
© 2010 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

User's Guide

ChipProg-48

ChipProg-40

ChipProg-G4

ChipProg-ISP

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: August 2010 in (whereever you are located)

ChipProg Device Programmers

© 2010 Phyton, Inc. Microsystems and Development Tools

3Contents

3

© 2010 Phyton, Inc. Microsystems and Development Tools

Table of Contents

Foreword 0

Part I Introduction 9

... 91 Terms and Definitions

... 112 System Requirements

Part II ChipProg Family Brief Description 13

... 141 Comparisson matrix

... 152 ChipProg-48

.. 16Major features

.. 17Hardware characteristics

.. 17Software features

... 183 ChipProg-40

.. 19Major features

.. 19Hardware characteristics

.. 20Software features

... 204 ChipProg-G4

.. 21Major features

.. 21Hardware characteristics

.. 22Software features

... 235 ChipProg-ISP

.. 25Major features

.. 25Hardware characteristics

.. 25Software features

Part III Quick Start 27

... 271 Installing the ChipProgUSB Software

... 292 Installing the USB Drivers

... 323 Hardware installation

.. 32ChipProg-48

.. 33ChipProg-40

.. 34ChipProg-G4

.. 35ChipProg-ISP

... 364 Getting Assistance

.. 36On-line Help

.. 36Technical Support

.. 37Contact Information

Part IV Graphical User Interface 38

... 381 User Interface Overview

... 382 Toolbars

... 393 Menus

.. 40The File Menu

ChipProg Device Programmers4

© 2010 Phyton, Inc. Microsystems and Development Tools

... 41Configuration Files

.. 41The View Menu

.. 42The Project Menu

... 42The Project Options Dialog

... 43The Open Project Dialog

... 43Project Repository

.. 44The Configure Menu

... 45The Select Device dialog

... 45The Buffers dialog

... 46The Buffer Configuration dialog

... 46Main Buffer Layer

... 47Buffer Layers

... 47The Serialization, Checksum and Log dialog

... 47Device Serialization

... 48Checksum

... 49Signature string

... 49Log f ile

... 51The Preferences dialog

... 51The Environment dialog

... 52Fonts

... 52Colors

... 53Mapping Hot Keys

... 54Toolbar

... 54Messages

... 54Miscellaneous Settings

... 55Configurating Editor Dialog

... 55General Editor Settings

... 57The Editor Key Mapping

... 57The Edit Key Command Dialog

.. 58The Commands Menu

... 58Calculator

.. 59The Script Menu

.. 60The Window Menu

.. 61The Help Menu

... 614 Windows

.. 61The Program Manager Window

... 62The Program Manager tab

... 63Auto Programming

... 64The Options tab

... 65Split data

... 66The Statistics tab

.. 67The Device and Algorithm Parameters w indow

.. 70Buffer Dump Window

... 71The 'Configuring a Buffer' dialog

... 72The 'Buffer Setup' dialog

... 74The 'Display from address' dialog

... 74The 'Modify Data' dialog

... 74The 'Memory Blocks' dialog

... 76The 'Load File' dialog

... 77File Formats

... 78The 'Save File' dialog

.. 79The Device Information window

... 79Phyton programming adapters

... 81Adapters for in-system programming

5Contents

5

© 2010 Phyton, Inc. Microsystems and Development Tools

.. 82The Console Window

.. 82Windows for Scripts

Part V Operating with Programmers 83

... 831 Inserting devices to a programming socket

... 832 Auto-detecting the device

... 843 Basic programming functions

.. 84How to check if a device is blank

.. 84How to erase a device

.. 84How to program a device

... 85How to load a f ile into a buffer

... 85How to edit information before programming

... 85How to configure the chosen device

... 85How to w rite information into the device

.. 86How to read a device

.. 86How to verify programming

.. 86How to save data on a disc

.. 87How to duplicate a device

... 874 Programming NAND Flash memory

.. 87NAND Flash memory architectures

... 89Invalid blocks

... 89Managing invalid blocks

... 89Skipping invalid blocks

... 89Reserved Block Area

... 90Error Checking and Correction

... 90Invalid block map

... 91Marking invalid blocks

.. 92Programming NAND Flash devices by ChipProg

... 93Access Mode

... 93Invalid Block Management

... 93Spare Area Usage

... 94Guard Solid Area

... 95Tolerant Verify Feature

... 95Invalid Block Indication Option

... 95Access Mode Parameters

... 96User Area

... 96Solid Area

... 97Reserved Block Area

... 97ECC Frame size

... 97Acceptable number of errors

... 975 Multi- and Gang-programming

.. 99The Program Manager Window

... 99The Program Manager tab

... 100The Options tab

... 101The Statistics tab

... 1026 In-System Programming

Part VI Programming Automation via DLL 104

... 1041 Application Control Interface

... 1052 ACI Functions

.. 108ACI_Launch

ChipProg Device Programmers6

© 2010 Phyton, Inc. Microsystems and Development Tools

.. 108ACI_Exit

.. 108ACI_LoadConfigFile

.. 109ACI_SaveConfigFile

.. 109ACI_SetDevice

.. 109ACI_GetDevice

.. 109ACI_GetLayer

.. 110ACI_CreateBuffer

.. 110ACI_ReallocBuffer

.. 110ACI_ReadLayer

.. 110ACI_WriteLayer

.. 111ACI_FillLayer

.. 111ACI_GetProgrammingParams

.. 111ACI_SetProgrammingParams

.. 111ACI_GetProgOption

.. 112ACI_SetProgOption

.. 113ACI_AllProgOptionsDefault

.. 113ACI_ExecFunction

.. 114ACI_StartFunction

.. 114ACI_GangStart

.. 114ACI_GetStatus

.. 115ACI_TerminateFunction

.. 115ACI_FileLoad

.. 115ACI_FileSave

.. 115ACI_SettingsDialog

.. 115ACI_SelectDeviceDialog

.. 116ACI_BuffersDialog

.. 116ACI_LoadFileDialog

.. 117ACI_SaveFileDialog

... 1183 ACI Structures

.. 119ACI_Launch_Params

.. 120ACI_Config_Params

.. 120ACI_Device_Params

.. 120ACI_Layer_Params

.. 122ACI_Buffer_Params

.. 123ACI_Memory_Params

.. 124ACI_Programming_Params

.. 126ACI_ProgOption_Params

.. 129ACI_Function_Params

.. 131ACI_PStatus_Params

.. 133ACI_File_Params

.. 134ACI_GangStart_Params

... 1344 Examples of use

Part VII Script Files 137

... 1371 The Script Files Dialog

... 1392 How to create and edit script files

.. 140The Editor Window

.. 141Text Edit

... 142The Search for Text Dialog

... 143The Replace Text Dialog

... 144The Confirm Replace Dialog

... 144The Multi-File Search Results Dialog

7Contents

7

© 2010 Phyton, Inc. Microsystems and Development Tools

... 144Search for Regular Expressions

... 145The Set/Retrieve Bookmark Dialogs

... 145Condensed Mode

... 146The Condensed Mode Setup Dialog

... 146Automatic Word Completion

... 146Syntax Highlighting

... 147The Display from Line Number Dialog

... 147The Quick Watch Function

... 147Block Operations

... 1483 How to start and debug script files

.. 150The AutoWatches Pane

.. 150The Watches Window

... 151The Display Watches Options Dialog

... 152The Add Watch Dialog

.. 152The User Window

.. 153The I/O Stream Window

Part VIII References 153

... 1531 Command line keys

... 1542 Errors Messages

.. 154Error Load/ Save File

.. 155Error Addresses

.. 155Error sizes

.. 155Error command-line option

.. 156Error Programming option

.. 156Error DLL

.. 156Error USB

.. 157Error programmer hardware

.. 157Error internal

.. 157Error confiquration

.. 157Error device

.. 158Error check box

.. 158Error mix

.. 158Warning

... 1583 Expressions

.. 159Operations with Expressions

.. 160Numbers

.. 161Examples of Expressions

... 1614 Script Language

.. 162Simple example

.. 162Description

.. 163Built-in Functions

.. 163Built-in Variables

.. 164Difference between the Script and the C Languages

.. 166Script Language Built-in Functions and Variables

... 1735 In-System Programming for different devices

.. 173Specific of programming PICmicro

.. 174Specific of programming AVR microcontrollers

.. 174Specific of programming Atmel 8051 microcontrollers

ChipProg Device Programmers8

© 2010 Phyton, Inc. Microsystems and Development Tools

Index 176

Introduction 9

© 2010 Phyton, Inc. Microsystems and Development Tools

1 Introduction

ChipProg Device Programmers

User's Guide

Ch i pPr og-48

Ch i pPr og-40

Ch i pPr og-G4

Ch i pPr og-ISP

Copyright © 2005-2011, Phyton, Inc. Microsystems and Development Tools, All rights reserved

1.1 Terms and Definitions

 Terms used in the document

Target device or Target The device to be programmed by a programmer either in the programmer
socket or by an additional adapter or by a cable for in-system
programming.

Start and End Addresses

(of the Target device)
A range of the device physical memory for the programming operations
(Read, Write, Verify, etc.).

Device packagePackage Mechanical characteristics of the target device; ChipProg programmers
enable operations on the devices packed in the DIP (DIL) packages with no
additional adapters as well as on most non-DIP packed devices, including
but not limited to the devices in the PLCC, SOIC, SSOP, TSOP, SSOP,
QFP, BGA, QNF and other packages.

Programming socket or
Programming ZIF socket

or ZIF socket

A socket installed on a programmer unit or on an adapter (see below) to
accommodate the target device for programming. All ChipProg models use
ZIF (or Zero Insertion Force) programming sockets that allow for the
temporary installation of the target device in the programmer site and easily

ChipProg Device Programmers10

© 2010 Phyton, Inc. Microsystems and Development Tools

removing it after completing the programming procedure.-40,
ChipProgChipProg

Adapter or Package

adapter

A small transition board with dual-in-line rows of pins pluggable into the
programmer ZIF socket on the bottom side and with a package-specific ZIF
socket (TSOP, PLCC, etc.) on the top. The adapters for in-system
programming by means of the parallel programmers are implemented as
ribbon cables that connect to the target board via a special header. The
adapter boards can carry passive components (ZIF sockets, pins and
cables) and active components (drivers, latches, transistors, etc.).
Hundreds of Phyton brand adapters as well as third party adapters are
available to support devices in most types of mechanical packages.

File In the ChipProg context the term file may represent: a) an image of
information on a PC hard drive or other media that is supposed to be
written into the target device’s physical memory or b) an image read out
from the target device and then stored on the disk or other media. Files in a
ChipProg can be loaded from and saved on a PC hard drive or CD.

Buffer or Memory buffer A memory segment, physically assigned from the computer operational
memory (RAM), for temporarily storing, editing and displaying the data to
be physically written to the target device’s memory or read out from the
device. The program allows opening an unlimited number of buffers of any
size while it is not restricted by the computer memory.

Buffer layer or sub-layer A buffer may have a few layers (in some topics also known as sub-layers)
that are defined by a particular architecture and memory model of the
target device. For example, for some microcontrollers one buffer can
include the code and data memory layers (see more details below).

Buffer size The buffers may have different sizes from 128KB to 32GB each.

Buffer start address The address to display the buffer contents from.

Checksum An arithmetic sum of the data located within a specified part of the buffer
calculated by the programmer to control the data integrity. The program
enables different algorithms for the checksum calculation and enables
writing the checksum into a specified location of the target device.

Parallel or In-socket

programming

Operations on a device being placed into the programmer’s ZIF socket or
into a programming adapter (opposite to the in-system programming
below).

ICP or in-circuit

programming

Programming devices mounted on the boards (in the user’s equipment) via
special adapter-cable connecting the programmer to the target.

ISP or in-circuit

programming

Same as above. Programming devices mounted on the boards (in the
user’s equipment) via special adapter-cable connecting the programmer
with the target.

ISP Mode Mode of the in-system programming that is usually defined by the
programming signals voltage or the ISP interface (JTAG, UART, SPI, etc.).
Distinct ISP modes are enabled for different target devices and more than

Introduction 11

© 2010 Phyton, Inc. Microsystems and Development Tools

one mode may exist for one device.

ISP JTAG Mode In-system programming via a JTAG interface.

ISP HV Mode In-system programming that requires applying a relatively high voltage to
the target device, (12V for example).

Project An integrated set of information in the ChipProgUSB that completely
describes the target device, properties of the data buffers, programming
options and settings, list of the source and destination files with all their
properties, etc.. Each project that has its own unique name can be stored
and promptly reloaded for immediate execution. Usually a user creates a
project to work with one type of device. Working with projects saves a lot of
time for the initial configuration of the programmer every time you start
working with a new device.

 File - Buffer - Target structure

Buffers are intermediate layers between the data in files and the data in the target device. The
ChipProg enables no direct interaction between the files and target devices. All the file operations,
such as loading and saving files are applicable to the buffers only. All the physical manipulations with
the target device memory content pass through the buffers as well. This is a fundamental principle of
the programmer operations with data and devices

Examples of the buffer's layer structures of different devices:

1. In the Intel 87C51FA microcontroller each opened buffer includes two layers: Code and
Encryption table.

2. In the Microchip PIC16F84 microcontroller each opened buffer includes three layers: Code, Data

EEPROMIdentifier locations.

Each buffer layer can be opened for watching or editing by clicking its tab on the top of the buffer
window.

1.2 System Requirements

To run ChipProgUSB and to control a ChipProg programmer, you need an IBM PC-compatible computer
with the following components:

Pentium-III CPU or higher
Windows XP/Vista/7 for the ChipProg-48, ChipProg-40 and ChipProg-ISP programmers in the all
modes
Windows 98/ME for the ChipProg-48, ChipProg-40 and ChipProg-ISP programmers in the basic mode
Windows 2000/XP/Vista/7 for the ChipProg-G4 programmer
Windows XP/Vista/7 for using the Application Control Interface control
256MB of RAM
At least one USB port
A hard drive with at least 200MB of free space

ChipProg Device Programmers12

© 2010 Phyton, Inc. Microsystems and Development Tools

ChipProg Family Brief Description 13

© 2010 Phyton, Inc. Microsystems and Development Tools

2 ChipProg Family Brief Description

ChipProg is a family of device programmers produced by Phyton, Inc. Microsystems and Development
Tools (hereafter Phyton). All modern ChipProg models are driven via a personal computer USB ports.
This line of Phyton programmers works under control of the ChipProgUSB universal software, one for all
USB hosted Phyton device programnmers available now and those are planned to be introduced soon.
The ChipProg programmers support thousands of programmable memory devices, including EPROM,
EEPROM, FLASH, NVRAM and OTP; programmable microcontrollers and logical devices: PAL, PLD
and CPLD. The family includes four models shown below: ChipProg-48 andChipProg-40 (top row),
ChipProg-G4 and ChipProg-ISP (bottom row). New ChipProg models will be added soon.

ChipProg-48 and ChipProg-40 programmers are intended for engineering and small volume
manufacturing. These models allow operating on the devices before they are installed in the equipment
(parallel programming) as well as on the devices already installed in the user's equipment (the method
known as In-System Programming, or ISP, that uses serial data transmission into the programmable
device). The ChipProg-ISP is a low-cost programmer for engineering, field service and manufacturing
uses. The ChipProg-G4 is a gang programmer intended for small and middle-volume production; it has
four programming sockets.

The ChipProgUSB software is intuitive and easy-to-use. See the User Interface topics. The software
package includes an embedded script language that enables the automation of many routine operations –
see the .

The ChipProgUSB software runs on the IBM PC hardware platform under the control of several

ChipProg Device Programmers14

© 2010 Phyton, Inc. Microsystems and Development Tools

Windows™ versions (see the System requirements).

2.1 Comparisson matrix

Programmer Model ChipProg-G4 ChipProg-48 ChipProg-40 ChipProg-ISP

Major features

Primarily intended for Production and chip

replication

Engineering and low

volume production

Engineering and low

volume production

Engineering, low

volume production

and f ield service

Method of writing /

reading information

Multi-site, concurrent,

parallel, in socket

Single-site, parallel,

in socket

Single-site, parallel,

in socket

Single-site, serial, in

system

Target devices FLASH, EPROM,

EEPROM, NVRAM,

MCU, PLD

FLASH, EPROM,

EEPROM, NVRAM,

MCU, PLD

FLASH, EPROM,

EEPROM, NVRAM,

MCU

FLASH, EEPROM,

MCU w ith ISP

capability only

Universality in terms of

the target support

Yes Yes Yes Yes

USB, 2.0 USB, 2.0 USB, 2.0

Multi-programming mode,

Number of programmers

driven from one PC

Yes,

Unlimited

Yes,

Unlimited

Yes,

Unlimited

Yes,

Unlimited

PC interface USB, 2.0 USB, 2.0 USB, 2.0 USB, 2.0

Programming socket or

cable

4 by 48 pin, DIL 48 pin, DIL 40 pin, DIL Programming cable,

14 pin max

Adapters availability Phyton brand and

third party adapters

Phyton brand and

third party adapters

Phyton brand and

third party adapters

Phyton brand cables

Software update Lifetime free of

charge

Lifetime free of

charge

Lifetime free of

charge

Lifetime free of

charge

Technical characteristics

Built-in microcontroller,

Fclk

Yes, 32-bit, 60 MHz Yes, 32-bit, 60 MHz Yes, 32-bit, 60 MHz Yes, 8-bit, 10 MHz

Built-in FPGA, Fclk Yes, up to 100 MHz Yes, up to 100 MHz Yes, up to 100 MHz Yes, up to 10 MHz

Logical pin drivers Universal,

1.8V to 5.5V

Universal,

1.8V to 5.5V

Universal,

1.8V to 5.5V

Universal,

1.8V to 5.5V

Analog drivers Universal, 10-bit DAC Universal, 10-bit

DAC

Not universal Not universal

Adjustability of the write

impulses edges’ slopes

Yes Yes Yes Yes

Unlimited Unlimited Limited by

implementation of the

analog drivers

Limited by

implementation of the

analog drivers

In-system programming

capability

Yes, w ith additional

cables

Yes, w ith additional

cables

Yes, w ith additional

cables

Yes

Chip insertion auto detect

capability

Yes Yes Yes

Correct chip insertion

testing

Yes Yes Yes Yes

ChipProg Family Brief Description 15

© 2010 Phyton, Inc. Microsystems and Development Tools

Checking bad contact in

the programming socket

Yes Yes Yes No

Project management by

the software shell

Yes Yes Yes No

Serialization of the

programmed devices

Yes Yes Yes No

Writing signatures into

the programmed devices

Yes Yes Yes No

Logging programming

sessions to files

Yes Yes Yes No

Host computer and

operation system

IBM PC, Window s

2000/XP/Vista

IBM PC, Window s

98/ME/

2000/XP/Vista

IBM PC, Window s

98/ME/

2000/XP/Vista

IBM PC, Window s

98/ME/

2000/XP/Vista

Compare the programming + verification time for the selected devices (min:
sec)

M25P20 00:07

SST39VF016Q 00:45 00:45 00:45 02:50

MX28F640C3BB 00:56 00:56 00:56 02:27

MX29LV017A 00:23 00:23 00:23 02:56

MX29LV160CT 00:16 00:16 00:16 01:17

SST49LF008A 00:19 00:19 00:19 01:43

PIC18LF8722 00:11 00:11 00:11 00:19

AT89S51 00:01 00:01 00:01 00:01

2.2 ChipProg-48

The ChipProg-48 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices and has no
valuable limitations in supporting future devices. The unlimited future device support differs ChipProg-48

from the simplified and less expensive ChipProg-40 model.

ChipProg Device Programmers16

© 2010 Phyton, Inc. Microsystems and Development Tools

The programmer has a 48-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 48 leads without the necessity to use any additional adapters. Programming of other
devices requires the use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has a
wall-plugged power adapter that is not shown on the picture above.

Standard package contents:

One programmer unit
One power adapter 12V/1A+
One USB link cable
One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:

Major features

Hardware characteristics

Software features

2.2.1 Major features

1. Equipped with a 48 pin ZIF socket that allows insertion of the DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional
adapters.

2. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.
3. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.

ChipProg Family Brief Description 17

© 2010 Phyton, Inc. Microsystems and Development Tools

4. Can program target devices in the programmer ZIF socket as well as the devices installed in the
equipment (ISP mode).

5. ChipProg-48 tools can be driven from multiple USB ports of one computer (or via a USB hub) to
provide concurrent programming of multiple devices of the same type.

