SY100EL14V

5V/3.3V 1:5 Clock Distribution

General Description

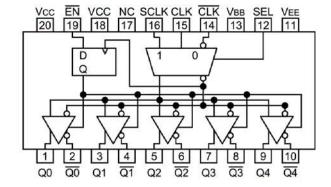
The SY100EL14V is a low-skew, 1:5 clock distribution chip designed explicitly for low-skew clock distribution applications. The device can be driven by either a differential or single-ended ECL or, if positive power supplies are used, PECL input signal. The EL14V is suitable for operation in systems operating with 3.3V to 5.0V supplies. If a single-ended input is to be used, the $V_{\rm BB}$ output should be connected to the /CLK input and bypassed to ground via a $0.01\mu F$ capacitor. The $V_{\rm BB}$ output is designed to act as the switching reference for the input of the EL14V under single-ended input conditions. As a result, this pin can only source/sink up to 0.5mA of current.

The EL14V features a multiplexed clock input to allow for the distribution of a lower speed scan or test clock along with the high speed system clock. When LOW (or left open and pulled LOW by the input pull-down resistor), the SEL pin will select the differential clock input.

The common enable (/EN) is synchronous, so that the outputs will only be enabled/disable when they are already in the LOW state. This avoids any chance of generating a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip-flop is clocked on the falling edge of the input clock. Therefore, all associated specification limits are referenced to the negative edge of the clock input.

When both differential inputs are left open, CLK input will pull down to V_{EE} and /CLK input will bias around $V_{\text{CC}}/2$.

Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.


Features

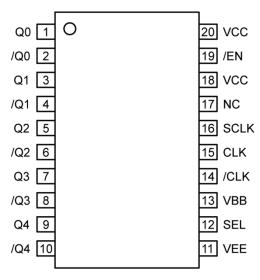
- 3.3V and 5V power supply options
- 70fs_{RMS} typical additive phase jitter
- Typical 30ps output-to-output skew
- Max. 50ps output-to-output skew
- Synchronous enable/disable
- Multiplexed clock input
- 75kΩ internal input pull-down resistors
- Available in 20-pin SOIC package

Applications

- · Processor clock distribution
- SONET clock distribution
- Fibre Channel clock distribution
- Gigabit Ethernet clock distribution

Block Diagram

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com


Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100EL14VZG	Z20-1	Industrial	SY100EL14VZG with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100EL14VZG TR ⁽²⁾	Z20-1	Industrial	SY100EL14VZG with Pb-Free bar-line indicator	Pb-Free NiPdAu

Note:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC electricals only.
- 2. Tape and Reel.

Pin Configuration

20-Pin Narrow SOIC (Top View)

Pin Description

Pin	Function
CLK	Differential clock inputs
SCLK	Scan clock input
/EN	Synchronous enable
SEL	Clock select input
VBB	Reference output
Q0 – Q4	Differential clock outputs

Truth Table

CLK	SCLK	SEL	/EN	Q
L	Х	L	L	L
Н	Х	L	L	Н
Х	L	Н	L	L
Х	Н	Н	L	Н
Х	Х	Х	Н	L ⁽³⁾

Note:

3. On next negative transition of CLK or SCLK

Absolute Maximum Ratings⁽⁴⁾

Input Voltage (V _{IN}) ⁽⁶⁾	
$(V_{CC} = 0V, V_{IN} \text{ not more positive than }$	V_{CC}) –6V to +0V
$(V_{EE} = 0V, V_{IN} \text{ not more positive than})$	V_{CC}) +0V to +6V
Operating Range (V _{EE}) ⁽⁷⁾	–5.7V to –3.0V
Output Current (I _{OUT}) Continuous	50mA
Surge	100mA
Lead Temperature (soldering, 20s)	260°C
Storage Temperature (T _s)	65 to +150°C
ESD Rating ⁽⁸⁾	>1.5kV

Operating Ratings⁽⁵⁾

Supply Voltage (V _{CC}) PE	CL Operation	3.0V to 5.5V
(V _{EE}) EC	L Operation	3.0V to -5.5V
Ambient Temperature (1	Γ _A)	40°C to +85°C
Junction Thermal Resist	ance	
SOIC (θ _{JA})		58°C/W

