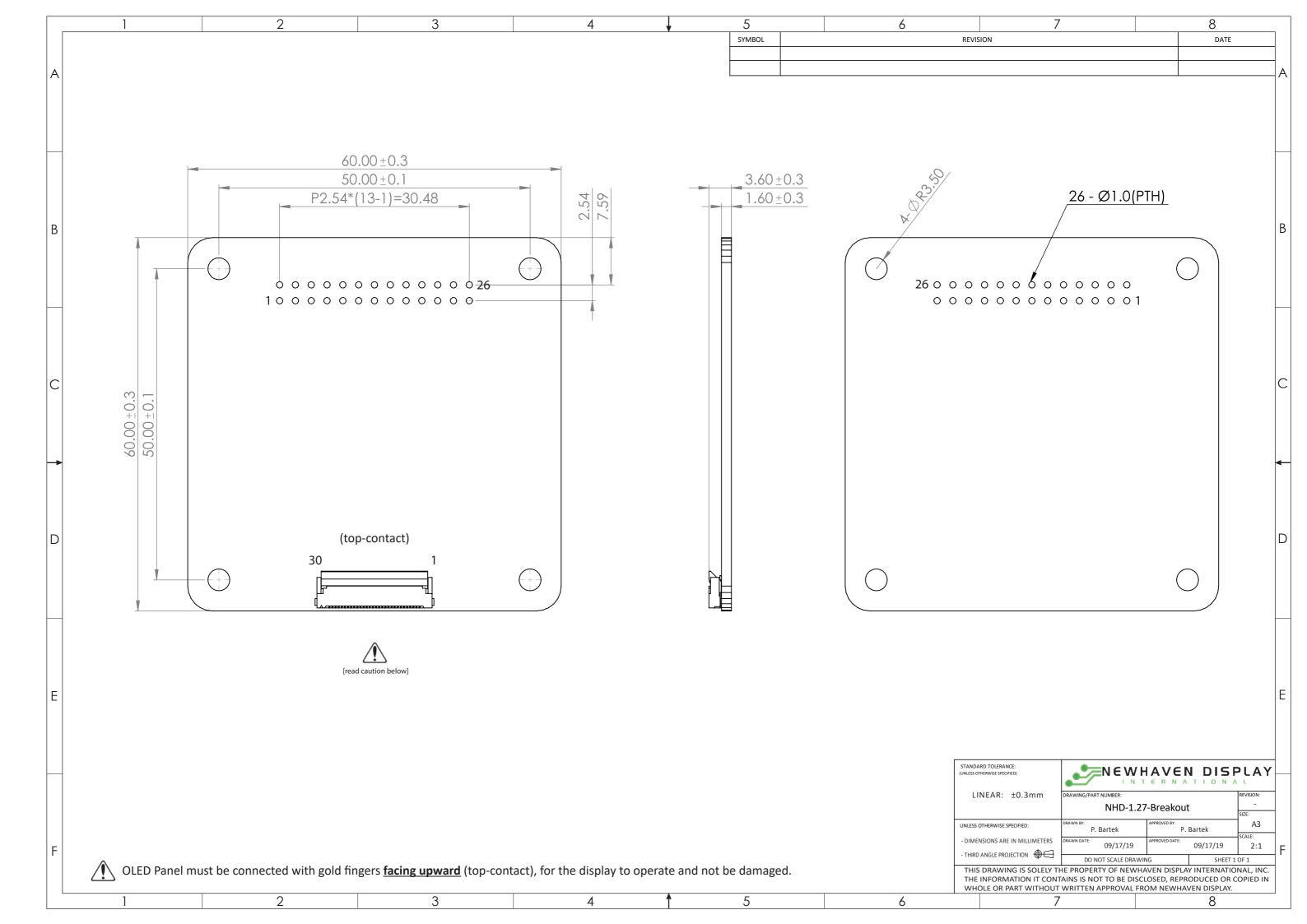
NHD-Newhaven Display1.27-1.27" Diagonal SizeBreakout-Breakout Board