6. Has a button for fast manual launch of any single operation or a bunch of operations.
7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.2.2 Hardware characteristics

1. The programmer has a 48-pin ZIF socket with a lever that enables the insertion and clamping of any
DIP-packed devices with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the
number of leads up to 48.

2. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and many
third parties.

3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller and
FPGA. These resources allow adding new targets to the device list by a simple software update.

4. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the programming
speed.

5. Implementation in the FPGA devices logical drivers enables outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

6. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

7. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

8. The tool hardware automatically adjusts the generated analog signals.
9. The generated analog signals for both the target supplying and programming can be outputted to any

pins of the device being programmed.
10.The tool hardware can connect any pin of the device being programmed to the “Ground” level.
11.The tool hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s contacts

(“bad contact” checking).
12.The tool hardware protects itself and the target device against incorrect insertions and other issues

that cause a sharp increase in the currents though the target device circuits. This “over current”
protection is very fast and reliable.

13.The target device pins are protected against the electrostatic discharge.
14.The tool’s hardware has a programmable clock generator.
15.

2.2.3 Software features

1. Works under control of Windows 95/98/ME/2000/XP/Vista.
2. Friendly, intuitive graphic user interface.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration

Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above executed one after one either by a manual

start or by a mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into a

specified memory location of the target device. Several methods of the checksum calculation can be

ChipProg Device Programmers18

© 2010 Phyton, Inc. Microsystems and Development Tools

used.
7. The program allows writing a unique signature into a specified memory location of the target device for

the device identification.
8. Project support speeds up and simplifies switching between different programming tasks.
9. The software allows pre-programming a particular operation (or a chain of operations), which is

supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB window.
11. The software supports a multiple programming mode for concurrent programming of the same type of

target devices on the same type of programmers connected to one cluster. The cluster size has no
influence on the programming speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL, Angstrem
SAV. Special non-standard formats can be added on request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

2.3 ChipProg-40

The ChipProg-40 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices. The
programmer hardware has some limitations for supporting certain devices. It does not support any PLDs.
This is a difference between the cheaper ChipProg-40 and the enhanced -48

ChipProg Family Brief Description 19

© 2010 Phyton, Inc. Microsystems and Development Tools

The programmer has a 40-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 40 leads without the necessity to use any additional adapters. Programming of other
devices requires use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has a
wall-plugged power adapter that is not shown on the picture above.

Standard package contents:

One programmer unit
One power adapter 12V/1A+
One USB link cable
One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:

Major features

Software features

2.3.1 Major features

1. Equipped with a 40 pin ZIF socket that allows insertion of any DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 40 without additional
adapters.

2. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.
3. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.
4.
5. An unlimited number of ChipProg-40 tools can be driven from multiple USB ports of one computer (or

via a USB hub) to provide concurrent programming of multiple devices of the same type.
6. Has a button for fast manual launch of any single operation or a batch of operations.
7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.3.2 Hardware characteristics

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam velit risus, placerat et, rutrum nec,
condimentum at, leo. Aliquam in augue a magna semper pellentesque. Suspendisse augue. Nullam est
nibh, molestie eget, tempor ut, consectetuer ac, pede. Vestibulum sodales hendrerit augue.
Suspendisse id mi. Aenean leo diam, sollicitudin adipiscing, posuere quis, venenatis sed, metus. Integer
et nunc. Sed viverra dolor quis justo. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
elementum. Nullam a arcu. Vivamus sagittis imperdiet odio. Nam nonummy. Phasellus ullamcorper velit
vehicula lorem. Aliquam eu ligula. Maecenas rhoncus. In elementum eros at elit. Quisque leo dolor,
rutrum sit amet, fringilla in, tincidunt et, nisi.

Donec ut eros faucibus lorem lobortis sodales. Nam vitae lectus id lectus tincidunt ornare. Aliquam
sodales suscipit velit. Nullam leo erat, iaculis vehicula, dignissim vel, rhoncus id, velit. Nulla facilisi.
Fusce tortor lorem, mollis sed, scelerisque eget, faucibus sed, dui. Quisque eu nisi. Etiam sed erat id
lorem placerat feugiat. Pellentesque vitae orci at odio porta pretium. Cras quis tellus eu pede auctor
iaculis. Donec suscipit venenatis mi.

Aliquam erat volutpat. Sed congue feugiat tellus. Praesent ac nunc non nisi eleifend cursus. Sed nisi
massa, mattis eu, elementum ac, luctus a, lacus. Nunc luctus malesuada ipsum. Morbi aliquam, massa

ChipProg Device Programmers20

© 2010 Phyton, Inc. Microsystems and Development Tools

eget gravida fermentum, eros nisi volutpat neque, nec placerat nisi nunc non mi. Quisque tincidunt quam
nec nibh sagittis eleifend. Duis malesuada dignissim ante. Aliquam erat volutpat. Proin risus lectus,
pharetra vel, mollis sit amet, suscipit ac, sapien. Fusce egestas. Curabitur ut tortor id massa egestas
ullamcorper. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec fermentum. Curabitur ut ligula ac ante scelerisque consectetuer. Nullam at turpis quis nisl
eleifend aliquam. Sed odio sapien, semper eget, rutrum a, tempor in, nibh.

2.3.3 Software features

1. Works under control of Windows 95/98/ME/2000/XP/Vista.
2. Friendly, intuitive graphic user interface.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration

Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above executed one after one by a manual start, by a

mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into a

specified memory location of the target device. Several methods of the checksum calculation can be
used.

7. The program allows writing a unique signature into a specified memory location of the target device for
the device identification.

8. Project support speeds up and simplifies switching between different programming tasks.
9.
10.ChipProgUSB window.
11. The software supports a multiple programming mode for concurrent programming of of the

programmers connected to one cluster. The cluster size has no influence on the programming speed.
12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as

well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13.
14. The software is featured by a script language and a mechanism of handling the script scenarios for

automation of the routine operations and chip replications.

2.4 ChipProg-G4

The ChipProg-G4 is a 4-site gang programmer based on four ChipProg-48 tools enclosed in onecase
and driven from the ChipProgUSB software. It is intended for middle- and low-volume manufacturing. It
supports in-socket and in-system programming of thousand of devices and has no valuable limitations for
supporting future devices.

ChipProg Family Brief Description 21

© 2010 Phyton, Inc. Microsystems and Development Tools

Standard package contents:

One programmer unit
One power cable
One USB link cable
One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the programmer)
and a “QuickStart” printed manual. See also for more details:

Major features

Hardware characteristics

Software features

2.4.1 Major features

1. Based on four ChipProg-48 tools enclosed in one case and connected to a PC via an embedded USB
hub.

2. Allows independent and concurrent programming of up to four devices of the same type.
3. 48 pin ZIF sockets allow insertion of any DIP-packed devices with the package width from 300 to 600

mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional adapters.
4. Links to a PC USB 2.0 compatible port via one link cable.
5. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.
6. Can program target devices in its socket as well as devices installed in the equipment (ISP mode).
7. Each programming site has a 'Start' button for fast manual launch of any single operation or a batch of

operations.
8. Each programming site has three LEDs for displaying the programming status (“Good”, “Busy”,

“Error”).

2.4.2 Hardware characteristics

1. Enclosed in a durable steel case to be used in an industrial environment.
2. The tool gets power from a standard outlet 110-240V, 50-60 Hz.

ChipProg Device Programmers22

© 2010 Phyton, Inc. Microsystems and Development Tools

3. Each programming site based on a single ChipProg-48 programmer has aof any DIP-packed devices
with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the number of leads up to 48.

4. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and many
third parties.

5. Single ChipProg-48 programmers inside of the tool enclosure are connected to an embedded USB 2.0
hub

6. Each programming site is built on the base of a very fast and powerful 32-bit embedded
microcontroller and FPGA. These resources allow adding new targets to the device list by a simple
software update.

7. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the programming
speed.

8. Implementation in the FPGA devices logical drivers enable outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

9. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

10. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

11. The tool hardware automatically adjusts the generated analog signals.
12. The generated analog signals for both the target supplying and programming can be outputted to any

pins of the device being programmed.
13. The tool hardware can connect any pin of the device being programmed to the “Ground” level.
14. The tool hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s contacts

(“bad contact” checking).
15. The tool hardware protects itself and the target device against incorrect insertions and other issues

that cause a sharp increase in the currents though the target device circuits. This “over current”
protection is very fast and reliable.

16. The target device pins are protected against the electrostatic discharge.
17. The tool’s hardware has a programmable clock generator.
18. The self-testing procedure automatically executes at any time the programmer is powered on.

2.4.3 Software features

1. Works under control of Windows 2000/XP/Vista.
2. Friendly, intuitive graphic user interface allows monitoring the programming sites statuses and can

zoom in on operations on each of four programming sites.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration

Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above and executed one after one by a manual start,

by a mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6.
7. The program allows writing a unique signature into a specified memory location of the target device for

the device identification.
8. Project support speeds up and simplifies switching between different programming tasks.
9. The software allows pre-programming a particular operation (or a chain of operations), which is

supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. Unlimited number of memory buffers can be opened in the main ChipProgUSB window for each of
four programming sites.

ChipProg Family Brief Description 23

© 2010 Phyton, Inc. Microsystems and Development Tools

11. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

12. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL, Angstrem
SAV. Special non-standard formats can be added on request.

13. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

2.5 ChipProg-ISP

The ChipProg-ISP is a low-cost universal programmer specifically created for programming devices
without removing them from the equipment where they are installed. This type of programming is known
as “in-system” or “in-circuit”. The ChipProg-ISP supports serial EPROM and EEPROM flash memory
devices and embedded microcontrollers with the code and data memory programmable via different
types of serial ports: UART, JTAG, SPI and other types, including proprietary interfaces.

The programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The tool shown on the picture is
very small and requires no power adapter for the operations - it gets power from the USB computer port.
 .

Connecting ChipProg-ISP to the target

The programmer has a 14-pin output connector BH-14R. A variety of Phyton adapting cables allow
connecting to the target. A simple pin-to-pin ribbon cable is supplied with the programmer by default,
and other cables (adapters) can be ordered on demand. The BH-14R connector output information
signals for the chip programming and some service signals that enable using the programmer in the
automated programming and testing equipment. See the BH-14R pinout:

ChipProg-ISP BH-

14R connector Logical signal

1 Target specific*

ChipProg Device Programmers24

© 2010 Phyton, Inc. Microsystems and Development Tools

2 Target specific*

3 Target specific*

4 Target specific*

5 Target specific*

6 Target specific*

7 Target specific*

8 Target specific*

9 GND

10 Target specific*

11 /Start

12

13 /Good

14 /Busy

Signals on the pins #1 to #9 and on the pin #10 are used for transmitting and receiving information and
synchro impulses to and from the target device. These signals are target specific and depend on the
type of target device or a family in general (AVR, PIC, etc.) - see here. They also are shown in the
adapters wiring diagrams; see the file included in the ChipProgUSB set.

The pin #9 must be connected to the target's ground.

The signals on the output pins #12, #13 and #14 represent the programmer statuses - logical '0' means
an active status, logical '1' - passive. E.g.:

/Error – the operation has failed;
/Good – the operation completed successfully;
/Busy – the programmer is in a process of executing some operation.

An active signal on the input pin #11 (log.'0') starts the preset operation, the device programming by
default. Activation of this signal, e.g. a falling edge, is equivalent to pushing the "Start" button on the
programmer.

Read also In-System Programming for different devices.

Standard package contents:

One programmer unit
One universal ribbon cable wired pin-to-pin
One USB link cable
One CD with the ChipProgUSB software

Optionally the package may include one or more programming cable-adapters (if ordered with the
programmer) and a “QuickStart” printed manual. See also for more details:

Major features

ChipProg Family Brief Description 25

© 2010 Phyton, Inc. Microsystems and Development Tools

Hardware characteristics

Software features

2.5.1 Major features

1. Has a 14 pin socket for connecting to the target equipment by means of several cable-adapters.
2. Protects itself and the target equipment against incorrect wiring.
3. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.
4. An unlimited number of ChipProg-ISP tools can be driven from multiple USB ports of one computer (or

via a USB hub) to provide concurrent programming of multiple devices of the same type.
5. Has a button for fast manual launch of any single operation or a batch of operations.
6. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.5.2 Hardware characteristics

1. Has a standard 14 pin connector.
2. Adapters for programming devices with in-system programming capability.
3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller and

FPGA devices. These resources allow adding new targets to the device list by a simple software
update.

4. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the programming
speed.

5. Implementation in the FPGA devices logical drivers enable outputting logical signals of any level (low,
high, Pullup, Pulldown and external clock generator) to any pin of the programming connector.

6. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

7. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

8. The tool hardware automatically adjusts the generated analog signals.
9. The generated analog signals for both the target supplying and programming can be outputted to any

pins of the device being programmed.
10. The tool hardware protects itself and the target device against incorrect connection.
11. The target device pins are protected against the electrostatic discharge.
12. Can be started from the external signal.
13. Three status signals “Good”, “Busy”, “Error” are outputted to the programmer connector.
14. The self-testing procedure automatically executes at any time the programmer is powered on.

2.5.3 Software features

1. Works under control of Windows 95/98/ME/2000/XP/Vista.
2. Friendly, intuitive graphic user interface.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set Configuration

Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above executed one after one by a manual start, by a

mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into a

specified memory location of the target device. Several methods of the checksum calculation can be
used.

ChipProg Device Programmers26

© 2010 Phyton, Inc. Microsystems and Development Tools

7. The program allows writing a unique signature into a specified memory location of the target device for
the device identification.

8. Project support speeds up and simplifies switching between different programming tasks.
9. The software allows pre-programming a particular operation (or a chain of operations), which is

supposed to be automatically triggered when the programmer hardware detects insertion of the target
device into the programming socket.

10. Unlimited number of memory buffers can be opened in the main ChipProgUSB window.
11. The software supports a multiple programming mode for concurrent programming of the same type of

target devices on the same type of the programmers connected to one cluster. The cluster size has
no influence on the programming speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers as
well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended Intel
HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL, Angstrem
SAV. Special non-standard formats can be added on request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

Quick Start 27

© 2010 Phyton, Inc. Microsystems and Development Tools

3 Quick Start

This chapter includes the topics that describe:

How to install the ChipProgUSB software

How to install the ChipProg USB drivers

How to install the ChipProghardware and to start up the ChipProg programmers of different type.

It is highly recommendedGraphical User Interface and before starting to use the tool.

It is assumed that you are an experienced user of MS Windows and basic Windows operations.

3.1 Installing the ChipProgUSB Software

Insert the distributive ChipProgUSB disc into a CD drive of your PC, click the install button and then follow the
series of prompts that will lead you through the installation process.

Accept the terms of license agreement

Choose the folder to install

ChipProg Device Programmers28

© 2010 Phyton, Inc. Microsystems and Development Tools

Wait for installation...

Phyton folder

At the end the installer will create a folder with ChipProgUSB tools' and documents' shortcuts:

Quick Start 29

© 2010 Phyton, Inc. Microsystems and Development Tools

Phyton Programming Adapter List - opens the adapters.chm file that list all the Phyton
programming adapters with their short descriptions and wiring diagrams.

ChipProgUSB On-Line Help - opens the programmer on-line Help document.

Phyton ChipProgUSB - invokes the ChipProgUSB executable file and starts operations for the
ChipProgChipProg-40 and ChipProg-ISP programmers working in a single programming mode.

Phyton ChipProgUSB -- Gang Mode - invokes the ChipProgUSB executable file and starts
operations for the ChipProg -G4 gang programmer or the ChipProg-48, ChipProg-40 and ChipProg-ISP
programmers working in a multiprogramming mode.

Phyton ChipProgUSB Demo - invokes a demo version of the ChipProgUSB software that allows
evaluating the product without its hardware.

Phyton WEB site - opens an Internet browser with the www.phyton.com website.

Revision History - opens the ChipProgUSB versions history file.

Uninstall Phyton ChipProgUSB Programmer - starts a process of removing the ChipProgUSB
program from your computer.

3.2 Installing the USB Drivers

In a process of the ChipProgUSB software installation from a distributive disc the program installs the drivers

for the USB devices used in all types of the ChipProg programmers working under control of the Windows

2000/XP/Vista/7 operating systems. Only the -48, -40 and ChipProg-ISP programmers working under
control of the Windows 98/ME operating systems require the USB drivers to be installed after the
software installation is completed. The guidelines below are for the Windows 98/ME operating
systems only.

To invoke the USB drivers installation procedure connect a ChipProgUSB to the USB port of your computer
via the included USB cable. You should see the Found New Hardware Wizard dialog:

http://www.phyton.com

ChipProg Device Programmers30

© 2010 Phyton, Inc. Microsystems and Development Tools

Select the 'No, not this time' option and click the Next button. The wizard below will appear:

 Select the 'Install from a list or specific location' option and click the Next

Quick Start 31

© 2010 Phyton, Inc. Microsystems and Development Tools

Browse to the DRIVERS.USB folder on the Phyton CD and click the Next button (certainly the drive letter can
be other than D:). This will start the drivers installation.

Click the Continue Anyway button to complete the installation; you will soon get the last prompt:

ChipProg Device Programmers32

© 2010 Phyton, Inc. Microsystems and Development Tools

 Click the button. Now you can use the ChipProg

3.3 Hardware installation

It is a mandatory for you to use the original power adapter 12V/1A received with the ChipProg-40 or
ChipProg -48 programmer and an original power cord for the ChipProg-G4 gang programmer. Any
substitutions should be agreed to with Phyton. It is also highly recommended to use the USB link
cables received with the programmers.

The hardware installations for different programmer models vary. Select the topic to see:

The ChipProg-48 hardware installation
The ChipProg-40 hardware installation
The ChipProg-G4 hardware installation
The ChipProg-ISP hardware installation

3.3.1 ChipProg-48

For the programmer to be used in a single-programming mode:

Quick Start 33

© 2010 Phyton, Inc. Microsystems and Development Tools

Powering the

programmer

Plug the power adapter to the ~110/240V outlet. Connect a plug of the
power adapters to the coaxial connector on the rear panel of the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connecting to a PC Connect the USB port of your PC to the USB connector on the rear panel
of the programmer by means of the USB cable. It is highly recommended
to connect the programmer to a USB slot on the computer main unit and
do not connect it through a USB hub, especially through a passive hub.

Starting up Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of the
programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-ISP.
Select the ChipProg-48 and continue. The ChipProgUSB main window
will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one

computer:

Powering the

programmers

Plug the power adapters of each programmer to be connected in one
programming cluster to the 110/240V outlets. Connect plugs of the power
adapters to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connecting the

programmers to a

cluster

Connect the USB ports of your PCs to the USB connectors on the rear
panels of the programmers by means of the USB cables. It's highly
recommended to connect the programmers to USB slots on the computer
main unit and do not connect them through a USB hub, especially
through a passive hub.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.

3.3.2 ChipProg-40

For the programmer to be used in a single programming mode, e.g. alone:

ChipProg Device Programmers34

© 2010 Phyton, Inc. Microsystems and Development Tools

Powering the

programmer

Plug the power adapter to the ~110/240V outlet. Connect a plug of the
power adapter to the coaxial connector on the rear panel of the
programmer and make sure that the "Good" green LED on the
programmer is on.

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and not
connect it through a USB hub, especially through a passive hub.

Starting up Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of the
programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-ISP.
Select the ChipProg-40 and continue. The ChipProgUSB main window
will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one

computer:

Powering the

programmers

Plug the power adapters of each programmer to be connected in one
programming cluster to the 110/240V outlets. Connect plugs of the power
adapter to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good"LEDs on each of them are
on.

Connecting the

programmers to a

cluster

Connect USB ports of your PCs to USB connectors on the rear panels of
the programmers by means of the USB cables. It's highly recommended
to connect the programmers to USB slots on the computer main unit and
not connect them through a USB hub, especially through a passive hub.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the main window will open and you
will be able to work with the tool.

Read about the Multi-Programming mode.

3.3.3 ChipProg-G4

Powering the

programmer

Plug the power cord to a power connector on the rear panel of the
programmer, then plug an opposite site to the ~110/240V outlet. Make
sure that all four "Good" green LEDs on the programmer are on.

Quick Start 35

© 2010 Phyton, Inc. Microsystems and Development Tools

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and not
connect it through a USB hub, especially through a passive hub. Use of
the passive USB hubs for connecting the ChipProg-G4 programmer is not
allowed.

Starting up Important! When you start the programmer first time wait for about

20 seconds to allow the USB driver to be setup. Then, every time

when you start the programmer, wait for 5...10 sec before

launching the ChipProgUSB software.