DC Electrical Characteristics⁽⁹⁾

 $V_{EE} = V_{EE}$ (min) to V_{EE} (max); $V_{CC} = GND$, $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated. Outputs are terminated through a 50 Ω resistor to V_{CC} -2.0V.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
V_{OH}	Output High Voltage ⁽¹⁰⁾	T _A = -40°C	V _{CC} - 1.085	V _{CC} - 1.005	V _{CC} - 0.880	V	
		$T_A = 0$ °C to +85°C	V _{CC} - 1.025	V _{CC} - 0.955	$V_{CC} - 0.880$	V	
.,	Output Low Voltage ⁽¹⁰⁾	T _A = -40°C	V _{CC} - 1.830	V _{CC} - 1.695	V _{CC} – 1.555	V	
V_{OL}		$T_A = 0$ °C to +85°C	V _{CC} - 1.810	V _{CC} - 1.705	V _{CC} - 1.620	V	
V	Outrout High Valtage (10)	T _A = -40°C	V _{CC} - 1.095			V	
V_{OHA}	Output High Voltage ⁽¹⁰⁾	$T_A = 0$ °C to +85°C	V _{CC} - 1.035			V	
	Output Low Voltage ⁽¹⁰⁾	T _A = -40°C			V _{CC} – 1.555	V	
V_{OLA}		$T_A = 0$ °C to +85°C			V _{CC} - 1.610	V	
V _{IH}	Input High Voltage		V _{CC} - 1.165		$V_{CC} - 0.880$	V	
V _{IL}	Input Low Voltage		V _{CC} - 1.810		V _{CC} - 1.475	V	
I _{IL}	Input Low Current ⁽¹¹⁾	Input LOW Current /CLK	0.5 -300			μΑ	
I _{IH}	Input High Current				150	μΑ	
I _{EE}	Power Supply Current	$T_A = -40$ °C to $+25$ °C		32	40	mA	
		$T_A = +85^{\circ}C$		34	42		
V _{BB}	Output Reference Voltage		V _{CC} - 1.380		V _{CC} - 1.260	V	

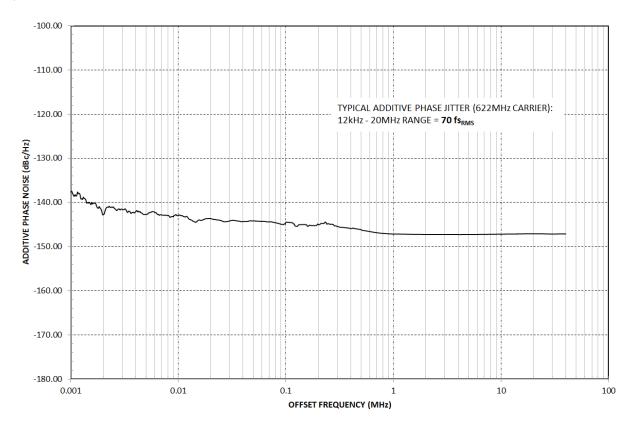
Notes:

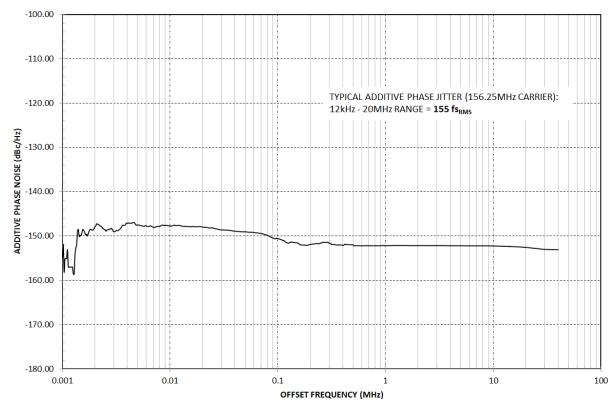
- 4. Exceeding the absolute maximum ratings may damage the device.
- 5. The device is not guaranteed to function outside its operating ratings.
- 6. In PECL mode operation, $V_{IN}(max) = V_{CC}$.
- 7. Parametric values specified at 100EL14V series: -3.0V to -5.5V.
- 8. Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5kΩ in series with 100pF.
- 9. Specification for packaged product only
- 10. $V_{IN} = V_{IH}(max)$ or $V_{IL}(min)$.
- 11. $V_{IN} = V_{IL}(max)$.