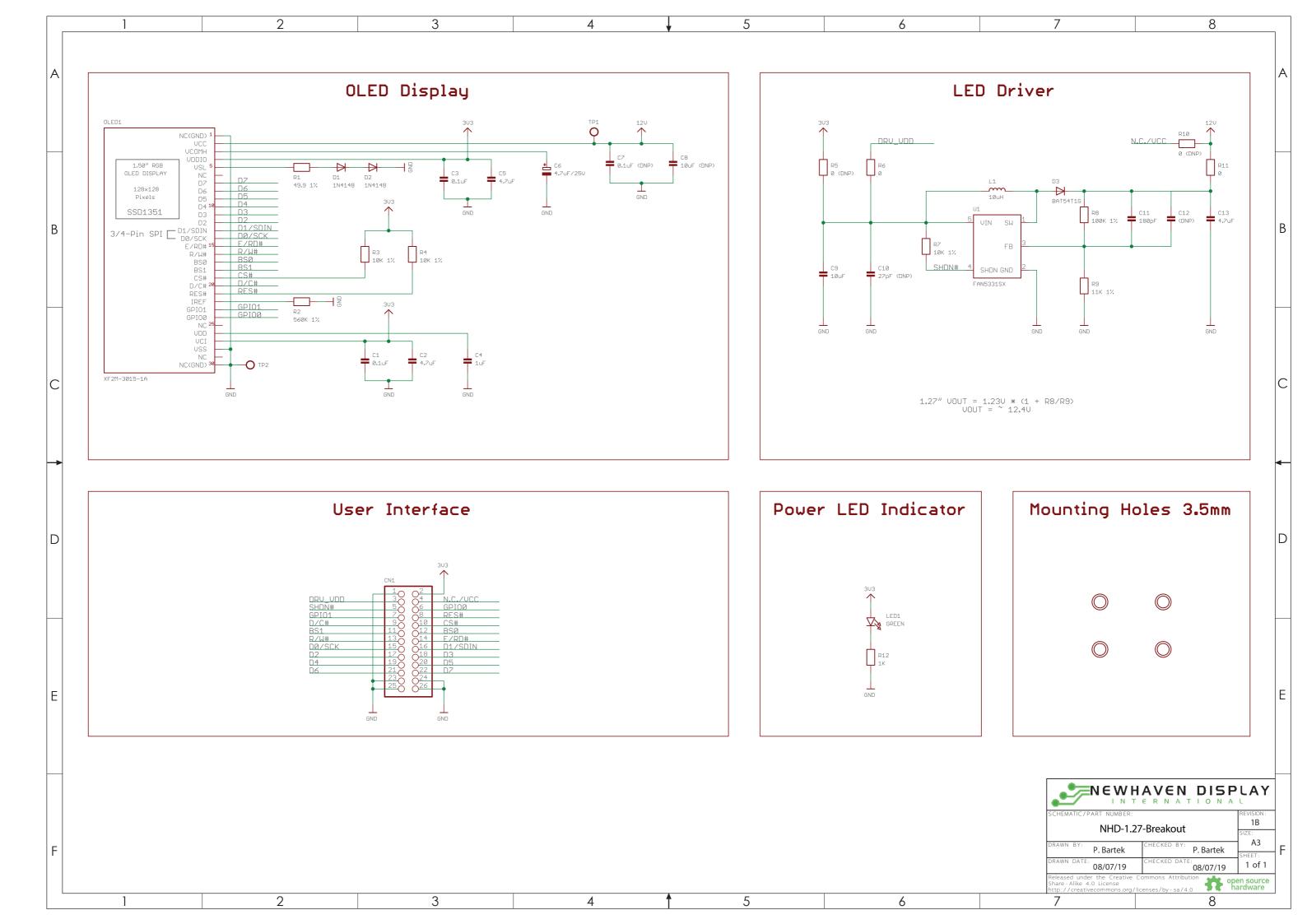
 Newhaven Display International, Inc.

 2661 Galvin Ct.

 Elgin IL, 60124

 Ph: 847-844-8795


 Fax: 847-844-8796


Document Revision History

Revision	Date	Description	Changed by
-	09/18/19	Initial Release	PB

Functions and Features

- Breakout board for 1.27" Color OLED Glass (NHD-1.27-12896G)
- On-board booster circuit (FAN5331SX)
- Jumper option to bypass booster circuit and provide V_{cc} directly
- Open source hardware