Start the Phyton ChipProgUSB - Gang ModeStart button on a top panel
of the programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

3.3.4 ChipProg-ISP

For the programmer to be used in a single programming mode, e.g. alone:

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. Make sure that the "Good"

Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of the
programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-ISP.
Select the ChipProg-ISP and continue. The ChipProgUSB main window
will open and you will be able to work with the tool.

Connecting the

programmers to a

cluster

Connect USB ports of your PCs to USB connectors on the rear panels of
the programmers by means of the USB cables. Make sure that the
"Good" green LEDs on all the programmers are on. It's highly
recommended to connect the programmers to USB slots on the computer
main unit and not connect them through a USB hub. The ChipProg
programmers get power from the computer's USB port; that is why it's
important not to overload the ports. Use of the passive USB hubs for
clustering the ISP programmers is not allowed.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.

ChipProg Device Programmers36

© 2010 Phyton, Inc. Microsystems and Development Tools

3.4 Getting Assistance

3.4.1 On-line Help

The ChipProgUSB software has a pretty comprehensive context-sensitive on-line Help. To access it press
the F1 key or use the Help menu. Almost every F1.

In most cases you can find the necessary topic by searching for a keyword. For example, if you type "Verify"
in the first box of the Find tab, the third box will list the topics related to the programming verification.
Choose an appropriate topic from this list and press Display

3.4.2 Technical Support

During a product’s warranty period Phyton provides technical support free of charge. Though we have been
selling the ChipProg programmers for many years the product software may contain minor bugs and some
programming algorithms may not be stable on some of the supported devices. We kindly ask you to report
bugs when you get an error message or have a problem with programming a particular device or devices.
We commit to prompt checking of your information and fixing the detected bugs.

To minimize difficulties operating with ChipProgUSB it is highly recommended to get familiar with the
manual before using the programmer. The ChipProgUSB - user interface is quite standard and intuitive,
however it includes some specific functions and controls that the user should learn about.

Before contacting Phyton

Make sure that you use the latest ChipProgUSB version that is always available for free download from
the http://www.phyton.com.
Make sure the detected error can be reproduced in the same working environment and is not a casual
glitch.

When contacting us

Please, provide our technical support specialists with the following information:

Name of the ChipProg model and its serial number, if one exists.
Date of purchase, the Phyton invoice number, if available.
Software version number taken from the About information box.
Basic parameters of your computer and operating system.
The device type, mechanical package and the type of the adapter if one is used.
Descriptions of detected errors, relevant bug reports and error screen shots.

Please send your requests or questions to support@phyton.com. This is the easiest way to get
professional and prompt help. Also, see Contact Information.

mailto:support@phyton.com

Quick Start 37

© 2010 Phyton, Inc. Microsystems and Development Tools

3.4.3 Contact Information

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam velit risus, placerat et, rutrum nec,
condimentum at, leo. Aliquam in augue a magna semper pellentesque. Suspendisse augue. Nullam est
nibh, molestie eget, tempor ut, consectetuer ac, pede. Vestibulum sodales hendrerit augue.
Suspendisse id mi. Aenean leo diam, sollicitudin adipiscing, posuere quis, venenatis sed, metus. Integer
et nunc. Sed viverra dolor quis justo. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
elementum. Nullam a arcu. Vivamus sagittis imperdiet odio. Nam nonummy. Phasellus ullamcorper velit
vehicula lorem. Aliquam eu ligula. Maecenas rhoncus. In elementum eros at elit. Quisque leo dolor,
rutrum sit amet, fringilla in, tincidunt et, nisi.

Donec ut eros faucibus lorem lobortis sodales. Nam vitae lectus id lectus tincidunt ornare. Aliquam
sodales suscipit velit. Nullam leo erat, iaculis vehicula, dignissim vel, rhoncus id, velit. Nulla facilisi.
Fusce tortor lorem, mollis sed, scelerisque eget, faucibus sed, dui. Quisque eu nisi. Etiam sed erat id
lorem placerat feugiat. Pellentesque vitae orci at odio porta pretium. Cras quis tellus eu pede auctor
iaculis. Donec suscipit venenatis mi.

Aliquam erat volutpat. Sed congue feugiat tellus. Praesent ac nunc non nisi eleifend cursus. Sed nisi
massa, mattis eu, elementum ac, luctus a, lacus. Nunc luctus malesuada ipsum. Morbi aliquam, massa
eget gravida fermentum, eros nisi volutpat neque, nec placerat nisi nunc non mi. Quisque tincidunt quam
nec nibh sagittis eleifend. Duis malesuada dignissim ante. Aliquam erat volutpat. Proin risus lectus,
pharetra vel, mollis sit amet, suscipit ac, sapien. Fusce egestas. Curabitur ut tortor id massa egestas
ullamcorper. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec fermentum. Curabitur ut ligula ac ante scelerisque consectetuer. Nullam at turpis quis nisl
eleifend aliquam. Sed odio sapien, semper eget, rutrum a, tempor in, nibh.

ChipProg Device Programmers38

© 2010 Phyton, Inc. Microsystems and Development Tools

4 Graphical User Interface

The ChipProgUSB graphical user interface (GUI) elements include:

Menus - global and local
Windows
Toolbars - global and local
Setting Dialogs
Hot Keys
Context-sensitive help prompts

GUI featured with several useful additions specifically created for the ChipProg operations.

To make your operations with the ChipProgUSB program easier we highly recommend to learn the

chapters Menus and Windows in full. You will be able to use the tools much more effectively.

4.1 User Interface Overview

 ChipProgUSB features the standard Windows interface with several useful additions:

1. Each window has its own local menu (the shortcut menu). To open this menu, click the right mouse
button within the window area or press Ctrl+Enter or Ctrl+F10. Each command in the menu has a hot
key shortcut assigned to the Ctrl+<letter> keys. Pressing the hot key combination in the active window
executes the corresponding command.

2. Each window has its own local toolbar. The window’s toolbar buttons give access to most of the
window’s local menu commands. The specialized window toolbar buttons operate only within the
specialized window. The main window has several toolbars that can be turned on or off (in the
Environment dialog, the Toolbar tab).

3. Each toolbar button has a short prompt: when you place the cursor over a toolbar button for two
seconds, a small yellow box appears nearby with a short description of the button’s function.

4. To save screen space, you can hide any window’s title bar. To do this, use the Properties command of

the local menu. You can identify the ChipProgUSB windows by their contents and position on the
screen (and, if you wish, by color and font). When the title bar is hidden, you can move the window as if
the toolbar were the title bar: place the cursor on the free space of the toolbar, press the left mouse
button and drag the window to a new position.

5. You can open any number of windows of the same type. For example, you can open several windows.

6. Every input text field of any dialog box has a history list. ChipProgUSB saves them when you close a
development session. Then a previously entered string can be picked from the history list.

7. All input text boxes in the dialogs feature automatic name completion.

8. OK button. This is convenient when you need to change only one option in the dialog and then close it.

4.2 Toolbars

The ChipProgUSB program opens a few toolbars on top of the main window (see below).

Graphical User Interface 39

© 2010 Phyton, Inc. Microsystems and Development Tools

The top line, shown right under the ChipProg main window title, includes the Main menu submenus. A
second line under the Main menu line displays icons and buttons of most frequently used commands on
files and target devices (Open project, Load file, Save file... Check, Program, Verify, etc.). There is an
indicator of the ChipProgUSB status (Ready, Wait, etc.). The third line displays a target device selector.
The fourth line, which is not displayed by default, includes an embedded editor options and commands
for scripts. The default toolbars can be customized. Read also the topics: The Configure Menu, The
Environment dialog, Toolbar.

Besides the toolbars positioned on a top of the main window, each particular window has its own local
toolbar with the buttons presenting the most popular commands associated with the window. See for
example the Buffer window's toolbar below.

4.3 Menus

 ChipProgUSB Main menu bar includes the following pull-down sub-menus:

 File menu

View menu

Project menu

Configure menu

Commands menu

Scripts menu

Window menu

Help menu

To access these menus, use the mouse or press Alt+letter, where "letter" is the underlined character in
the name of the menu item.

ChipProg Device Programmers40

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.1 The File Menu

The File menu's commands control the file operations. For those commands that have a toolbar button,
the button is shown in the first column of the table below. If there is a shortcut key for a command, the
shortcut key is shown at the right of the command in the menu.

Button Command Description

Load ... Opens the Load file dialog that specifies all the parameters of the
file to be loaded and the file destination.

Reload Reloads the most recently loaded file with the most recently
specified parameters.

Save... Saves the file from the currently active window to a disk. Opens
the Save file from buffer dialog.

Configuration Files Gives access to operations with configuration files.

Exit Closes ChipProgUSB. Alternatively, use the standard ways to
close a Windows application (the Alt+F4 or Alt+X keys
combination).

Graphical User Interface 41

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.1.1 Configuration Files

On exit ChipProgUSB automatically saves its configuration data in several configuration files with the
name UPROG. On start, it restores its configuration from the last saved configuration files. In addition, you
can save and load any of these files at any time using the Configuration Files command of the File menu.
You can have several sets of configuration files for different purposes.

The Desktop file contains data about the display options and the screen configuration, and the

positions, dimensions, colors and fonts of all the opened windows. The extension of this file is .dsk.

The default file name is UPROG.dsk.

The Options file stores the target device type, file options, etc. The extension of this file is . The default
file name is UPROG.opt.

The Session file, which stores session data and specifies the desktop and options; it can also be
saved and loaded by means of the Save session or Load session Configuration Files command. The

extension of this file is .ses. The default file name is UPROG.ses.

The file, which contains all the settings entered in the text boxes of all the ChipProgUSB dialogs. This
file is hidden from users, but the settings stored earlier are available for prompt pick up from the

History lists. The extension of this file is .hst. The default file name is UPROG.hst.

4.3.2 The View Menu

This menu controls access to the ChipProgUSB windows:

Button Command Description

Program

Manager

 Opens the Program Manager dialog.

Device and

Algorithm

Parameters

Opens the Device and Algorithm Parameters dialog.

Buffer Dump
 Opens the Buffer dialog.

Device

Information

 Opens the Device Information dialog.

Console
 Opens the Console dialog.

Local window menus

Each window has its own local (shortcut) menu. To open a local window menu, either click the right
mouse button within the window or press Ctrl+Enter or Ctrl+F10.

ChipProg Device Programmers42

© 2010 Phyton, Inc. Microsystems and Development Tools

Most, but not all, of the local menu commands are duplicated by local toolbar buttons that are usually
displayed at the top of every window.

4.3.3 The Project Menu

This menu contains commands for working with projects.

Button Description

New Opens the Project Options dialog.

Open Opens the Open Project for loading an existing project file.

Close Saves and closes a currently opened project

Save Saves the currently opened project. Note that when you close a
project, create a new project or just exit, the current project will be
saved automatically.

Copy As Opens the Save project dialog. Duplicating projects is helpful for

making project clones and other purposes.

Repository Opens the Project Repository dialog.

Options Opens the dialog

4.3.3.1 The Project Options Dialog

This dialog is used to define the project options.

Element of dialog Description

Project File Name Specifies the project file name. The project name does not include a
path. The extension may be omitted.

Project Description

(optional)

Here you can enter your custom comments for the project.

Desktop
 Two radio buttons which allow you to choose if the project has its own
desktop or if there is one desktop for all projects.

Files to Load to Buffers
File or list of files to load into the buffers.

Add file Opens the Load File

Graphical User Interface 43

© 2010 Phyton, Inc. Microsystems and Development Tools

Remove the selected file from field Files to Load to Buffers.

Edit file options Opens the Load File dialog.

Script to execute before

loading files:

Here you can enter the script name to be executed before loading the

files to the project.

Script to execute after

loading files:

Here you can enter the script name to be executed after loading the

files to the project.

4.3.3.2 The Open Project Dialog

This dialog is used to open the project which was previously created.

Element of dialog Description

Project File Name Specifies the project file name. The project name does not include a
path. The extension may be omitted.

Project Open History Lists the previously opened projects. Double-clicking a line in the list
opens a corresponding project.

Remove from list Deletes the selected project from the list.

4.3.3.3 Project Repository

The Project Repository tree is a small database that stores records with links to the project files.
You can use this database to sort and group the projects as needed for better presentation and
easier access. The ChipProgUSB program displays the repository in a tree-like form that is similar
to Windows Explorer’s. Operations with the repository do not change the project files themselves.
The repository works only with records about the projects (links to the project files). A tree branch
may show projects and other branches. Any branch may contain different projects with the same
names. Different branches may contain links to the same project.

To open the Project Repository dialog invoke the Repository command of the Project menu. Each
tree branch displays the name of a particular project file without a path and the project description
shown in square brackets. The remembers the state of the tree branches (expanded / collapsed)
and restores it next time you open the dialog.

When you install a new version of the ChipProgUSB software and copy the working environment from
the previously installed version, the new version will inherit the existing project repository (file repos.
ini).

Element of dialog Description

Add New Branch Add New Branch dialog to specify the name of a new branch. When OK

ChipProg Device Programmers44

© 2010 Phyton, Inc. Microsystems and Development Tools

is pressed, the new branch is attached to the selected branch.

Add a Project to Branch Opens the Open Project dialog to select a project to be added. When
Open is pressed, the selected project is added to the selected branch.

Add Current Project to

Branch

Adds the currently opened project to the selected branch.

Remove Project/Branch Deletes the selected project or branch from the repository. When
deleting a branch, all branches that "grow" from this branch and all
projects located on it will be deleted.

When deleting a project from the repository, the ChipProgUSB deletes
only the repository record about the project, and does not delete the

project from the disc.

Edit Branch Name Opens the Edit Branch Name dialog for the selected branch.

Move Up Moves a selected project or branch up the tree within the same level of
hierarchy. The branch moves together with all branches that "grow"
from it and all its projects.

Move Down

Save Repository Writes the repository to a disc file.

Browse Project Folder Opens MS Windows Explorer with the opened folder of the selected
project.

Open Project

Close Closes the dialog. If the repository is changed, ChipProgUSB will ask
whether to save it.

4.3.4 The Configure Menu

This menu gives access to all the ChipProgUSB configuration dialogs.

Button Command Description

Select device ... Opens the Select Device dialog.

Device selection

history

Lists the previously selected devices.

Buffers Opens the Buffers dialog.

Serialization,

Checksum, Log

file

Opens theSerialization, Checksum, Log File

Preferences Opens the Preferences dialog.

Environment Opens the Environment dialog with tabs: the Fonts tab, the

Colors tab, the Key Mappings, the Toolbar tab and the Misc

tab.

Graphical User Interface 45

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.4.1 The Select Device dialog

The dialog allows specification of the device to work with; it has a few groups of settings.

Element of dialog Description

Devices to list:
In this field you can check the box or boxes to specify the target
device type. All the devices are divided in three functional groups: a)
EPROM, EEPROM, FLASH; b) PLD, PAL, EPLD; c)
Microcontrollers - check one, two or all three boxes. Two check
boxes below specify a method of programming - in the programmer
socket or in the target system - some devices can be programmed
in either way, some only in one certain way.

It is recommended to narrow down the searchable database and
speed up the search by specifying the device properties if possible.

The box lists the device manufacturers in alphabetic order.

Search mask:
Here you can enter a mask to speed up the device search. The
character '*' masks any number of any characters in the device part
number. For example, the mask 'PIC18*64' will bring up all the
PIC18 devices ending with the '64'.

Devices
The file displays all the devices for a chosen manufacturer that
match to the search criteria specified in the Devices to list, Search

mask and Packages/Adapters fields.

Packages/Adapters
This field lists all types of the chosen device's mechanical packages
that can are supported by the the ChipProg and appropriate
adapters.

4.3.4.2 The Buffers dialog

Element of dialog Description

Buffer list:
Displays names, sizes and sub-layers of all currently open buffers

Add...
Opens the Buffer Configuration dialog to create a new buffer

Delete
Deletes the buffer highlighted in the 'Buffer list' box.

Edit...
Opens the Buffer Configuration dialog for editing.

View
Switches control to window displaying the buffer highlighted in the
'Buffer list' box. If this window is hidden under others it will be
brought to the foreground.

Memory Allocation
This drop down menu allows limiting the memory size allocated from
the computer RAM to each buffer. The free memory currently

ChipProg Device Programmers46

© 2010 Phyton, Inc. Microsystems and Development Tools

available for the allocation is shown here in this screen area.

Swap Files
If the RAM space is limited the ChipProgUSB can use some space
on the PC drives by temporary writing the buffer image to the drive.
You can select the drive or allow the program to swap the files
automatically.

Use network drives
Checking this box enables you to swap files on the network drives
connected to your computer.

Amount of space to leave

free on each drive (GB):

Here you can limit the space on the drive which will be never
affected by the file swapping.

4.3.4.2.1 The Buffer Configuration dialog

The dialog allows the setup of sub-layers in the buffers and to make their presentation easier to work
with.

The dialog includes as many tabs as number of sub-layers exist for a particular device. Every buffer
has at least one main layer, so the tab 'Code' is always displayed on the dialog foreground. If a
chosen device has other address spaces ('Data', 'User', etc.) the buffer has additional sub-layers
available for setting up by clicking the appropriate tabs.

4.3.4.2.1.1 Main Buffer Layer

The tab opens the dialog for configuring the main buffer layer - the 'Code' layer.

Element of dialog Description

Buffer Name
Here you can type in a name for the buffer or pick it from the history
list. By default the first opened buffer gets the name "Buffer #0".
Then you can open the "Buffer #1", etc. or give the buffer any name
you wish.

Size of sub-layer 'Code'
Here you can assign a size of the 'Code' layer from the drop-down
menu - from 128KB to 32MB.

Fill sub-layer 'Code' with

data:

The program fills the buffer sub-layers with some default information,
usually by the 'FF's or zeros. By checking these boxes you specify
when the layer 'Code' should be filled with the default information -
before loading the file or right after the device type has been chosen.

Data to fill sub-layer with:
These two toggled radio buttons define if the sub-layer 'Code' will be
filled with some default information, specific for the selected device,
or by the custom bit pattern.

Shrink buffer size when

device is selected

The buffer size usually exceeds the target device 'Code' size. By
checking this box you downsize the buffer to match the target
device and to free some computer memory.

Graphical User Interface 47

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.4.2.1.2 Buffer Layers

The tab opens the dialog for presetting the buffer sub-layers.

Element of dialog Description

Fill sub-level 'ID location'

with data:

By checking these boxes you specify when the chosen sub-layer
should be filled with the default information - before loading the file or
right after the device type has been chosen..

Data to fill sub-level with:
These two toggled radio buttons define if the chosen sub-layer will
be filled with some default information, specific for the selected
device, or by the custom bit pattern..

4.3.4.3 The Serialization, Checksum and Log dialog

The dialog includes the following tabs:

Serial Number,

Checksum,

Signature String,

Log File.

4.3.4.3.1 Device Serialization

The dialog allows set up of the procedure of giving a unique number to any single device belonging to a
series of devices being programmed.

Element of dialog Description

Write S/N to address in sub-

level:

This option enables writing a unique device serial number into the
sub-layer specified here and at the address in the sub-layer also
specified here.

Current serial number:
Specify the current serial number in this box.

S/N size, in byte:
Specify a size of the serial number in bytes, for example: 1, 2, 4,
etc.

Byte Order
These two toggled radio buttons define an order of bytes that
represent the serial number (if it occupies more than one byte) -
either the least significant byte (LSB) follows the most significant
byte (MSB) or vise versa.

Display S/N as:
These radio buttons set the serial number display format - decimal or
hexadecimal.

ChipProg Device Programmers48

© 2010 Phyton, Inc. Microsystems and Development Tools

Increment serial number

by:

By checking this radio button you set incrementing the serial
number by the fixed value specified here, for example: 1, 2, 10, etc.

Use script to increment

serial number:

 By checking this radio button you specify the increment value as a
result of executing some script file, which can be put in the box
here.

4.3.4.3.2 Checksum

The dialog allows to automatically calculate checksums of the data in buffers. Since there are several
more or less standard algorithms for the checksum calculation the dialog enables you to set one
standard algorithm or to create some custom, complex algorithms by using a script.

Element of dialog Description

Write checksum to

address:

in sub-layer:

By checking this box you begin automatically calculating the
checksum in accordance to other settings below and to write it to a
specified location in the chosen sub-layer.

Address range to calculate

checksum for:

End:

The Start and End addresses define the range of buffer addresses
for which the program calculates the checksum.