AC Electrical Characteristics

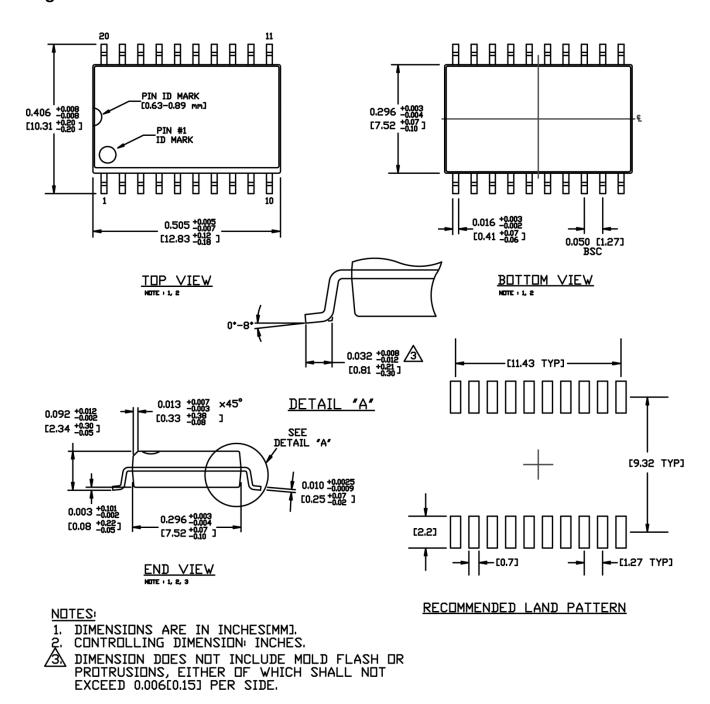
 $V_{\text{EE}} = V_{\text{EE}}$ (min) to V_{EE} (max); $V_{\text{CC}} = \text{GND}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to +85°C, unless otherwise stated.

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		T _A = -40°C	$T_A = -40$ °C			720	ps
	Propagation Delay CLK to Q (Diff)	$T_A = 0$ °C	$T_A = 0$ °C			750	ps
		$T_A = +25^{\circ}C$	$T_A = +25$ °C		680	780	ps
		$T_A = +85^{\circ}C$		630		830	ps
		$T_A = -40$ °C	T _A = -40°C			770	ps
t _{PLH}	Propagation Delay	$T_A = 0$ °C	T _A = 0°C			800	ps
t _{PHL}	CLK to Q (SE)	$T_A = +25^{\circ}C$		530	680	830	ps
		$T_A = +85^{\circ}C$		580		880	ps
		$T_A = -40$ °C	T _A = -40°C			770	ps
	Propagation Delay	$T_A = 0$ °C		500		800	ps
	SCLK to Q	$T_A = +25^{\circ}C$	T _A = +25°C		680	830	ps
		$T_A = +85^{\circ}C$	T _A = +85°C			880	ps
	Part-to-Part Skew ⁽¹²⁾					200	ps
t _{skew}	Within-Device Skew					50	ps
ts	Setup Time /EN						ps
t _H	Hold Time /EN						ps
V_{PP}	Minimum Input Swing, CLK						mV
	Common Mode Range ⁽¹³⁾	V _{PP} < 500mV	$T_A = -40$ °C	V _{CC} - 2.000		V _{CC} - 0.400	V
V_{CMR}		VPP < SOUTHV	$T_A = 0$ °C to +85°C	V _{CC} - 2.100		V _{CC} - 0.400	
		V _{PP} ≥ 500mV	$T_A = -40$ °C	V _{CC} - 1.800		V _{CC} - 0.400	V
		V PP 2 300111V	$T_A = 0$ °C to +85°C	V _{CC} - 1.900		$V_{CC} - 0.400$	
t_r/t_f	Output Rise/Fall Time Q (20% - 80%)		$T_A = -40$ °C to +85°C Typical value at $T_A = +25$ °C		360	500	ps
t _{JITTER}			Carrier = 622MHz Integration Range: 12kHz to 20MHz		70		fs _{RMS}
	Additive Jitter		Carrier = 156.25MHz Integration Range: 12kHz to 20MHz		155		


Notes:


^{12.} Skews are specified for identical LOW-to-HIGH or HIGH-to-LOW transitions.

^{13.} The V_{CMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{\text{PP}}(\text{min})$ and 1V. The lower end of the V_{CMR} range varies 1:1 with V_{EE} . The numbers in the specification table assume a nominal V_{EE} of 3.3V. For PECL operation, the $V_{\text{CMR}}(\text{min})$ will be fixed at 3.3V $-|V_{\text{CMR}}(\text{min})|$.


Additive Phase Noise

 $V_{CC}=+5V,\,T_A=25^\circ.$

Package Information⁽¹⁴⁾

20-Pin Narrow SOIC (Z20-1)

Note:

14. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high performance linear and power, LAN, and timing & communications markets. The Company's products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide.

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.