Pin Description

Pin No.	Symbol	External Connection	Function Description			
1	GND	Power Supply	Ground			
2	3V3	Power Supply	Supply Voltage for OLED Logic (+3.3V)			
3	DRV_VDD	Power Supply	Supply Voltage for boost converter (+5V) to drive OLED panel			
			voltage (VCC).			
			(Should be no connect if using pin 4 to apply external VCC)			
4	N.C./VCC	-	No Connect by default. Can be configured for external VCC (+12V).			
			(refer to On-Board Jumper Options table below)			
5	SHDN#	MPU	Active LOW Shutdown control pin for boost converter			
			(pulled HIGH via on-board 10kΩ resistor)			
6	GPIO0	MPU	See command 0xB5 (can be treated as a no connect)			
7	GPIO1	MPU	See command 0xB5 (can be treated as a no connect)			
8	RES#	MPU	Active LOW Reset signal			
9	D/C#	MPU	Register Select signal. LOW: Command. HIGH: Data			
10	CS#	MPU	Active LOW Chip Select signal			
11	BS1	MPU	MPU interface select signal			
12	BSO	MPU	MPU interface select signal			
13	R/W#	MPU	6800 mode: Read/Write signal. LOW: Write. HIGH: Read			
			8080 mode: Active LOW Write signal			
14	E/RD#	MPU	6800 mode: Enable signal. Falling edge triggered			
			8080 mode: Active LOW Read signal			
15	D0/SCK	MPU	Parallel interface:			
16	D1/SDIN	MPU	8-bit bi-directional data bus			
17	D2	MPU	1			
18	D3	MPU	Serial interface:			
19	D4	MPU	D0 = Serial Clock signal (SCK)			
20	D5	MPU	D1 = Serial Data Input signal (SDIN)			
21	D6	MPU				
22	D7	MPU				
23-26	GND	Power Supply	Ground			

MPU Interface Pin Assignment Summary

Bus Interface	D7	D6	D5	D4	D3	D2	D1	D0	E	R/W	BS0	BS1	CS#	D/C#	RES#	GPIO1	GPIO0
8-bit 6800	D[7:0]						E	R/W	1	1	CS#	D/C#	RES#	NC	NC		
8-bit 8080	D[7:0]						RD#	WR#	0	1	CS#	D/C#	RES#	NC	NC		
4-wire SPI			0			NC	SDIN	SCK	0	0	0	0	CS#	D/C#	RES#	NC	NC
3-wire SPI			0			NC	SDIN	SCK	0	0	1	0	CS#	0	RES#	NC	NC

: Don't care

: No Connect

"X" "NC" "1" "0" : VDD : VSS

On-Board Jumper Options

Default Jumper Setting

R10	R11	Description
Open	Close	(default) Boost converter circuit (+5V on pin 3) is used to provide VCC to OLED Glass.

Jumper Option #1 – External Supply Voltage for OLED Panel (VCC)

R10	R11	Description
Close	Open	Boost converter circuit (pin 3) is not used. User must apply VCC (+12V) externally to (pin 4). OLED logic is still powered from 3V3 (pin 2). This method allows for minimum current drain.

Default Jumper Setting

Jumper Option #1

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-40	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-40	-	+85	°C
Supply Voltage for OLED Logic	3V3	-	2.8	3.0	3.5	V
Supply Voltage for Boost Circuit	DRV_VDD	-	-	5.0	5.5	V
Supply Voltage for OLED Panel	Vcc	-	11.5	12.0	12.5	V

NOTICE: It is <u>not recommended</u> to apply power to the board without a display connected. Doing so may result in a damaged booster circuit. Newhaven Display does not assume responsibility for PCB failures due to this damage.

Compatible OLED Glass

This board is designed to drive and breakout the signals of the NHD-1.27-12896G.

Please download specification at http://www.newhavendisplay.com/specs/NHD-1.27-12896G.pdf

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high	+85°C, 240 Hrs.	2
	storage temperature.		
Low Temperature storage	Test the endurance of the display at low	-40°C, 240 Hrs.	1,2
	storage temperature.		
High Temperature	Test the endurance of the display by	+70°C, 240 Hrs.	2
Operation	applying electric stress (voltage & current)		
	at high temperature.		
Low Temperature	Test the endurance of the display by	-40°C, 240 Hrs.	1,2
Operation	applying electric stress (voltage & current)		
	at low temperature.		
High Temperature /	Test the endurance of the display by	+60°C, 90% RH, 120 Hrs.	1,2
Humidity Operation	applying electric stress (voltage & current)		
	at high temperature with high humidity.		

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Precautions for using OLEDs/LCDs/LCMs

See Precautions at <u>www.newhavendisplay.com/specs/precautions.pdf</u>

Warranty Information

See Terms & Conditions at http://www.newhavendisplay.com/index.php?main_page=terms