Use algorithm to calculate

checksum:

One of two toggled radio buttons. If checked, one of the preset
algorithms of the checksum calculation can be picked from the drop-
down list.

Use script to calculate

checksum:

This radio button sets an alternative method of the checksum
calculation by means of a custom made script.

Size of summation result
These radio buttons allow the selection of the checksum size: one,
two or four bytes.

Operation on summation

result

These radio buttons allow the application of some operation to the
raw result of the data summation: Negate, Compliment or do not
apply any operation.

Size of data being summed
These radio buttons allow to select the source data size: one, two or
four bytes

Byte Order
These two toggled radio buttons define an order of bytes that
represent the checksum - either the least significant byte (LSB)
follows the most significant byte (MSB) or vice versa.

Graphical User Interface 49

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.4.3.3 Signature string

The dialog allows set up of the procedure of giving a signature to the devices being programmed. The
signature string may include some generic data like the date when the device has been programmed
and some unique data like the device serial number.

Element of dialog Description

Write Signature String to

address:

in sub-layer:

By checking this box you automatically writing a preset string to a
specified location in the chosen buffer sub-layer.

Max. size signature string:
This field reserves a maximum length of the signature string in the
number of characters.

Use Signature String

template:

One of two toggled radio buttons. If checked, the string pattern
preset in the Template String Specifiers window will be programmed

into the target device.

Use script to create

Signature String:

This radio button sets an alternative method of composing the
signature string by means of a custom made script.

Template String Specifiers: The list of the signature string specifiers to be placed into the Use

Signature String template field. It usually includes the date and time
of the device programming, its serial number and checksum.

4.3.4.3.4 Log f ile

The dialog allows set up of a log or logs of the device programming.

Element of dialog Description

Enable log file
Checking this box enables the device programming log.

Separate log file for each

device

These two toggled radio buttons set if the logs will be separated by
a manufacturer or by the target device type or a single log that will
be kept for all the devices being programmed.

File Name (Generated

Automatically)

Another two toggled radio buttons that set what specifier will be
included into the log file name: both the manufacturer and device
type (for example: Atmel AT89C51, Microchip PIC18F2525, etc.) or
just the device type (for example: AT89C51, PIC18F2525, etc.).

Folder for log file:
This is a field for entering a full path to the folder where the log file
will be kept. There is also a button for the path browsing.

ChipProg Device Programmers50

© 2010 Phyton, Inc. Microsystems and Development Tools

Single log file for all device

types

By checking this radio button you select keeping one common log
for all types of the devices being programmed.

File Name
This is a field for entering a full path to the folder where the common
log file will be kept. There is also a button for the path browsing.

Log File Contents
A set of the log file options.

Gang mode: Socket #
If the device programming was conducted in the Gang
(multiprogramming) mode and if this box is checked the socket
number will be logged.

Date/Time
By checking this box you enable logging the date and time of the
device programming.

Events (device type change,

file names, etc.)

Device operation
By checking this box you enable logging of all the events associated
with the device manipulations.

Detailed Device operation
By checking this box you enable more detailed logging of all the
events associated with the device manipulations.

Operation Result
By checking this box you enable logging the results of the
programming operations.

Device #/Good devices/Bad

devices

By checking this box you enable logging a full number of the devices
programmed, number of successfully programmed devices and
number of failed ones.

Serial Number
By checking this box you enable logging the serial number read
from the device.

Signature string
By checking this box you enable logging the signature string read
from the device.

Checksum
By checking this box you enable logging the checksum value read
from the device.

Buffer name
By checking this box you enable logging the buffer name.

Programming address
By checking this box you enable logging the ranges of the device
locations which have been programmed.

Programming options
By checking this box you enable logging all the programming
options.

Log File Format
A pair of toggled radio buttons: one sets the plain text format of the
log file, the second sets the tabulated text to be viewed in the
Microsoft Excel format.

Log File Overwrite Mode
ChipProg re-starts.

Graphical User Interface 51

© 2010 Phyton, Inc. Microsystems and Development Tools

Warn if size exceeds
If this box is checked then every time when the log size exceeds a
specified value the ChipProgUSB issues the warning.

Immediately write log file to

disk, no buffering

If this box is checked then the ChipProgUSB does not buffer the log
to the computer RAM but writes it straight to the drive

4.3.4.4 The Preferences dialog

Description

Options

Reload last file on start-up
By checking this box you enable re-loading to the open buffer(s) the
last loaded file every time when you start the ChipProg.

Execute Power-On test on

start-up

This box is checked by default. By un-checking it you disable
executing the start-up ChipProg self-testing.

Sounds
All programmable sounds can be picked from the preset
ChipProgUSBsounds

Device operation error:
Select the sound for error operations.

Device operation complete:
Select the sound for successful completion of the programming
operations in a single programming mode (one ChipProg is in use).

Device operation complete

(Gang Mode):

Select the sound for successful completion of the programming
operations in a gang programming mode (either a few single site
programmers are connected to one PC for multi-device programming
or when the ChipProg

Programming start

(AutoDetect Mode):

Select the sound for indicating the start of the device programming
when the ChipProg automatically detects the device insertion into
the programming socket.

4.3.4.5 The Environment dialog

The Environment dialog includes the following tabs:

Fonts tab,

Colors tab,

 tab,

Toolbar tab,

Miscellaneous Settings tab.

ChipProg Device Programmers52

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.4.5.1 Fonts

The Fonts tab of the Environment dialog opens a sub dialog for setting fonts and some appearance

elements in the ChipProgUSB windows. Only mono-spaced (non-proportional) fonts (default is
Fixedsys) are used to display information in windows. To improve appearance of the windows, you can
set up either another font for all windows, or individual fonts for each particular window.

The Windows area lists the types of windows. Select a type to set up its options. The set options are
valid for all windows of the selected type, including the already opened windows.

Element of dialog Description

Window Title Bar Toggles the title bar for windows of the selected type. If the box is checked it
adds a toolbar at the position specified by the Windows Toolbar Location

option. To save screen space uncheck the box. Also, see notes below.

Sets the toolbar location for the selected window.

Grid

Additional Line

Spacing

Define Font Opens the Font dialog. The selected font is valid for all windows of the
selected type.

Use This Font for All

Windows
Applies the font of the chosen window type to all ChipProgUSB windows.

 Notes

1. To move a window without the title bar, place the cursor on its toolbar, where there are no buttons, and
then operate as if the toolbar were the window title bar. Also, you can access the window control
functions through its system menu by pressing the Alt+<grey minus> keys.

2. Each window has the Properties item in its local menu, which can be invoked by a right click. The Title

and Toolbar items of the Properties sub-menu toggle the title bar and toolbar on/off for the individual
active window.

4.3.4.5.2 Colors

The ColorsEnvironment dialog opens a sub dialog for setting colors of such window elements as
window background, font, etc.. By default, most colors are inherited from MS Windows; however you can
set other colors if you prefer them.

Element of dialog Description

Color Scheme Specifies the color scheme name. Your can type in a name or choose a
recently used one from the list.

The Save button saves the current scheme to the disc; later you can restore
color settings by just a mouse click. The Remove button removes the current
scheme.

Colors Lists the names of color groups. Each group consists of several elements.

Inherit Windows

Color

When this box is checked, the selected color is taken from MS Windows. If
later you change the MS Windows colors through the Windows Control Panel,
this color will change accordingly. This option is available only for the

Graphical User Interface 53

© 2010 Phyton, Inc. Microsystems and Development Tools

background and text colors.

Use Inverted Text/

Background Color

When this box is checked, the program inverts the selected window colors
(for text and background). For example, if the Watches window background
color is white and the text color is black, then the line with the selected
variable will be highlighted with black background and white text.

Edit Opens the Color dialog if the Inherit Windows Color and Use Inverted Text/

Background Color boxes are unchecked for this type of window.

The Color dialog also opens if you double-click a color in the Colors

Spread Sets the selected color for all windows. This option is useful for text and
background colors. For example, if you choose blue background and yellow
text for the Source window and then click the Spread button, these colors will
be set as the text and background colors for all windows.

Font For syntax highlighting in the Source window, you can specify additional font
attributes - Bold and Italic.

In some cases when synthesizing bold fonts, MS Windows increases the size
of characters and the font becomes unusable, because the bold and regular
characters should be of the same size. In these cases, the Bold attribute is
ignored.

Sometimes this effect occurs with the Fixedsys font. If you need to use Bold
fonts, choose the Courier New font.

4.3.4.5.3 Mapping Hot Keys

Key Mapping tab of the Environment dialog opens a sub dialog for assigning hot keys for all commands in

the ChipProgUSB. The Menu Commands TreeKey 1 (Key 2) columns contain the corresponding hot–key
combinations for the commands. The actions apply to the currently selected command.

Element of dialog Description

Define Key 1

Define Key 2

Opens the Define Key dialog. In the dialog, press the key combination you
want to assign to the selected command, or press Cancel.
Alternatively, double-click the "cell" in the row of this command and the Key 1

(Key 2) column.

Erase Key 1

Erase Key 2

Deletes the assigned key combination from the selected command.
Alternatively, right click the "cell" in the row of this command and the Key 1 (
Key 2) column.

ChipProg Device Programmers54

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.4.5.4 Toolbar

The Toolbar tab of the Environment dialog controls the presence and contents of toolbars of the
windows.

Element of dialog Description

Toolbar Bands Lists the ChipProgUSB toolbars. To enable/disable a toolbar check its box.

Buttons/Commands Lists the buttons for the toolbar selected in the Toolbar Bands list. To enable/
disable a button on the toolbar check its box.

"Flat" Local Window

Toolbars

Toggles between the "flat" and quasi-3D appearance of the local toolbar
buttons for the specialized windows.

Toolbar Settings are

the Same for Each

Project/Desktop File

Employs the current settings from this dialog for other projects or files
opened later.

4.3.4.5.5 Messages

Check messages that program should display, uncheck messages that you do not want to be
displayed.

4.3.4.5.6 Miscellaneous Settings

The Miscellaneous tab of the Environment dialog allows the setting of miscellaneous parameters of the

ChipProgUSB windows and messages.

Element of dialog Description

Main Window Status

Line

Controls presence and location of the <%CM%> window status line.

Quick Watch

Enabled

Turns the Quick Watch function on or off.

Highlight Active

Tabs

Turns highlighting on/off for the currently active tab (the MS Windows-style) in
windows that have tabs.

Double Click on

Check Box or Radio

Button in Dialogs

Sets the mouse’s double click function equal to a single click, plus pressing
the OK

Show Hotkeys in

Pop-up Descriptions

Turns the Hotkeys display on/off in the short prompts for toolbar buttons.

Do not Display Box if

Console Window

Opened

If the Console window is open, messages will be displayed there. Otherwise,
the message box will display messages.

Always Display

Message Box

All issued messages will be displayed in the message box.
The Console window also displays these messages.

Graphical User Interface 55

© 2010 Phyton, Inc. Microsystems and Development Tools

Automatically Place

Cursor at OK Button

The cursor will always be on the OK button when the message box opens
and this box is checked.

If you prefer you may press the Enter key instead of using the mouse to click
OK.

Audible Notification

for Error Messages

If you select this option, there will be a beep along with the error message.
Information (as opposed to error) messages are always displayed without
the beep.

Log Messages to

File

Specifies the log file name. All messages will be written to this file. The
method of writing is controlled by the radio button with two options:

Overwrite Log File

After Each Start

Specifies erasing the previous log file, if it exists, and creates it afresh for
every session.

Append Messages

to Log File

Specifies appending messages to the end of an existing log file. In this case,
the log file size will grow endlessly.

4.3.4.6 Configurating Editor Dialog

The ChipProgUSB software includes a built-in editor that is used for editing one type of the objects of the

ChipProgUSB - Scripts Files. The Editor Options dialog includes the following tabs:

 General Editor Settings tab,

 Key Mapping tab.

4.3.4.6.1 General Editor Settings

The General tab of the dialog sets up all common options applicable to every Source window opened.

Element of dialog Description

Checking/clearing this box toggles the Backspace Unindent mode.
See below for explanations.

Keep Trailing Spaces When this box is checked, the editor does not remove trailing
spaces in lines when copying text to the buffer or saving it to a disk.
Spaces are removed when the box is unchecked.

Vertical Blocks If the box is checked, the Vertical Blocks mode is enabled for block
operations.

Persistent Blocks If the box is checked, the Persistent Blocks mode is enabled for
block operations.

Create Backup File .

Horizontal Cursor If the box is checked it sets the cursor as a horizontal line, like the
DOS command prompt.

CR/LF at End-of-file If the box is checked, it adds an empty line to the file end when

ChipProg Device Programmers56

© 2010 Phyton, Inc. Microsystems and Development Tools

saving the file to disk (if there is no one yet).

Syntax Highlighting If the box is checked, it forces syntax highlighting of language
constructions.

Highlight Multi-line

Comments

If the box is checked it enables highlighting of multi-line comments.
By default, the window highlights only single-line comments.

Auto Word/AutoWatch Pane If the box is checked, any new window will open with the Auto Word/

AutoWatch pane at its right and the automatic word completion
function will be enabled.

Full Path in Window Title If the box is checked, the Source window caption bar displays the
full path to the opened file.

Empty Clipboard Before

Copying

If the box is unchecked, then previously kept data remains
retrievable after copying to the clipboard.

Convert Keyboard Input to

OEM

If the box is checked, the Source window converts the characters
that you input in the window from the MS Windows character set to
the OEM (national) character set corresponding to your national
version of the Windows operating system. Also, see note below.

AutoSave Files Each … min If the box is checked, <%CM%> will save the file being edited every
‘X’ minutes, where ‘X’ is a settable constant chosen by the user.

Tab Size Sets the tabulation size for the text display. The allowable value
ranges from 1 to 32. If the file being edited contains ASCII tabulation
characters, they will be replaced with a number of spaces equivalent
to the tabulation size.

Undo Count

Automatic Word Completion If the Enable box is checked, it allows the automatic word completion
function. The Scan Range drop-down list sets the number of text
lines to be scanned by the automatic word completion system.

Indenting Toggles automatic indenting on/off for a new line that is created
when you press Enter.

Note. You should check the Convert Keyboard Input to OEM box only if you are going to type something
in the Source window when working with a file coded in the OEM character set. If you need only to display
such a file, specify the Terminal font for the Source window in the Fonts tab of the Environment dialog:
select in the Windows list and press the Define Font button.

The Backspace Unindent mode establishes the editing result from pressing the Backspace key in the
following four cases, when the cursor is positioned at the first non-space character in the line (there are
several spaces between the first column of the window and the first non-space character):

Backspace Unindent enabled Backspace Unindent disabled

Insert mode Any preceding blank spaces in the
line are deleted. The rest of the line
shifts left until its first character is in
the first column of the window.

One space to the left of the cursor is
deleted. The cursor and the rest of the
line to the right of the cursor shift one
position left.

Overwrite mode The cursor moves to the first column
of the window. The text in the line
remains in place.

Only the cursor moves one position
left. The text in the line remains in
place.

Graphical User Interface 57

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.4.6.2 The Editor Key Mapping

 You can manage the list of available editor commands with the Key Mappings tab of the Editor Options

dialog. You can add and delete editor commands, assign (or reassign) hot keys for new commands and
for built-in ones.

The left column of the list contains command descriptions. Command types, corresponding to the

command descriptions, are in the second column. (means a built-in ChipProgUSB command; Script
‘XXX’ means an added user-defined command). Two columns on the right specify the hot key
combinations to invoke the command, if any.

Element of dialog Description

Add Opens the Edit Command dialog for adding a new command to the list and
setting up the command parameters.

Delete Removes a selected user-defined command from the list. Any attempt to
remove a built-in command is ignored.

Edit Edit Command dialog to change the command parameters. For built-in
commands, you can only reassign the hot keys (the Command Description

and boxes are not available).

Edit Script File Opens the script source file of this command in the Script Source window.

Creating new commands

To create a new command, you should develop a script for it. In fact, you add this script to the editor, not
the command. This means that your command is able to perform much more complex, multi-step
actions than a usual editor command. Moreover, you can tailor this action for your convenience, or for a
specific work task or other need. Your scripts may employ the capabilities of the script language with its
entire set of built-in functions and variables, text editor functions and existing script examples.

A script source file is an ASCII file. To execute your command, the editor compiles the script source file.
Note that before you can switch to using the script which you have been editing, you must first save it to

the disk so that ChipProgUSB can compile it.

Script source files for new commands will reside only in the KEYCMD subdirectory of the ChipProgUSB
system folder. Several script example files are available in KEY CMD. For more information about
developing scripts, see Script Files.

4.3.4.6.2.1 The Edit Key Command Dialog

This dialog Edit command sets parameters for a new command or for existing ones.

Element of dialog Description

Command

Description

Enter the command description here (optional). Text placed in this box will be
displayed in the list of commands for easier identification of the command.

Script Name The name of the script file that executes this command.

Define Key 1

ChipProg Device Programmers58

© 2010 Phyton, Inc. Microsystems and Development Tools

Define Key 2

The script source files for commands will reside only in the KEYCMD subdirectory of the ChipProgUSB

Notes

1. You should not specify the combinations reserved by Windows (like Alt+– or Alt+Tab

2. We do not recommend assigning the combinations already employed by commands in the Source

window or ChipProgUSB, because then you’ll have fewer ways to access these commands. Some
examples are Alt+F, Shift+F1, Ctrl+F7, which are commands that open the application menus.
Others are the local menu hot keys of the editor window.

3. You can use more than one control key in the keystroke combinations. For example, you can use
Ctrl+Shift+F or Ctrl+Alt+Shift+F as well as the Ctrl+F combination.

4. For some built-in commands, the hot keys cannot be reassigned (for example, the keys for moving the
cursor).

4.3.5 The Commands Menu

This menu invokes main commands (or functions) that control the programming process, as well as
some service commands.

Command Description

Blank Check
This command invokes the procedure of checking the target device
before programming to make sure that it is really blank. Programming
of some memory devices does not require erasing them before re-
programming. For such devices the Blank Check command is
blocked and it is shown grayed out on the screen.

Program
This command invokes the procedure of programming the target
device, e.g. writes the contents of the buffer into the target device’s
cells.

Verify
This command invokes the procedure of comparing the information
taken from the target device with the corresponding information in the
buffer.

Read
This command invokes the procedure of reading the content of the
target device’s cells into an active buffer.

This command invokes the procedure of erasing the target device.
Some memory devices cannot be electrically erased. In this case the
Erase command is blocked and is grayed out on the screen

Auto Programming
This command invokes the procedure of AutoProgramming.

Local menu
Opens the local menu of active window.

Calculator
Opens the Calculator dialog, which performs calculator functions.

4.3.5.1 Calculator

A prime purpose of the embedded calculator is to evaluate expressions and to convert values from one

Graphical User Interface 59

© 2010 Phyton, Inc. Microsystems and Development Tools

radix to another. You can copy the calculated value to the clipboard.

Element of dialog Description

Expression The text box for entering an expression or number.

Copy As Specifies the format of results that will be copied to the clipboard.

If this box is checked the result of a calculation will be interpreted and
displayed as a signed value (for the decimal format only).

Display Leading

Zeroes

If this box is checked, binary and hexadecimal values retain leading zeroes.

Copy Copies the result to the clipboard in the format set by the Copy As radio
button.

Clr Clears the Expression text box.

Bs Deletes one character (digit) to the left of the insertion point (Backspace).

0x Inserts "0x".

>> Shifts the expression result to the right by the specified number of bits.

<< Shifts the expression result to the left by the specified number of bits.

Mod Calculates the remainder of division by the specified number.

While you are typing the expression in the Expression drop-down list box ChipProgUSB tries to evaluate
the expression and immediately displays the result in different formats in the Result area. Statuses of
the Copy As radio button and two check boxes in this area control the result format.

You can assign values to program variables and SFRs by typing an expression that contains the
assignment. For example, you may type SP = 66h

Examples of expressions:

0x1234

-126

main + 33h

(float)(*ptr + R0)

101100b & 0xF

4.3.6 The Script Menu

The ChipProgUSB is featured with the tools known as an embedded script language. This mechanism is

ChipProg Device Programmers60

© 2010 Phyton, Inc. Microsystems and Development Tools

intended for automation of the programming operation, mastering complex operations that include both the
programmer itself and the programmer operator's actions. The ChipProgUSB enables composing scripts
files (SF) and executing them.

This Script menu contains a few commands associated with script files. The commands can be
configured by the ChipProg user and the list can be expanded by adding a new item (command). To add a

new item, place a script file into the current folder or into the ChipProgUSB installation folder. The first non-
empty line of any script file should contain three slashes followed by the text that will appear in the Scripts

menu:

/// Menu item text

When ChipProgUSB builds the ScriptsScripts menu.

When you select a Scripts menu item and click the Start button, ChipProgUSB launches the selected
script.

Button Command

Start... Opens the Script Files dialog from which you can

New Script Source Create a new Script File text.

Open Watches

window
Opens the Watches window.

Add watch... Add watch to the Watches window .

Editor window Opens a list of the commands to Compose a new, Open, Save,

Save as, Print a script file. of the Editor window.

Text Edit Edit a list of the commands for editing a selected Script File

Example Scripts Invokes the

Help on this menu

Working with scripts is describe in the topics.

4.3.7 The Window Menu

This menu lets you control how the windows are arranged within the computer screen. The list of currently
opened windows is shown in the lower part of the menu. By choosing a particular window name in this list
you immediately activate it and bring it to the foreground of the computer screen.

Command Description

Tile Arranges all windows without overlap. Makes the window sizes
approximately equal.

Tile Horizontally Arranges the windows horizontally without overlap. Makes the window
size as close to each other as possible.

Cascade Cascades the windows.

Arrange Icons Arranges the icons of the minimized windows.

Close All Closes all windows.

Graphical User Interface 61

© 2010 Phyton, Inc. Microsystems and Development Tools

4.3.8 The Help Menu

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam velit risus, placerat et, rutrum nec,
condimentum at, leo. Aliquam in augue a magna semper pellentesque. Suspendisse augue. Nullam est
nibh, molestie eget, tempor ut, consectetuer ac, pede. Vestibulum sodales hendrerit augue.
Suspendisse id mi. Aenean leo diam, sollicitudin adipiscing, posuere quis, venenatis sed, metus. Integer
et nunc. Sed viverra dolor quis justo. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
elementum. Nullam a arcu. Vivamus sagittis imperdiet odio. Nam nonummy. Phasellus ullamcorper velit
vehicula lorem. Aliquam eu ligula. Maecenas rhoncus. In elementum eros at elit. Quisque leo dolor,
rutrum sit amet, fringilla in, tincidunt et, nisi.

Donec ut eros faucibus lorem lobortis sodales. Nam vitae lectus id lectus tincidunt ornare. Aliquam
sodales suscipit velit. Nullam leo erat, iaculis vehicula, dignissim vel, rhoncus id, velit. Nulla facilisi.
Fusce tortor lorem, mollis sed, scelerisque eget, faucibus sed, dui. Quisque eu nisi. Etiam sed erat id
lorem placerat feugiat. Pellentesque vitae orci at odio porta pretium. Cras quis tellus eu pede auctor
iaculis. Donec suscipit venenatis mi.

Aliquam erat volutpat. Sed congue feugiat tellus. Praesent ac nunc non nisi eleifend cursus. Sed nisi
massa, mattis eu, elementum ac, luctus a, lacus. Nunc luctus malesuada ipsum. Morbi aliquam, massa
eget gravida fermentum, eros nisi volutpat neque, nec placerat nisi nunc non mi. Quisque tincidunt quam
nec nibh sagittis eleifend. Duis malesuada dignissim ante. Aliquam erat volutpat. Proin risus lectus,
pharetra vel, mollis sit amet, suscipit ac, sapien. Fusce egestas. Curabitur ut tortor id massa egestas
ullamcorper. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec fermentum. Curabitur ut ligula ac ante scelerisque consectetuer. Nullam at turpis quis nisl
eleifend aliquam. Sed odio sapien, semper eget, rutrum a, tempor in, nibh.

4.4 Windows

The ChipProgUSB enables opening the following types of windows by means of the View menu:

Program manager

Device and Algorithm Parameters' Editor

Buffer

Device Information

Console

Plus it can operate with two types of windows associated with the ChipProgUSB script files:

Editor
Watches

4.4.1 The Program Manager Window

The Program Manager window is the major control object on the screen from which an operator
controls the ChipProg . While some windows can be closed in a process of programming this one is
supposed to be always open and visible.

The window includes three tabs opening three group of settings and status indicators:

ChipProg Device Programmers62

© 2010 Phyton, Inc. Microsystems and Development Tools

The Project Manager tab

The Option tab

The Statistics tab

The Project Manager and Options tabs look different and enable different settings for the ChipProg
programmers working in single-programming and multi-programming modes. These tabs are identical
for the ChipProg-G4 gang programmer and for the ChipProg-48, ChipProg-40 and ChipProg-ISP
programmers when they are configured to work in the multi-programming mode.

4.4.1.1 The Program Manager tab

The tab serves for setting major programming parameters, executing the programming operations and

displaying the ChipProg statuses.

Element of dialog Description

Buffer:
The field Buffer displays the active buffer to which the programming
operations (functions) will be applied. A full list of open buffers is
available here via the drop-down menu.

Functions
This field lists the tree of the functions relevant to the selected target
device. Some functions represent the ChipProg commands while
others integrate a few sub-functions and can be expand or
collapsed. Double clicking on the function invokes the command and
is equivalent to single clicking the Execute button (see below).

Blank check Checks if the target device is blank

Program Programs the target device (writes the information from an active buffer to
the target device).

Reads out the content of the target device to an active buffer.

Verify Compares the content of the target device and an active buffer

Auto Programming
Executes a preset sequence of operations (batch operations) settable in

the Auto Programming dialog. The Edit Auto button opens this dialog.

Graphical User Interface 63

© 2010 Phyton, Inc. Microsystems and Development Tools

Addresses Here you can set the addresses for the buffer and the target device
to which the programming functions will be applied.

Device start: The very first address in the target device's physical memory which will
be programmed or read.

Device end: The very last address in the target device's physical memory which will
be programmed or read.

Buffer start: The very first address in the buffer memory from which the data will be
written to the target device or to which the data will be read from the
device.

There are three alternative ways to activate a highlighted function: a)
to click the Execute button; b) to double click on the function line; c) to
push the Enter button on the PC keyboard.

Repetitions:
Any function can be executed repeatedly. The number of repetitions
can be set here.

Edit Auto Clicking on this button opens the Auto Programming dialog.

Operation Progress
ChipProgUSB displays the current operation progress bar and the
operation status (OK, failed, etc.).

Besides the generic functions () the window FunctionsDevice and Algorithm Parameters editor window.

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

4.4.1.1.1 Auto Programming

Each device has its own routine set of programming operations that usually includes: Erasing, Blank

Checking, Programming, Verifying and often Protecting against unauthorized reading. The ChipProgUSB
stores default batches of these programming operations for each single supported device and allows the
invocation of the batch of operations just by a mouse click or pressing the Start button on the programmer
panel. It also enables the customization of a sequence of elementary functions (operations) via the Auto

Programming dialog. To open this dialog click on the Edit Auto button.

ChipProg Device Programmers64

© 2010 Phyton, Inc. Microsystems and Development Tools

The tree including all the functions available for the chosen target device is shown in the right pane
Available functions. To include a function to the batch highlight it in the right pane and click the Add

button - the function will appear in the left pane Selected functions. The functions will be then
executed in the order in which they are positioned in the Selected functions pane, from the top to the
bottom. To correct the function batch highlight the command to be removed and click the Remove

button.

4.4.1.2 The Options tab

The tab serves for setting additional programming parameters and options:

Element of dialog Description

Split data
The group of radio buttons in the Split data field allows the
programming of 8-bit memory devices to be used in the
microprocessor systems with the 16- and 32-bit address and data
buses. To do this the buffer content should be properly prepared to
split one memory file into several smaller file.

Options

Insert test If this box is checked the ChipProgUSB will test whether each of
the device leads is reliably squeezed by the programming socket
contact. If some contact is bad a current operation will be blocked.

Check device ID By default this option is always on and the ChipProg always
verifies the target device identifier given by the device manufacturer.
If the box is unchecked the program will skip the device ID
checking.

Graphical User Interface 65

© 2010 Phyton, Inc. Microsystems and Development Tools

Reverse bytes order If this box is checked the will sweep the byte order in the 16-bit
word while it executes the Read, Program and Verify operations.
This option does not affect the data in the ChipProg buffers, as
they remain the same after the file loading.

Blank check before

program

If this box is checked the ChipProgUSB will always check if the
target device is blank before programming it.

Verify after program
If this box is checked the ChipProgUSB will always verify the device
content right after it was programmed.

Verify after read
If this box is checked the ChipProgUSB will always verify the device
content right after it was read out.

Auto-Detect presence of

device in the socket
If this box is checked the ChipProgUSB will test whether each of
the device leads is reliably squeezed by the programming socket
contact. If so a preset programming function (operation) or Auto
Programming will start. Otherwise, if some contact is bad a current
operation will be blocked.

On Device Auto-Detect or

'Start' Button:
The group of radio buttons. The checked radio button defines what
the ChipProg 'Start' button.

4.4.1.2.1 Split data

The group of radio buttons in the Option tab in the Split data field allows programming 8-bit memory
devices to be used in the microprocessor systems with the 16- and 32-bit address and data buses. To
do so the buffer content should be properly prepared to split one memory file iinto several smaller files.
The data splitting enable the conversion of the data read from 16- or 32-bit devices to make file images
for writing them to memory devices with the byte organization.

Radio button Description

No split
This is a default option. A whole buffer is not split and is considered
as a whole one byte data array.

Even byte
The data in the buffer are considered as an array of 16-bit words.
The buffer-device operations are conducted with even bytes only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location also with the address=0, the byte from the device with the
address=1 will be placed to the buffer location with the address=2,
etc.

Odd byte
The data in the buffer are considered as an array of 16-bit words.
The buffer-device operations are conducted with odd bytes only.
For example, if the programmer reads the device from the

ChipProg Device Programmers66

© 2010 Phyton, Inc. Microsystems and Development Tools

address=0, the byte with this address will be placed to the buffer
location also with the address=1, the byte from the device with the
address=1 will be placed to the buffer location with the address=3,
etc.

Byte 0 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #0 only

Byte 1 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #1 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=1, the byte from the device with the
address=1 will be placed to the buffer location with the address=5,
etc.

Byte 2 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #2 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=2, the byte from the device with the
address=1 will be placed to the buffer location with the address=6,
etc.

Byte 3 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #3 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=3, the byte from the device with the
address=1 will be placed to the buffer location with the address=7,
etc.

4.4.1.3 The Statistics tab

This tab opens the fild displaying the programming session statistical results - Total number of
devices that were programmed during the session, what was the yield (Good) and how many devices
have failed (BadAuto Programming only, as execution of other functions makes no effect on the
statistics.

Element of dialog Description

Clear statistics This button resets the statistics..

Graphical User Interface 67

© 2010 Phyton, Inc. Microsystems and Development Tools

Device Programming

Countdown

Normally the Total counter increments after each Auto
Programming; the , Good and Bad counters also count up. The
ChipProgUSB reverses the counters to decrement their content (to
count down).

Enable countdown
If the box is checked the ChipProgUSB will count the number of the
programmed devices down.

Display message when

countdown value reaches

zero

If the box is checked the will issue a warning when the counter
Total is zeroed.

Reset counters when

countdown value reaches

zero

If the box is checked the ChipProgUSB will reset all the counters
when the counter Total is zeroed.

Count only successfully

programmed devices

If the box is checked the ChipProgUSB will count only the
successfully programmed (Good). All other statistics will be
ignored.

Set initial countdown

value

Clicking on the button opens the box for entering a new Total

number that then will be decremented after each Auto Programming
.

4.4.2 The Device and Algorithm Parameters window

The Device and Algorithm Parameters Editor window is intended for displaying and editing (where
possible) the device’s internal parameters and settings, which after editing should be programmed into a
target device by executing the Program command in the Program Manager window.

ChipProg Device Programmers68

© 2010 Phyton, Inc. Microsystems and Development Tools

The parameters displayed into this window are split in two groups: and Algorithm Parameters. The
groups are separated by a light blue stripe

Device Parameters This group includes parameters that are specific for each selected device, such

as: sectors for flash memory devices, lock and fuse bits, configuration

bits, boot blocks, start addresses and other controls for microcontrollers.
Usually these parameters represent certain bits in a microcontroller’s Special
Function Registers (SFRs). Some of these SFRs can be set in the ChipProg
buffers in accordance with device manufacturers’ data sheets. But setting the
parameters in the Device and Algorithms Parameters window is much
easier and more intuitive. It is impossible to specify absolutely all features that
may appear in future devices, and, therefore, new parameters for these new
devices.

Algorithm

Parameters

This group includes parameters of the programming algorithm for the selected
device – including the algorithm type and editable programming voltages.
.

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

The window is separated into three columns: 1) the parameter's name, 2) its value or setting, 3) a short
description. Names of the editable parameters are shown in blue; other names are shown in black.
Default values in the column Value are shown in black; after changing a parameter the new value will be
shown in red. If the value is too long to display the window represents it as three dot signs (‘…’). If these
dots are red it means that the parameter has been edited.

In order to edit a parameter, double click its name. Some editable parameters are represented by a set

Graphical User Interface 69

© 2010 Phyton, Inc. Microsystems and Development Tools

of check boxes, some require to be typed in prompt boxes.

The local Device and Algorithm Parameters Editor window's toolbar includes a few buttons
positioned on the top of the window:

Toolbar button Description

Clicking on this button opens the editing dialog to modify the
highlighted parameter in the format, most convenient for this
parameter. A double click on the highlighted parameter also opens
the editing dialog.

Min.Value
If the parameter to be modified has an allowed range in which it may
be set, then clicking on the Min.Value button sets the minimal
allowed value to the highlighted parameter.

Max.Value
If the parameter to be modified has an allowed range in which it may
be set, then click on the Max.Value button to set the maximal
allowed value to the highlighted parameter.

Default
Click on this button returns the default value to the highlighted
parameter.

All Default
Click on this button returns the default values to all the parameters
displayed in the window.

Depending of the parameter's type ChipProgUSB offers the most convenient format for the parameter
editing:

Method of editing Description

Drop-down menu
When the parameter value may be picked from a few preset values
the dialog offers a drop-down list with these values. Highlight a new
value in the list and click OK to complete the editing. For example,
some microcontrollers can be programmed to work with different
types of the clock generators, so the menu prompts to select one of
them.

Check Box dialog
When some options can be set or reset the dialog appears in a form
of several boxes indicating the default or lately set option statuses.
To toggle the option check or uncheck the box. For example, some
microcontrollers allow the locking of a particular part of the memory
by setting several lock bits, so the menu prompts to check the lock
bits represented as a set of check boxes.

Customizing the

parameter

When the parameter value may be set freely in an allowed range the
dialog offers a box for entering a new value and a history list
displaying a few recently set values. The dialog prompts with the min
and max values that can be set for each parameter and restricts to
enter the value out of the allowed range. This type of editing is in use

ChipProg Device Programmers70

© 2010 Phyton, Inc. Microsystems and Development Tools

for setting custom values for Vcc and Vpp voltages.

4.4.3 Buffer Dump Window

 The Buffer Dump window displays the contents of the

 ChipProg supports a flexible buffer structure:

You can create an unlimited number of buffers. The number of buffers that you can open is
limited only by the available computer RAM.
Every buffer has a certain number of sub-levels depending on the type of target device. Each
sub-level is associated with a specific section of a target device's address space. For
example, for the Microchip PIC16F84 microcontroller every buffer has three sub-levels: 1)
code memory; 2) EEPROM data memory; 3) user's identification sub-level.

This flexible structure allows for easy manipulation of several data arrays that are mapped to different
buffers. To open a Buffer Dump window, click on the command Main Menu > View > Buffer Dump.

The picture above displays three Buffer Dump windows representing three parts of the same buffer:

 #1 (the largest) shows the buffer contents beginning at address 0h;
 #2 shows the same buffer contents beginning at the same address but displaying data in decimal
format;
 #3 window shows the data beginning at address 200h.

The left-most column in the windows above shows absolute addresses of the first cell in a row. The
addresses always increment by one byte: 0, 1, 2…. Each address is followed by a semicolon (:).
When you resize the window it automatically changes the addresses shown in the address column
in accordance with the number of codes or data that go in one line. Some windows may be split into
two panes – left pane for data in a selected format and right pane showing the same data in ASCII

Graphical User Interface 71

© 2010 Phyton, Inc. Microsystems and Development Tools

format. The window has a toolbar for invoking setting dialogs and commands. Right under the toolbar
the program displays a full path to a loaded file and a checksum of the dump.

Local menu and Toolbar

The local menu, which can be opened by the right mouse click, includes the Buffer Dump window
context commands and dialog calls. Most, but not all, of the local menu lines are duplicated by the local

toolbar buttons displayed at the top of the window. Here are the local menu and toolbar items:

Menu Command or Call Toolbar

button

 Description

New address... Addr Opens the Display from address dialog.

Load file to buffer... Load Opens the Load window Dump dialog.

Save data to file... Save Opens the Save window Dump dialog.

Configure buffer... Configure

buffer
 Opens the Configuration Window Dump dialog.

Window setup... Setup Opens the dialog.

View only, edit disabled View

By default editing in the buffer dump windows is
disabled and you can only view the data. If the box is
unchecked the editor will be enabled. Then you may
overtype the value under the cursor.

Modify data
Modify

Opens the Modify data dialog. This call is enabled only
when the View only, edit disabled is off.

Operations with memory

blocks
Block Opens the Operations with memory blocks dialog.

Swap fields
No button

This command allows swapping the cursor position
between the right and left window panes.

4.4.3.1 The 'Configuring a Buffer' dialog

By default the first opened buffer is named ‘Buffer #0’. The next buffer gets the name ‘Buffer #1’, and
so on. You can, however, rename the buffer as you wish.

ChipProg Device Programmers72

© 2010 Phyton, Inc. Microsystems and Development Tools

By default each buffer has a minimal size of 128K RAM in a PC and by default the program fills the
buffer with a predefined value (usually 0FFh). You can customize these buffer settings - check the
Custom radio button and type in the pattern to fill the buffer.

4.4.3.2 The 'Buffer Setup' dialog

The dialog allows controlling the data presentation in the Buffer Dump window. You can open the dialog
using the windows local menu (the Windows Setup command) or by clicking the Setup button on the

window toolbar.

Element of dialog Description

Buffer:
The field displays a list of all open buffers. The programming
functions will be applied to the active one.

Display Format

Display Data As:
Is represented by four radio buttons. Here you can select the data
presentation format in the buffer: 1, 2, 3 or 4 Byte.

Graphical User Interface 73

© 2010 Phyton, Inc. Microsystems and Development Tools

Options
The options here customize the display format.

ASCII pane
If the box is checked the right pane will display ASCII characters
corresponding to the data in the buffer dump.

Display checksum
If the box is checked the calculated checksum will be displayed in
the blue strip over the data dump, right under the window local
toolbar.

Limit dump to sub-layer

size

If the box is checked the window dump will display a part of memory
equal to the active sub-layer's size.

Signed decimal and hex

values

If the box is checked the most significant bit (MSB) in the data
shown in the binary or hexadecimal formats will be treated as a
sign. If MSB=1 the data is negative, if MSB=0 they are positive.

Always display '+' or '-'
This is a sub-setting for the Signed decimal and hex values option. If
both boxes are checked then the signs '+' and '-' will be displayed.

Leading zeroes for decimal

numbers

If the box is checked then each decimal data will be shown with a
number of zeros before the first significant digit - for example the
value of 256 will be presented as 00000256.

Reverse bytes in words

(LSB first)

If the box is checked then the order of bytes in words will be
reversed, e.g. the MSB will follow the LSB.

Reverse words in dwords
If the box is checked then the order of 16-bit words in 32-bit words
will be reversed.

Reverse dwords in qwords
If the box is checked then the order of 32-bit words in 64-bit words
will be reversed.

Non-printable ASCII

characters

The characters from the ranges 0х00...0х20 and 0х80...0хFF are non-

printable. The options here customize presentations of non-printable
ASCII characters in the ASCII pane of the buffer dump window.

Replace characters

0х00...0х20

If the box is checked then all the characters belonging to the range
0х00...0х20 will be replaced with the character dot ('.') or space (' '). The
pair of toggling radio buttons Replace with: sets the replacement
character - dot ('.') or space (' ').

Replace characters

0х80...0хFF

If the box is checked then all the characters belonging to the range
0х80...0хFF will be replaced with the character dot ('.') or space (' '). The
pair of toggling radio buttons Replace with: sets the replacement
character - dot ('.') or space (' ').

ChipProg Device Programmers74

© 2010 Phyton, Inc. Microsystems and Development Tools

4.4.3.3 The 'Display from address' dialog

The dialog enables setting a new address that will become the first address of the visible part of the
Buffer Dump window.

Element of dialog Description

Type new address to

display from:
Here you may enter any address within the allowed range.

History Displays the list of previously set addresses. Here you can pick one for
displaying the buffer dump.

4.4.3.4 The 'Modify Data' dialog

The dialog enables editting the data in the View button on the window's toolbar if off, otherwise the editing is

blocked. To modify particular data in the buffer appoint the location by a cursor and click the Modify

button on the window's toolbar. Then enter a new data value in the pop-up box or pick one from the
history list. Or, alternatively, appoint the location by a cursor and type over the new data on the PC
keyboard.

4.4.3.5 The 'Memory Blocks' dialog

 The ChipProgUSB program allows complex operations with memory blocks. This dialog controls
operations with blocks of data within one selected buffer or between different buffers.

Graphical User Interface 75

© 2010 Phyton, Inc. Microsystems and Development Tools

The dialog box splits in three columns. The Source parameters, shown in the left column, specify the
source memory area for the operations shown in the middle column. The operation’s result will be
placed in the area specified by the Destination shown in the right column. By default the destination
is equal to the source space. Two operations – Fill and Search - do not require a destination
address so the dialog disables the Destination radio button if these two operations are chosen.

Element of dialog

Start Address

(of the Source)
The start address of the memory area in the selected Source buffer, to
which the operation will be applied.

The memory area’s end address. It can be set only for the Source. After
the source address range is defined, the program automatically
calculates the destination area’s end address.

Full Range

(of the Source)
Sets the start and end addresses equal to the entire address space of
the selected target device.

Start Address

(of the Destination)
The start address of the memory area in the Destination buffer where
the result of the chosen Operation will be placed to.

The following operations are available through this dialog. Each operation starts when you click OK

in the dialog box. (see notes below).

Operation Description

Fill with Value Fills the source buffer with a value (or a sequence of values) specified in
the text box at the right.

Search for Data Searches the source memory area for a particular value (or a sequence
of values) specified in the text box at the right.

ChipProg Device Programmers76

© 2010 Phyton, Inc. Microsystems and Development Tools

Copy Copies a specified area of memory to a new destination address. The
block can be copied within the same address space or to another one.

Compare Compares contents of the specified source and destination memory
areas. The sizes of the source and destination areas are equal. If there’s
a mismatch, the mismatch message box will require permission to
continue the comparison.

Invert Inverts the selected source area contents bit-wise and places the results
in the destination area.

Calculate Checksum Calculates the checksum, as a 32-bit value, for the source area of
memory. The calculation is done by simple addition. See the note below.

Negate Result If the box is checked then a checksum, calculated as a 32-bit value by
simple addition, will be then subtracted from zero (this is a known
method of the checksum calculation).

Write Result to

Destination

If this box is checked a calculated 32-bit checksum will be written to the
destination sub-level beginning at a specified destination Start Address.
If this box is cleared the checksum will be displayed as a message only.

Performs bit-wise AND operation on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination. See notes below.

OR with Value Performs bit-wise OR operation on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination.

XOR with Value Performs bit-wise XOR operations on the contents of the specified
source memory locations with the operand specified in the text box on
the right and places the results in the destination.

Notes

1. The source and destination memory areas may overlap. But, since operations with memory blocks
are carried out using a temporary intermediate buffer, the overlap does not corrupt the results.

2. The Copy and Compare commands use the blocks specified in the Source address space and
the Destination address space.

3. The checksum is calculated as a 32-bit value by simple addition. If a memory space has byte
organization, then 8-bit values will be added. If it has word organization then 16-bit values will be
added.

4. Logical operations (AND, OR, XOR) are performed with the contents of the Source address space,
while the operation result will be written to the Destination address space. The program takes
care of converting the operands to the appropriate memory size for a selected type of memory
(16-bit for the Prog, Data16, Reg and Stack memory, 8-bit for the Data8 memory).

4.4.3.6 The 'Load File' dialog

The dialog defines parameters of the file to be loaded to the buffer.

Element of dialog Description

Graphical User Interface 77

© 2010 Phyton, Inc. Microsystems and Development Tools

File Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list or browse for the file on your computer or network.

File Format: format of the file to be loaded can be selected here by checking one of
the radio buttons in the field of the dialog.

Buffer to load file to: Select the buffer in which the file will be loaded by checking one of the
Buffer# radio buttons. There may be just one such button.

Layer to load file to:
The Buffer to load file to can have more than one memory layer. Select
the layer in which the file will be loaded by checking one of the radio
buttons. There may be just a single button available for choosing.

Start address for binary

image:

Binary file format do not carry any address information and are
required to define the start address for the loading. If the file to be
loaded is a binary image enter the start address in the box here.

Offset for loading

address:

Files in any formats, except the Binary file format, can carry the
information about the start address for the loading. If the file to be
loaded is not a binary image enter the offset for the file addresses in
the box here. The offset can be positive or negative.

4.4.3.6.1 File Formats

The ChipProgUSB program supports a variety of file formats that can be loaded to the ChipProg
buffers.

File format Description

Standard/Extended Intel

HEX (*.hex)

The Intel HEX file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
ChipProgUSB

Binary image (*.bin)
The binary image includes the data to be loaded only. These data
will be loaded to the buffer beginning from a specified start address.

Motorola S-record (*.

hex, *.s, *.mot)

The Motorola S-record is a text file, each string of which includes
the beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
ChipProgUSB loader supports all kinds of the Motorola S-records
with the extensions .hex, .s, .mot.

Altera POF (*.pof)
The Altera POF-file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,

ChipProg Device Programmers78

© 2010 Phyton, Inc. Microsystems and Development Tools

checksums for the string and some additional information. The
format is mostly used for programming PALs and PLDs.

JEDEC (*.jed)
This format is used for programming PALs and PLDs. The JEDEC-
file includes the beginning address to load the data to the buffer, the
data to load, test-vectors and some additional information.

Xilinx PRG (*.prg)
The Xilinx PRG-file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
format is used for programming the Xilinx PLDs.

Holtek OTR (*.otp)
This format is presented by Holtek company. The OTP-file includes
the beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information.

Angstrem SAV (*.sav)
This format is presented by Angstrem company (Russia). The SAV-
file includes the beginning address to load the data to the buffer, the
data to load, checksums for the string and some additional
information.

ASCII Hex (*.txt)
The ASCII TXT-file includes the beginning address to load the data to
the buffer, the data to load, checksums for the string and some
additional information.

4.4.3.7 The 'Save File' dialog

The dialog defines parameters of the file to be saved from the buffer.

Element of dialog Description

File Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list or browse for the file on your computer or network.

Addresses Start and End Addresses define the buffer data space that will be
saved in the File. For saving an entire buffer click the All button.

File Format: The format of the file to be saved can be selected here by checking
one of the radio buttons in the File Format field of the dialog.

Buffer to save file from: Select the source buffer from which the file will be saved by checking
one of the Buffer# radio buttons. There may be just a single button
available for choosing.

Sub-level to save file

from:

The Buffer to save file from can have more than one memory layer.
Select the source layer by checking one of the radio buttons. There may
be just a single button available for choosing.

Graphical User Interface 79

© 2010 Phyton, Inc. Microsystems and Development Tools

4.4.4 The Device Information window

This window displays the type of selected target device and a list of programming adapters that fit all
available packages for the selected device. For example the picture below shows all Phyton adapters
available for the selected PIC microcontroller. The Socket scheme pictograms below show the correct
positions of a DIP-packaged 40-pin PIC chip and the adapter board into a 48-pin ZIF socket (for the
ChipProg -48 programmer).

The adapter part numbers are linkable and the links being clicked opens the adapters.chm file with a
description and wiring diagram of the chosen adapter. The cable adapters for in-system programming
are also included into the adapters.chm file. There are some peculiarities that such ISP adapters use
depending on the target device type.

4.4.4.1 Phyton programming adapters

The adapters.chm file includes short descriptions of the Phyton programming adapters and their wiring
diagrams. Having the adapter diagram a ChipProg user can master it is own adapter or to find the
adaptor available from a third party, which can be used as a replacement for the Phyton brand adapter.

The adapters diagram are presented in a table form, where the rows show connections of the elements
installed on the adapter transition board and the columns (from the left to right) represent:

ChipProg Device Programmers80

© 2010 Phyton, Inc. Microsystems and Development Tools

1st column - Pin numbers of the dual-row pins pluggable to the programmer ZIF socket
2nd column - Pin numbers of the ZIF socket installed on the adapter top
3rd, 4th, 5th, etc. - Pin numbers of the passive and active components installed on the adapter

board.

See an example of the AE-P44-A32/64 adapter connection table below:

Pin# of the dual-row 40-

pin plug

(ChipProg ZIF socket)

Pin# of the PLCC 40-

pin adapter socket

74HC14

latch

C1 (.1uF) C2 (.1uF)

1 2

2 4

3 6

4 28

29

6 9

7 10

8 11

9 12

40

11 7

12 13

13 14

14 16

15 17

16 18

17 19

18 20

19 21

20 22,30,42 1 1

21 24

22 25

23 26

24 27

25 8

26 31

27 32

28 33

Graphical User Interface 81

© 2010 Phyton, Inc. Microsystems and Development Tools

34

30 5

31 36

32 35,3,15,23 14 2

33 37

34 38

35 39

36 40

37 41

38

- 43 12

39 44 2

40 1

10,13

4.4.4.2 Adapters for in-system programming

The adapters.chm file includes short descriptions of the Phyton programming adapters for in-system
programming (e.g. the programming in the user's equipment) and their wiring diagrams the schematic of
connecting the adapter cables to the target. The cable adapters may have 10 to 20 pin headers to be
connected to the pins or complimentary connectors installed in the user's equipment. The pin
connection is specific for certain target devices. The connection diagrams are presented in a table form,
where the columns (from the left to right) represent:

1st column - Pin numbers of the cable adapter header inputs and outputs
2nd column - Signals of the target device to be connected

As an example see below a schematic of connecting a 10-pin header BH-10 of the Phyton AE-ISP-U1
cable adapter to the Zilog Z8Fxxx microcontroller for in-system programming.

BH10 Z8Fxxxx

1 Vcc
2 RESET
3 GND
4 DBG
5 GND
6

7

8

9

10

ChipProg Device Programmers82

© 2010 Phyton, Inc. Microsystems and Development Tools

As you can see here not all the BH10 lines should be necessarily used. Only five signals are required for
programming this device and only two of them are used for sending the the programming signals into the
chip - RESET and DBG. The diagrams in the adapters.chm file use the mnemonic of signal from the
device manufacturers' data sheets.

4.4.5 The Console Window

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam velit risus, placerat et, rutrum nec,
condimentum at, leo. Aliquam in augue a magna semper pellentesque. Suspendisse augue. Nullam est
nibh, molestie eget, tempor ut, consectetuer ac, pede. Vestibulum sodales hendrerit augue.
Suspendisse id mi. Aenean leo diam, sollicitudin adipiscing, posuere quis, venenatis sed, metus. Integer
et nunc. Sed viverra dolor quis justo. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
elementum. Nullam a arcu. Vivamus sagittis imperdiet odio. Nam nonummy. Phasellus ullamcorper velit
vehicula lorem. Aliquam eu ligula. Maecenas rhoncus. In elementum eros at elit. Quisque leo dolor,
rutrum sit amet, fringilla in, tincidunt et, nisi.

Donec ut eros faucibus lorem lobortis sodales. Nam vitae lectus id lectus tincidunt ornare. Aliquam
sodales suscipit velit. Nullam leo erat, iaculis vehicula, dignissim vel, rhoncus id, velit. Nulla facilisi.
Fusce tortor lorem, mollis sed, scelerisque eget, faucibus sed, dui. Quisque eu nisi. Etiam sed erat id
lorem placerat feugiat. Pellentesque vitae orci at odio porta pretium. Cras quis tellus eu pede auctor
iaculis. Donec suscipit venenatis mi.

Aliquam erat volutpat. Sed congue feugiat tellus. Praesent ac nunc non nisi eleifend cursus. Sed nisi
massa, mattis eu, elementum ac, luctus a, lacus. Nunc luctus malesuada ipsum. Morbi aliquam, massa
eget gravida fermentum, eros nisi volutpat neque, nec placerat nisi nunc non mi. Quisque tincidunt quam
nec nibh sagittis eleifend. Duis malesuada dignissim ante. Aliquam erat volutpat. Proin risus lectus,
pharetra vel, mollis sit amet, suscipit ac, sapien. Fusce egestas. Curabitur ut tortor id massa egestas
ullamcorper. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec fermentum. Curabitur ut ligula ac ante scelerisque consectetuer. Nullam at turpis quis nisl
eleifend aliquam. Sed odio sapien, semper eget, rutrum a, tempor in, nibh.

4.4.6 Windows for Scripts

ChipProgUSB is featured with the windows specifically supporting operations with scripts. That includes:

(Script) Editor windows
Watches

User windows
I/O Stream windows

These windows cannot be open from the View menu; they can be opened only when you work with
scripts. Operations with these windows are described in the chapter Scripts Files.

Operating with Programmers 83

© 2010 Phyton, Inc. Microsystems and Development Tools

5 Operating with Programmers

The topics included in this chapter briefly describe basic operations with the ChipProg programmers.

5.1 Inserting devices to a programming socket

Inserting devices in DIP (dual-in-line) packages.

The -40, ChipProg-48 and ChipProg-G4 programmers are equipped with 40- or 48-pin ZIF sockets
allowing operating on any DIP-packed devices without additional adapters. They can accommodate
DIP-packed devices with different number of leads (from 4 to 48) and different widths of the package up
to 600 mil. Just a few old DIP-packed devices require special adapters to be programmed by ChipProg
Device Information window prompts if some adapter is required for the selected device and, if so, it
displays the adapter type. The pictogram showing a correct insertion position of the device is on the
programmer at the left of the socket as well as in the Device Information window. Practically all
DIP-packed devices can be inserted in the way shown on the pictogram. However, there are a few old
devices with a non-standard insertion positioning. If such a device is chosen the Device Information

window displays how to insert the device.

Inserting devices in non-DIP packages.

Programming of the devices in SOIC, PLCC, QFP, BGA and other non-DIP packages requires special
adapters. The adapters design allows plugging them into the programmer ZIF sockets. The Device

Information window prompts the adapter type for a selected device.

Any adapter is implemented as a small transition board with two rows of dual-in-line pins pluggable
into the programmer ZIF socket on a bottom side and a ZIF socket of a particular type (SOIC, PLCC,
QFP, BGA, etc.) on a top. The adapter transition board is labeled with a "#1 pin" key mark that helps
to properly position the adapter into the programmer socket. The Device Information window
displays the adapter position into the programmer ZIF socket.

5.2 Auto-detecting the device

If you checked the AutoDetect checkbox on the main window toolbar then a ChipProg programmer
will automatically detect insertion of the device into a programming socket and will check if the
device's leads are reliably squeezed by the socket contacts. In case of the bad contact with any
single lead the programmer blocks further operations and issues a warning that indicates the pin
numbers with bad contacts. This prevents destroying the device or incorrect programming.

The AutoDetect signal can be used for triggering a programming operation by checking the Auto-

Detect presence of device in the socket box in the Options tab of the Program Manager

window. One of the following options can be set here:

Execute the function selected in the 'Function' list (the Program Manager tab);
AutoProgramming

Execute script.

At this point the AutoDetect trigger replaces the programmer command executed by a mouse click or
pressing the Start button. This significantly speeds up and simplifies programming of the device
series.

ChipProg Device Programmers84

© 2010 Phyton, Inc. Microsystems and Development Tools

5.3 Basic programming functions

Sub-topics of this chapter describe all the basic ChipProg-40 and -48 operations in a single programming

mode, when a device is programming in the programmer socket. Specific operations for programming more
than one device at one time are described in the Multi- and Gang programming

5.3.1 How to check if a device is blank

1. Select the target device type, pressed the button Select Device in the Main toolbar or select the
command Main menu > Configure > Select device.

2. Insert a device of the selected type into the programmer socket or into the adapter socket.

3. a) Click the Check button on the main toolbar or
 b) Double click on the Blank check function line in the Function list of the Program Manager

window or
Blank check function line in the Function list of the Program Manager window and click the
Execute button or
Main menu > Commands and click on the Blank check line

then wait for the message Checking … OK in the Program Manager window, or for the warning
message if the device is not blank

5.3.2 How to erase a device

1. Make sure the device is electrically erasable. Some devices are not erasable; these may be
programmable once, UV erasable, or over-writable – in this case the Erase button is blocked (grey
out).

2. If the device is electrically erasable:
 a) Click the Erase button on the main toolbar or
 b) Double click on the Erase function line in the Function list of the Program Manager window
or
 c) Select the Erase function line in the Function list of the Program Manager window and click
the Execute button or
 d) Select the Main menu > Commands and click on the Erase line

then wait for the message Erasing … OK in the Program Manager window or for the warning
message if the device is not blank after erasing.

5.3.3 How to program a device

In order to program a blank device you need to perform a few consecutive operations:

load the file
 (if necessary);
 the device to be programmed (if necessary);
write the prepared information into the device and verify the programming.

Operating with Programmers 85

© 2010 Phyton, Inc. Microsystems and Development Tools

5.3.3.1 How to load a file into a buffer

1. Select the Main menu > > Load or click the Load button on the local toolbar of the Buffer

window.

2. In the pop-up dialog box enter the source file name, select the file format, addresses, buffer and
sub-level to load the file to.

3. Wait for the message File loaded: "......" in the Program Manager window or for a warning
message if the file cannot be loaded for some reason.

5.3.3.2 How to edit information before programming

1. Buffer Damp window. Never forget that the View button should be released to enable editing.

2. Make necessary changes in the window via the Modify dialog or appoint the data to be modified
and type the new data over the old data.

5.3.3.3 How to configure the chosen device

1. If any parameters displayed in the Device and Algorithm Parameters window can be changed by

editing, their names are shown in blue.

2. Click on the name of the parameters to be changed to open an appropriate dialog. Set a new value for
the parameter or check/uncheck appropriate boxes and click OK. The parameter value will change its
color to red.

3. Continue for other parameters that should be changed. All preset changes will become effective in the
target device only upon programming via the Program Manager programming function.

5.3.3.4 How to write information into the device

1. Click the Options tab in the Program Manager window. Check the options you need. We
recommend that you always check the Blank check before programming and the Verify after
programming check-boxes to make programming more reliable.

2. Click the Program Manager tab. Select the Program line in the Function box, and double click
it to start programming of the primary memory layer (Code) or click the Execute button to do so.
Alternatively, you can do the same by clicking the big Program button or selecting the command
Menu > Commands > .

Wait for the message Programming … OK in the Operation Progress box of the Program

Managertab. If an error has occurred the ChipProgUSB issues an error message.

4. Execution of the main Program function (always shown in the beginning of the Function list) writes
a specified buffer layer content to the Code device memory. However, other buffer layers may exist
for the selected device (Data, User, etc.). If more than one buffer layer exists for the selected device
go down to the list of functions, expand those that are collapsed and execute the Program

functions for as many types of memory as the device has (Data, User, etc.). Skip this if just one
memory layer Code exists for the device.

ChipProg Device Programmers86

© 2010 Phyton, Inc. Microsystems and Development Tools

IMPORTANT! After programming of all the memory layers (Code, Data, User, etc.) you need to
program the options preset in the Device and Algorithm Parameters Editor window, if they have
been modified. Go down to the Device parameters & ID line, expand it if collapsed, select the
Program function and double click it.Device and Algorithm Parameters window

6. Some microcontrollers can be protected against unauthorized reading of the written code by setting
a set of Lock bits. Go down to the Lock bits line, expand it if collapsed and double click the lock
bit# lines one by one. You can optionally lock only certain parts of the device memory. Continue
until every lock bit is set.

7. After every operation above make sure that you watch the Ok [xxxxx... Ok] message in the
Operation Progress box of the Program Manager tab. In case you get an error message stop the
programming and troubleshoot the issue.

5.3.4 How to read a device

There are several ways for reading the device content to an active buffer:

 a) Click the Read button on the main toolbar or
 b) Double click on the Read function line in the Function list of the window or
 c) Select the Read function line in the Function list of the Program Manager window and click
the Execute button or
 d) Select the Main menu > Commands and click on the Read line

then wait for the message Reading … OK in the Program Manager window or for the warning
message if the device could not be read out.

5.3.5 How to verify programming

There are several ways for checking if the device was programmed correctly:

 a) Click the Verify button on the main toolbar or
 b) Double click on the Verify function line in the Function list of the Program Manager window
or
 c) Select the Verify function line in the Function list of the Program Manager window and click
the Execute button or
 d) Select the Main menu > Commands and click on the Verify line

then wait after that which Verifying … OKProgram Manager window or for the warning message
if the device failed during the verification process.

5.3.6 How to save data on a disc

1. After you have read out the device content into the Buffer or a specified Buffer layer you may need

to save the read data on a PC disc. To save the data:
a) Click the Save button on the local toolbar of the Buffer window or
b) Select the Main menu > File > Save

2. In the pop-up dialog specify the destination file name, format, start and end addresses of the source
(the buffer), and the source sub-level, and click OK.

Operating with Programmers 87

© 2010 Phyton, Inc. Microsystems and Development Tools

5.3.7 How to duplicate a device

1. Insert the master device to be copied (duplicated) into the programmer socket.
2. Read it to an active buffer
3. Wait for the message Reading… OK in the Operation Progress box of the Program

Manager tab in the Program Manager window. Make sure the master device content is in a
current buffer.

4. Remove the master device from the socket and replace it with a blank device to be
programmed. If necessary, check to see if it is blank.

5. Program the device. If you need to make more than one copy of the master device repeat the
operations #4 and #5 as may times as necessary.

5.4 Programming NAND Flash memory

This chapter describes some peculiarities of the NAND Flash memory devices programming. The
NAND Flash and NOR Flash memory architectures and physical implementations are very different
and, therefore, operations with NOR and NAND Flash devices have their own peculiarities. In terms of
the programmer setup and operations, working with the NAND Flash devices is more complex and the
programming results are very sensitive to the accuracy of the programming options setup. Inaccurate
setup causes wrong device programming.

5.4.1 NAND Flash memory architectures

The NAND Flash memory array comprises of the blocks of pages. Each block usually includes 16, 32,
64 and more pages. Conditionally, the NAND Flash devices can be divided in two groups: the "small
page" and "large page" devices. The "small page" size is 512 bytes for the 8-bit devices and 256 bytes
for the 16-bit devices; the "small page" NAND Flash memory devices' capacity varies from 128K to 512K
bits. The picture below shows the "small page" NAND Flash memory architecture of the
STMicroelectronics™ NAND devices.

ChipProg Device Programmers88

© 2010 Phyton, Inc. Microsystems and Development Tools

The "large page" size is 2048 bytes for the 8-bit devices and 1024 bytes for the 16-bit devices; the "large
page" NAND Flash memory devices' capacity varies from 256K to 32G bit capacity and higher. The
picture below shows the "large page" NAND Flash memory architecture of the STMicroelectronics™
NAND devices. The latest "large page" NAND Flash devices have as large as 4096 byte page size.

Operating with Programmers 89

© 2010 Phyton, Inc. Microsystems and Development Tools

Read also about bad blocks in the NAND Flash memory devices.

5.4.1.1 Invalid blocks

NAND Flash memory devices have invalid memory blocks that cannot be used for storing data because
some memory cells inside of the device have physical defects - either inherent in a process of the device
manufacturing or acquired in a process of the device exploitation and reprogramming in the user's
equipment. Since a percentage of invalid blocks is pretty small inside of the chip (usually less than 1%)
it is possible to use the device for data storing. In order to use NAND devices with bad blocks these
blocks should be marked in a certain way to prevent fetching data from these blocks or writing in it. This
document equally uses both known terms for such blocks: invalid and bad.

Locations of the invalid blocks or the invalid blocks map should be accessible by the application for
skipping the bad blocks or handling them in other way. To keep the invalid block map every NAND Flash
device has a special cell array, known as the for storing addresses of invalid blocks. See the Spare

Area location in the NAND Flash memory architecture

The Spare Area in "small page" 8-bit devices is 16 large, 16-bit devices - 8 Words. The Spare Area in
"large page" devices - 64 Bytes and 32 Words respectfully. Though the Spare Area is dedicated for
marking bad blocks it can be also used as a general purpose memory for storing the user's data. To
avoid accidental losing of the bad block map it is recommended to assign a whole entire Spare Area for
storing the invalid block map and do not write in this area anything else.

5.4.1.1.1 Managing invalid blocks

There are three mostly used methods of handling invalid memory blocks:

Skip Block method

Error Checking and Correction

The ChipProg programmers support all the methods above.

5.4.1.1.1.1 Skipping invalid blocks

This is the simplest method of managing invalid blocks. The programming algorithm first reads the entire
Spare Area to collect the addresses of invalid memory blocks. Then, the programming equipment
writes data to the device page by page with checking the block addresses. If the current block's number
is marked as bad the programmer skips this block and write into the next valid one.

5.4.1.1.1.2 Reserved Block Area

This method is based on the idea of replacing invalid blocks with good blocks by re-directing reading
and writing operations to these good blocks. To implement this method the programming equipment
splits the entire memory in three areas following each other from the start address of the memory
device. Each of these areas may include both good and bad blocks:

User Block Area (UBA) - a linear memory array for storing the user's data;

ChipProg Device Programmers90

© 2010 Phyton, Inc. Microsystems and Development Tools

The Block Reservoir - a linear memory array that follows right after the User Block Area; good
blocks from the Block Reservoir replaces invalid blocks from the User Block Area;
The Reserved Block Area (RBA) - this part of the device's memory stores the information about
bad blocks in the User Block Area replaced by good blocks from the Block Reservoir. This map is
represented by pair of addresses of the invalid UBA's blocks and corresponding good blocks from
the data reservoir. The first good block in the RBA stores the the RBA map table, the second a
duplicate of it in case of the RBA table corruption.

The programming algorithm works in the following way:
1) it splits blocks of the device in three areas: User Block Area, Block Reservoir and Reserved

Block Area;

2) it reads the Spare Area

Field: RBA Marker Count Field Invalid Block Replaced

Block

Invalid Block Replaced

Block

....... Invalid Block Replaced

Block

Size: 2 байт а 2 байт а 2 байта 2 байта 2 байта 2 байта 2 байта 2 байта

RBA Marker - is 0FDFEh (there is an equivalent term for this parameter used in some NAND Flash
device data sheets: Transition Field).
Count Field - starts from 1 and increments by one for each page of the map table.
Invalid Block - Number of the invalid block in the UBA being replaced.
Replaced Block - Number of the valid block in the Block Reservoir that replaces the invalid block
above.

The Invalid Block - Replaced Block pairs follow each other till the page break.

When the programming equipment detects an invalid block in the User Block Area it appoints the first
available valid block in the Block Reservoir and updates the RBA table to keep track of relation
between invalid blocks in the User Block Area and replaced good ones in the Block Reservoir.

5.4.1.1.1.3 Error Checking and Correction

To maintain the stored code integrity it is recommended to use known Error Checking and

Correction (ECC) algorithms. Most NAND Flash device manufacturers publish application notes that
describe the ECC algorithms suitable for using their devices in different applications. To implement a
particular ECC algorithm please check the manufacturer's website. All the ECC-related information are
written into the Spare Area.

5.4.1.1.2 Invalid block map

ChipProg programmers create the invalid block map into the buffer layer Invalid Block Map as a
continues bit array. Valid (good) blocks are represented by zeros (0), invalid (bad) - by ones (1). See
the tab Invalid Block Map in the memory buffer:

Operating with Programmers 91

© 2010 Phyton, Inc. Microsystems and Development Tools

For example above:

the value 02h (or 00000010B) at the address 0 means that the blocks #0, 2, 3, 4, 5, 6, 7 are valid
while the block #1is invalid;
the value 01h (or 00000001B) at the address 1 means that all the blocks in the range #9 to #15 are
valid while the block #8 is invalid.

5.4.1.2 Marking invalid blocks

After the device final testing the device manufacturer' programming equipment fills the working memory
cells with the FFh value. Blocks that are considered to be invalid are marked by writing a non FFh
value (usually 00h) at a certain address in first page (page #0). This address in the NAND Flash Spare
Area is the device dependant; it is specified in the manufacturer data sheet.

Memory organization The marker address

in the Spare Area

8-bit array, page size - 512 Byte. 5

16-bit (word) array, page size - 512 Words. 0

8-bit array, page size - 2048 Byte. 0 or 5

16-bit (word) array, page size - 1024 Words 0

Take in account that the device itself has no special protection against occasional erasing of the Spare
Area cells when you intentionally erase a whole memory array. However, these Spare Area cells may
store the bad blocks markers written ether by the chip manufacturer or by the chip user after
reprogramming. Being lost the bad block map cannot be restored unless you keep the invalid block
map as a file, etc. It is important to keep track of the invalid block map changes by storing the markers
before the memory erasing and restoring them after the chip erasing. The ChipProg programmers
automatically restore the invalid block map unless the Invalid Block Management is not the Do Not

Use.

The ChipProg creates the invalid block map into the buffer layer Invalid Block Map as a continues bit
array. Valid (good) blocks are represented by zeros (0), invalid (bad) - by ones (1). For example:

the value 02h at the address 0 means that the blocks #0, 2, 3, 4, 5, 6, 7 are valid while the block #1is
invalid;
the value 01h at the address 1 means that all the blocks in the range #9 to #15 are valid while the

ChipProg Device Programmers92

© 2010 Phyton, Inc. Microsystems and Development Tools

block #8 is invalid.

5.4.2 Programming NAND Flash devices by ChipProg

Programming NAND Flash memory devices by a Phyton ChipProg programmer begins from accurate
setting of the programming options and parameters in the Device and Algorithm Parameters window.
The screen capture below shows the window for the NAND04GW3B2BN device. The Device

Parameters are divided in two setting groups: Access Mode and Access Mode Parameters.

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

Operating with Programmers 93

© 2010 Phyton, Inc. Microsystems and Development Tools

5.4.2.1 Access Mode

The Access Mode line, normally collapsed, can be expanded to invoke setting dialogs for one of the
following modes:

Invalid Block Management

Spare Area Usage

Tolerant Verify Feature

Invalid Block Indication Option

5.4.2.1.1 Invalid Block Management

Here you can specify the algorithm of managing invalid blocks. Clicking the Invalid Block

Management

Select one of four options:

Do Not Use Ignore information about invalid blocks and do not care of the invalid block
management. Writing into invalid blocks is enabled.

Skip invalid blocks

Skip IB with Map in 0-th

Block

Skip invalid blocks, put the Invalid block map in the block #0.

RBA (Reserved Block

Area)

Use the RBA algorithm

5.4.2.1.2 Spare Area Usage

Here you can specify of how to use the Spare Area. Clicking the Spare Area Usage menu line opens
the pop-up dialog:

ChipProg Device Programmers94

© 2010 Phyton, Inc. Microsystems and Development Tools

Select one of three options:

Do Not Use This default option means: "in no case do not use Spare Area for storing user's
data". Choosing this default option prevents overwriting invalid block markers in the
Spare Area by the user's data. After erasing the device Flash memory markers of the
invalid blocks will be restored in the Spare Area.

User Data The Spare Area can be used for storing the user's data; the invalid block markers
written into the Spare Area will not be protected against overwriting by user's data.
If this option is chosen the programmer writes the data from its buffer into the major
device memory and when this memory is completely full the programmer begins
writing into the Spare Area. The programmer buffer displays merged memory pages,
including the Spare Area.

User Data with

IB Info Forced

The Spare Area can be used for storing the user's data but the invalid block markers
written into the Spare Area against overwriting by user's data. Even if the
programmer had overwritten the invalid block markers in the Spare Area it will restore
these markers after completion of the programming operation.

5.4.2.1.3 Guard Solid Area

Some applications require fetching the information with strictly linear address range, e.g. the memory
must be free of invalid blocks in this range. In particular, initialization of a microcontroller is possible only
if the loading code is fetching from the memory device with continiously linear address space, so the
source memory must not have invalid blocks. By default the ChipProgUSB disables guarding the
memory area. Clicking the Guard Solid Area menu line opens the pop-up dialog where you can toggle
the options:

When you select Enable in the dialog above you should specify this area by setting two parameters in
the Solid Area setting dialog:

Start Block - the address of the first memory block that does not include invalid blocks
Number of Blocks

Operating with Programmers 95

© 2010 Phyton, Inc. Microsystems and Development Tools

If in a process of the programming verification the ChipProg locates an invalid block within the specified
Solid Area it will issue an error message and stop the current programming operation.

5.4.2.1.4 Tolerant Verify Feature

Tolerant Verify Feature menu line opens the pop-up dialog where you can toggle the options:

Usually this option is applicable in case of use the Error Checking and Correction (ECC) method of
managing invalid blocks when you can tolerate with some errors in the data fetched from the memory
device. When you select Enable in the dialog aboveAcceptable number of errors dialog:

ECC Frame size (Bytes) - Size of the memory array where you allow to have errors, in Bytes.
Acceptable number of errors - Acceptable number of single bit errors.

5.4.2.1.5 Invalid Block Indication Option

Here you can choose the invalid block presentation in the ChipProgUSBInvalid Block Indication

Options menu line opens the pop-up dialog where you can select either the '00h' value (default) or the
'0F0h':

5.4.2.2 Access Mode Parameters

This Access Mode Parameters submenu of the Device Parameters menu allows to invoke setting
dialogs for the following parameters:

User Area

Solid Area

RBA Area

ECC Frame size

Acceptable number of errors

Some of the parameters above are associated with appropriate Access Modes.

ChipProg Device Programmers96

© 2010 Phyton, Inc. Microsystems and Development Tools

5.4.2.2.1 User Area

Program, ReadVerify can be set applicable not to an entire NAND Flash memory device but to a
specified part of the device memory - the User Area. The Erase and Blank Check operations are
applicable only to the entire device. The User Area's boundaries are set by individual setting of a pair of
the following parameters:

User Area - Start Block - the first memory block of the User Area.
User Area - Number of Blocks - the number of blocks in the User Area.

To set the User Area first click the User Area - Start Block submenu line. The setting dialog will pop
up:

Type the value and click OK. Then click the User Area - Number of Blocks submenu line and enter the
number of blocks into the pop-up dialog; then click OK to complete the settings.

5.4.2.2.2 Solid Area

The Solid Area 's boundaries are set by individual setting a pair of the following parameters:

Solid Area - Start Block - the first memory block of the memory area free of invalid blocks.
Solid Area - Number of Blocks - the number of blocks in the Solid Area.

To set the Solid Area first click the Solid Area - Start Block submenu line. The setting dialog will pop
up:

Operating with Programmers 97

© 2010 Phyton, Inc. Microsystems and Development Tools

Type the value and click OK. Then click the Solid Area - Number of Blocks submenu line and enter
the number of blocks into the pop-up dialog; then click OK to complete the Solid Area settings.

5.4.2.2.3 Reserved Block Area

The Reserved Block Area boundaries are set by individual setting a pair of the following parameters:

RBA Area - Start Block - the first memory block of the RBA.
RBA Area - Number of Blocks - the number of blocks in the RBA.

To set the RBA first click the RBA - Start Block submenu line. The setting dialog will pop up:

Type the offset value and click OK. Then click the RBA Area - Number of Blocks submenu line and
enter the number of blocks into the pop-up dialog; then click OK to complete the RBA settings.

5.4.2.2.4 ECC Frame size

This parameter of the mode defines a size of the memory array where you allow to have errors. To set a
parameter click the ECC Frame size submenu line. Then specify the parameter in bytes and click OK
to complete the setting.

5.4.2.2.5 Acceptable number of errors

This parameter, associated with the mode, defines an acceptable number of single bit errors in the the
memory array defined by the ECC frame size. Acceptable number of errors submenu line. Then
enter the number and click OK to complete the setting.

5.5 Multi- and Gang-programming

This document operates with two programming modes:

Single-programming mode means programming one device at a time by means of one ChipProg

ChipProg Device Programmers98

© 2010 Phyton, Inc. Microsystems and Development Tools

programmer (excluding the ChipProg-G4 gang programmer).
Multi-programmingGang-programming mode means concurrent programming of multiple devices
at a time by:
-- either a multiple single site programmers of one type connected in one programming cluster driven
from one computer;
-- or a special 4-site ChipProg-G4 gang programmer.

The Multi-programming mode differs from the Single-programming mode in the following items:

1. ChipProg-40 or ChipProg-48 or ChipProg-ISG programmers;
2. Only the same type of the device may be selected for every single programmer connected in one

programming cluster;
3. Only the same set of buffers can be opened for every single programmer connected in one

programming cluster;
4. Only the AutoProgramming function can be executed by the ChipProgUSB in this mode. There is

however one exception - ChipProg-G4 gang programmers can be combined with ChipProg-48 tools;
5. The Program Manager tabs and dialogs are very different.

The Multi-programming mode is intended for small- and middle-volume manufacturing. The
programmers in the Multi-programming mode work concurrently, e.g. you can start programming on
one site, insert a new device into a second socket, start the programming, insert a new device into a
third socket, start the programming, remove the first programmed device, etc.. An ability to linearly
increase the programming system productivity by adding a new ChipProg programmer gives you
flexibility and save money.

In terms of the control there is no difference whether the ChipProgUSB controls a ChipProg-G4 gang
programmer or the program drives a cluster of multiple single ChipProg-40 or -48 or ChipProg-ISG
programmers connected to one PC. To launch ChipProgUSB program in the Multi-programming

mode it should be invoked either by using the ChipProgUSB-GANGChipProgUSB folder or from the
command line with the key /GANG.

The first dialog that appears when you started the ChipProgUSB-GANG shortcut (for the case when
only two programmers forms a two-site programming cluster):

Operating with Programmers 99

© 2010 Phyton, Inc. Microsystems and Development Tools

Now you should press the button on the programmer to which you would like to assign the site #1. Then
the ChipProgUSB will prompt to assign the site #2 to another programmer (in case there are more than
two programmers in the programming cluster), etc. After assigning numbers to the programmers you will
get the Program Manager window that differs from the same window that you get when you work with
one programmer.

5.5.1 The Program Manager Window

The Program Manager window is the major control object on the screen from which an operator
controls the ChipProg . While some windows can be closed in a process of programming this one is
supposed to be always open and visible. The window appearance differs from the same Program

Manager window that you get when you work with one programmer.

The window includes three tabs, opening three groups of settings and status indicators:

The Project Manager tab
The Options tab
The Statistics

Project Manager and Options tabs look differently and enable different settings for the ChipProg
programmers working in the single-programming and multi-programming modes. These tabs are
identical for the ChipProg-G4 gang programmer and for the -48, ChipProg-40 and ChipProg-ISP
programmers when they are configured to work in the multi-programming mode. See:

5.5.1.1 The Program Manager tab

Since the only AutoProgramming is available in the multi-programming mode this tab serves for manual
AutoProgramming initiation, displaying the site statisticsChipProgUSB program.

ChipProg Device Programmers100

© 2010 Phyton, Inc. Microsystems and Development Tools

5.5.1.2 The Options tab

 The tab serves for setting all programming parameters and options for multi-programming mode.

Element of dialog Description

Buffer:
The field Buffer displays the active buffer to which the programming
operations (functions) will be applied. A full list of open buffers is
available here via the drop-down menu.

Addresses Here you can set the addresses for the buffer and the target device
to which the programming functions will be applied.

Device start: The very first address in the target device's physical memory which will
be programmed.

Device end: The very last address in the target device's physical memory which will
be programmed.

Buffer start: The very first address in the buffer memory from which the data will be
written to the target device.

Split Data
The group of radio buttons in the Split data field allows to program 8-bit
memory devices to be used in the microprocessor systems with the
16- and 32-bit address and data buses. To do this the buffer content
should be properly prepared to split one memory file into several
smaller files.

Device-Auto-Detect
If this box is checked then AutoProgramming will start immediately
after the ChipProg programmer has detected that the device is in the
programming socket.

Check device ID By default this option is always on and the ChipProg always verifies
the target device identifier given by the device manufacturer. If the box
is unchecked the program will skip the device ID checking.

Operating with Programmers 101

© 2010 Phyton, Inc. Microsystems and Development Tools

If this box is checked the ChipProgUSB will test whether each of the
device leads is reliably squeezed by the programming socket contact.
If some contact is bad a current operation will be blocked.

Reverse bytes order If this box is checked the ChipProgUSB will sweep the byte order in
the 16-bit word while it executes the Read, Program Verify

operations. This option does not affect the data in the ChipProg
buffers, they remain the same after the file loading.

Blank check before program
If this box is checked the ChipProgUSB will always check if the target
device is blank before programming it.

Verify after program
If this box is checked the ChipProgUSB will always verify the device
content right after it has been programmed.

Verify after read
If this box is checked the will always verify the device content right
after it has been read out.

5.5.1.3 The Statistics tab

This tab opens the field displaying the programming session statistical results for each programming site
- Total number of devices that were programmed during the session, what was the yield (Good) and
how many devices have failed (Bad).

Element of dialog Description

Clear statistics This button resets the statistics..

Normally the Total counter increments after each Auto
Programming; the, Good and Bad counters also count up. The

ChipProg Device Programmers102

© 2010 Phyton, Inc. Microsystems and Development Tools

ChipProgUSB reverses the counters to decrement their content (to
count down).

Enable countdown
If the box is checked the ChipProgUSB

Display message when

countdown value reaches

zero

If the box is checked the ChipProgUSB will issue a warning when
the counter Total is zeroed.

Reset counters when

countdown value reaches

zero

If the box is checked the ChipProgUSB will reset all the counters
when the counter Total is zeroed.

Count only successfully

programmed devices

If the box is checked the ChipProgUSB will count only the
successfully programmed (Good). All other statistics will be
ignored.

Set initial countdown

value

Clicking on the button opens the box for entering a new Total

number that then will be decremented after each Auto Programming
.

5.6 In-System Programming

The ChipProg programmers generate all the signals necessary for programming devices installed in
the user's equipment (in-system). In order to program devices in-system the programmers connect to
the target via special adapters. When a device to be programmed is chosen, the ChipProgUSB
software displays a part number of the appropriate cable-adapter in the Device Information window.
The adapters.chm file includes wiring diagrams for all cable-adapters, that allows use of the adapters
made by customers themselves.

General requirements for connecting ChipProg programmers to the target system

Connections 1. Connections must be done in accordance to the adapter's wiring
diagram published in the adapters.chm file.

2. The target system should not shunt or overload the logical signals
generated by the programmer.

3. Some IPS algorithms require generating logical signals with the voltage
levels of 10 to 15V exceeding normal voltages used in electronic
systems (3 to 5V). The target system should be tolerant to applying

Operating with Programmers 103

© 2010 Phyton, Inc. Microsystems and Development Tools

such "high voltages".

Powering

1. The target gets power from the ChipProg. This is possible only if
the target does not consume too much energy. The current supplied
from the programmer may not exceed 80 mA, a capacity of the target
power circuitry should not exceed 50 uF.

2. The target gets power from a built-in or external power supply. In
this case the power output from the ChipProg

 It is strictly prohibited to power the target from both the programmer and
built-in or external power supply simultaneously.

Electrical

characteristics of the

ChipProg signals

Max current load for the logical signals - 5 mA.

Max current load for the Vcc line - 80 mA.

Max current load for the Vpp line - 80 mA.

NOTE! Always carefully check connecting your ChipProg programmer to the target. Wrong

connecting may, and probably will cause destruction of the programmer's and/or the target

system's hardware.

Most embedded microcontrollers have different algorithms for the ISP procedure. See the following
topics regarding the ISP for popular microcontrollers:

Specifics of the in-system programming of the Microchip PICmicro

Specifics of the in-system programming of the Atmel AVR microcontrollers

Specifics of the in-system programming of the Atmel 8051 microcontrollers

ChipProg Device Programmers104

© 2010 Phyton, Inc. Microsystems and Development Tools

6 Programming Automation via DLL

Any ChipProg programmer can be controlled not only by an operator from the ChipProgUSB user
interface but also from an external computerized environment, mostly for the programming automation.
This chapter describes how to integrate a ChipProg programmer into an external environment by means
of the Phyton's proprietary Application Control Interface (hereafter ACI). Remember that the
Application Control Interface use requires the ChipProg to be driven from a PC under Windows XP, Vista
or 7.

6.1 Application Control Interface

What is the Application Control Interface?

The Application Control Interface (hereafter ACI) is a set of proprietary Phyton software allowing
integration the ChipProg programmers into an external computerized environment. The ChipProgUSB
software includes three Application Control Interface components:

ACI.DLL file that specifies a set of ACI functions, which can be invoked from external applications to
perform programming operations. This DLL is completely conformable to the Microsoft's dynamically-
linked shared library concept.

2) The aciprog.h header file written in the C/C++ language that lists all the ACI functions exported
to the ACI.DLL.DLL and the structures associated with these functions.

3) A few program examples that control programmers from external applications

Requirements and Restrictions

1) The ChipProgUSB software must be installed on the computer that controls the operations
(hereafter the instrumental or host computer). The latest ChipProgUSB software version is available
for free download from the http://www.phyton.com/htdocs/support/update.shtml webpage.

2) The ACI.DLL.DLL requires an operational system Windows 98/ME/2000/XP/Vista and newer.

3) It is necessary to position the windows.h file before the aciprog.h file in the application
program.

How does the Application Control Interface works?

The ACI.DLL launches the programmer executable file by means of the ACI_Launch() function and then
controls the ChipProgUSB software by calling other ACI functions. The ChipProg executable, universal
for all USB-hosted programmers, is the UProgNT2.exe.

Each ACI function, being called by an external application, sends back to this application a unique
function return code. The return code constants - ACI_ERR_xxx - are defined into the aciprog.h

An external application can call either an ACI function without any parameter (just by the function name)
or by the function name with adding a pointer to the structure of parameters. The very first parameter of
any structure is always the 'UNIT size' parameter that defines the structure size. This insures
compatibility of different ACI.DLL versions. The only exemption is the function ACI_IDECommand() -
here we sacrificed uniformity of the structure format in behalf of the pseudo-function declaration
simplicity.

http://www.phyton.com/htdocs/support/update.shtml

Programming Automation via DLL 105

© 2010 Phyton, Inc. Microsystems and Development Tools

Names of all the ACI objects (functions and structures) always begin from the prefix ACI. Names of the
structure patterns complete with the suffix _Params.

Numbers of the memory buffers and layers in buffers begin from zero. All addresses have a 64-bit format
and are presented by two 32-bit halves of this address (low and high) to be the compiler-independent.
For example, if the compiler recognizes the uint64 type of data then the function, which assigns a 64-bit
memory buffer address in the structure ACI_Memory_Params, the function call can be presented as:

ACI_Memory_Params params;

*((uint64 *)params.AddressLow) = 0x123456789ABC;

In most cases, in a process of the programming being under control of the external application it is not
necessary to make visible the ChipProgUSBChipProgUSB GUI. However, it may be necessary to unhide
the programmer GUI, or just some windows and dialogs, for setting up the programming environment and
for the debugging purposes (for example, for selecting the target device, loading the file, etc.). Then the
ChipProgUSB user interface can be hidden to free more display space for the controlling application.

6.2 ACI Functions

In order to set up and control a ChipProg tool the program running on the instrumental computer calls
the Application Control InterfaceApplication Control Interface functions requires structures that specify
memory locations, pointers and other objects affiliated with the called function while other functions do
not require any structures. Here is the list of the ChipProg Application Control Interface functions:

ChipProg Device Programmers106

© 2010 Phyton, Inc. Microsystems and Development Tools

Application Control

Interface function name

Brief description Associated

windows

and dialogs

Associated Application

Control Interface

structures

ACI functions that start and stop programming sessions

ACI_Launch

Starts the ChipProgUSB program. This

function must be alw ays the very f irst in the

chain of other Application Control Interface

functions that form the programming session.

NA ACI_Launch_Params

Closes the ChipProgUSBApplication Control

Interface functions. It completes the external

control session.
NA NA

ACI functions that configure the programmer or get its current configuration

ACI_LoadConfigFile
Loads the programmer configuration

parameters from the host computer to the

programmer.

NA ACI_Config_Params

ACI_SaveConfigFile
Saves the programmer's current

configuration parameters to the host

computer.

NA ACI_Config_Params

ACI functions that get the target device properties or set them

Gets the manufacturer's name (brand) and

the part number of the device being currently

programmed from the programmer to the host

computer.

Select Device ACI_Device_Params

ACI_SetDevice Select Device

ACI functions that get current parameters of the buffers and layers or configure them

ACI_GetLayer
Gets the parameters of a specif ied memory

buffer and layer from the programmer to the

host computer.

Buffer Dump ACI_Layer_Params

ACI_CreateBuffer
Creates a memory buffer w ith specif ied

parameters in the programmer.
Buffer Dump ACI_Buffer_Params

ACI_ReallocBuffer
Changes a size of the layer #0 in a specif ied

memory buffer in the programmer.
Buffer Dump ACI_Buffer_Params

ACI functions that read the buffer layer or write into it

ACI_ReadLayer
Reads data from a specif ied memory buffer

from the programmer to the host computer.
Buffer Dump ACI_Memory_Params

ACI_WriteLayer
Writes data into a specif ied memory buffer

from the host computer to the programmer

memory buffer.

Buffer Dump ACI_Memory_Params

ACI_FillLayer
Fills a w hole selected layer of a specif ied

memory buffer w ith a specif ied data pattern.
Buffer Dump ACI_Memory_Params

ACI functions that read the content of the buffer layer or write into it

ACI_GetProgrammingParams
Gets current programming parameters from

the programmer to the host computer.

Program

Manager >

Options

ACI_Programming_Params

ACI_SetProgrammingParams Sets programming parameters from the host Program ACI_Programming_Params

Programming Automation via DLL 107

© 2010 Phyton, Inc. Microsystems and Development Tools

Application Control

Interface function name

Brief description Associated

windows

and dialogs

Associated Application

Control Interface

structures

computer to the programmer.
Manager >

Options

ACI functions that get device-specific programming parameters or set them

ACI_GetProgOption
Gets current programming options from the

programmer to the host computer.

Device and

Algorithm

Parameters

ACI_ProgOption_Params

ACI_SetProgOption
Sets programming options from the host

computer to the programmer.

Device and

Algorithm

Parameters

ACI_ProgOption_Params

ACI_AllProgOptionsDefault
Sets default programming options and

programming algorithms in the programmer.

Device and

Algorithm

Parameters

ACI_ProgOption_Params

ACI functions that control programming operations

Initiates a specif ied programming operation

keeping under control its successful

completion or failure. It controls a single

programmer.

ACI_Function_Params

ACI_StartFunction It controls a single programmer.
Program

Manager
ACI_Function_Params

ACI_GangStart
Used to control multiple device

programmers. Initiates auto programming in

the gang (multi-programming

Program

Manager
ACI_GangStart_Params

ACI_GetStatus
Gets a current programmer status

information.

Program

Manager
ACI_PStatus_Params

ACI_TerminateFunction Terminates a current programming operation.
Program

Manager
NA

ACI functions that save and load files to the programmer

ACI_FileSave
Saves a specif ied f ile from a specif ied

buffer's layer of the programmer into the

instrumental computer.

Buffer Dump ACI_File_Params

ACI_FileLoad
Loads a specif ied f ile from the instrumental

computer to a specif ied buffer's layer in the

programmer.

Buffer Dump ACI_File_Params

ACI functions that display programmer's windows and dialogs for setting up and

debugging external programming sessions

ACI_SettingsDialog Displays the programmer Preferences dialog.
Configure >

Preferences
NA

ACI_SelectDeviceDialog Displays the Select Device dialog. Select Device NA

ACI_BuffersDialog Displays the memory buffers setting dialog. Buffer Dump NA

ACI_LoadFileDialog Displays the f ile loading dialog. Buffer Dump NA

ACI_SaveFileDialog Displays the f ile saving dialog. Buffer Dump NA

ChipProg Device Programmers108

© 2010 Phyton, Inc. Microsystems and Development Tools

6.2.1 ACI_Launch

ACI_FUNC ACI_Launch(ACI_Launch_Params * params);

Description

This function launches the ChipProgUSB software. Optionally this ACI function can launch the
programmer with a specified command line key and load the file that will configure the ChipProg
hardware.

This ACI function must always be called before any other ACI function !

6.2.2 ACI_Exit

ACI_FUNC ACI_Exit();

Description

Call of this function stops the ChipProgUSB software. In most cases the programmer practically
immediately stops running. Sometimes, after calling the ACI_Exit function, it continues working for a
while to correctly complete an earlier launched process. After all the ChipProg will stop and quite itself
after finding that the controlling process has ended.

It is possible, however, that the software will keep running even after the control process has completely
stopped. This is abnormal situation and, as the result, it will be impossible to re-establish
communication with the programmer hardware by launching the ACI_Launch function. In this case you
should manually close the ChipProgUSB program via the Window Task Manager.

.

6.2.3 ACI_LoadConfigFile

ACI_FUNC ACI_LoadConfigFile(ACI_Config_Params * params);

Description

This function loads the ChipProg configuration parameters that include all the settings available via the
ChipProgUSB dialogs (memory buffer configurations, programming options, test of the device insertion,
etc.).

The ChipProgUSB program automatically saves some programming options and settings including a
type of the selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the AutoProgramming commands and then
automatically restores these parameters when the user changes the device type.

See also: ACI_SetProgrammingParams, , ACI_GetProgrammingParams, ACI_GetProgOption,
ACI_SaveConfigFile

Programming Automation via DLL 109

© 2010 Phyton, Inc. Microsystems and Development Tools

6.2.4 ACI_SaveConfigFile

ACI_FUNC ACI_SaveConfigFile(ACI_Config_Params * params);

Description

This function saves the ChipProg options specified in the tab Option of the Program Manager window
(memory buffer configurations, programming options, test of the device insertion, etc.).

The ChipProgUSB program automatically saves some programming options and settings including a
type of the selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the AutoProgramming commands and then
automatically restores these parameters when the user changes the device type.

См. также: ACI_SetProgrammingParamsACI_SetProgOption, ACI_GetProgrammingParams,
ACI_GetProgOption, ACI_LoadConfigFile

6.2.5 ACI_SetDevice

ACI_FUNC ACI_SetDevice(ACI_Device_Params * params);

Description

This function chooses the device to be programmed. Along with the device type the function
automatically loads the device parameters, start and end addresses and the buffer start address. Plus it
restores the AutoProgramming command list if the selected device type has been ever selected earlier
but the parameters listed above were changed in a process of the programming session.

6.2.6 ACI_GetDevice

ACI_FUNC ACI_GetDevice(ACI_Device_Params * params);

Description

6.2.7 ACI_GetLayer

ACI_FUNC ACI_GetLayer(ACI_Layer_Params * params);

Description

This function gets the parameters of a specified memory buffer and buffer's layer.

ChipProg Device Programmers110

© 2010 Phyton, Inc. Microsystems and Development Tools

See also the ACI_Layer_Params structure description.

6.2.8 ACI_CreateBuffer

ACI_FUNC ACI_CreateBuffer(ACI_Buffer_Params * params);

Description

This function creates a buffer with the parameters specified by the ACI_Buffer_Params structure. The
ChipProgUSB program automatically assigns the buffer #0 so it is not necessary to create this buffer by
a separate command.

See also the ACI_Buffer_Params structure description.

6.2.9 ACI_ReallocBuffer

ACI_FUNC ACI_ReallocBuffer(ACI_Buffer_Params

Description

ACI_Buffer_Params structure.

See also the ACI_Buffer_Params structure description.

6.2.10 ACI_ReadLayer

ACI_FUNC ACI_ReadLayer(ACI_Memory_Params * params);

Description

This function reads data from a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function reads the data from the programmer's memory buffer but does not physically

read out the content of the selected target device. In order to physically read out the device
memory content execute the programmer command (function) Read by means of the
ACI_ExecFunction or ACI_StartFunction

6.2.11 ACI_WriteLayer

ACI_FUNC ACI_WriteLayer(ACI_Memory_Params * params);

Description

This function writes data to a specified memory buffer. The data size is limited by 16M Bytes.

Programming Automation via DLL 111

© 2010 Phyton, Inc. Microsystems and Development Tools

Note! This function writes the data to the programmer's memory buffer but does not physically

program the device. In order to physically write data from the buffer to the device's memory execute
the programmer command (function) Program by means of the ACI_ExecFunction or
ACI_StartFunction with appropriate attributes.

6.2.12 ACI_FillLayer

ACI_FUNC ACI_FillLayer(ACI_Memory_Params * params);

Description

This function fills a whole active layer of a specified memory buffer with a specified data pattern. This
function works much faster than the ACI_WriteLayer function which writes data to the buffer layer.

Note! This function fills the programmer's memory buffer with a specified data pattern but does not

physically write them to the device being programmed. In order to physically write data from the
buffer to the device execute the programmer command (function) Program ACI_ExecFunction or
ACI_StartFunction with appropriate attributes.

6.2.13 ACI_GetProgrammingParams

ACI_FUNC ACI_GetProgrammingParams(ACI_Programming_Params * params);

Description

This function gets current programming parameters specified in the tab Option of the Program Manager
window (memory buffer configurations, programming options, test of the device insertion, etc.).

See the ACI_Programming_Params structure description.

6.2.14 ACI_SetProgrammingParams

ACI_FUNC ACI_SetProgrammingParams(ACI_Programming_Params * params);

Description

This function sets programming parameters specified in the tab Option of the Program Manager window
(memory buffer configurations, programming options, test of the device insertion, etc.).

See also the ACI_Programming_Params structure description.

6.2.15 ACI_GetProgOption

ACI_FUNC ACI_GetProgOption(ACI_ProgOption_Params * params);

ChipProg Device Programmers112

© 2010 Phyton, Inc. Microsystems and Development Tools

Description

This function gets current settings from the Device and Algorithm Parameters Editor window. As an
example see this window for one of the microcontrollers below.

Note! This function does not physically read the specified information from the device being

programmed. It reads from some virtual memory locations in the host PC's RAM, associated with
physical locations in the target device's memory and registers. If the option, which you would like to
check, is a property of the device's memory or registers then first you have to execute the programmer
command (function) Read in the command group Device Parameters by means of the
ACI_ExecFunctionACI_StartFunction with appropriate attributes. Then you can read the execute the
ACI_GetProgOption function.

See also the ACI_ProgOption_Params structure description.

6.2.16 ACI_SetProgOption

ACI_FUNC ACI_SetProgOption(ACI_ProgOption_Params * params);

Description

This function sets device-specific options and parameters, which are specified in the Device and

Algorithm Parameters Editor

Programming Automation via DLL 113

© 2010 Phyton, Inc. Microsystems and Development Tools

 This function does not physically write the specified information into the device being

programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically program them into the device's memory you should execute
an appropriate Program command (function) in the command group Device Parameters by means of
the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

See also the ACI_ProgOption_Params structure description.

6.2.17 ACI_AllProgOptionsDefault

ACI_FUNC ACI_AllProgOptionsDefault();

Description

This function sets default device-specific options and parameters specified in the Device and

Algorithm Parameters Editor window. These default parameter sets vary. They are defined by the
device manufacturers in the device data sheets.

Note! This function does not physically restore the default settings into the device being

programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically fix them in the device's memory you should execute an
appropriate Program command (function) in the command group Device Parameters by means of
the ACI_ExecFunctionACI_StartFunction with appropriate attributes.

6.2.18 ACI_ExecFunction

ACI_FUNC ACI_ExecFunction(* params);

ChipProg Device Programmers114

© 2010 Phyton, Inc. Microsystems and Development Tools

Description

This function launches one of the major programming operation (Read, Erase, Verify, etc.) specified by
the ACI_Function_Params. Being executed the ACI_ExecFunction does not allow to call any other ACI
function until the programming operation, initiated by the ACI_ExecFunction function, completes the
job. This differs the from the ACI_StartFunction that returns the control immediately after it was called.

6.2.19 ACI_StartFunction

ACI_Function_Params * params);

Description

This function launches one of the major programming operation (Read, Erase, Verify, etc.) specified by
the ACI_Function_Params and immediately returns control to the external application no matter whether
the programming operation, initiated by the ACI_StartFunction, has completed or not. This differs the
ACI_StartFunctionACI_ExecFunction. It is possible to check if the operation has completed by the
ACI_GetStatus function call. This allows to monitor executing programming operations if they last for a
quite long time.

6.2.20 ACI_GangStart

ACI_FUNC ACI_GangStart(ACI_GangStart_Params * params);

Description

This function is used to control multiple device programmersChipProgUSB program were launched from
the command line with the key /gang to drive a ChipProg gang programmer or a cluster of multiple
programmers connected to one PC! See also the ACI_Launch function. For controlling a single ChipProg
device programmer use the ACI_StartFunction or ACI_ExecFunction function.

The ACI_GangStart function launches Auto Programming on multiple ChipProg device programmers for
the programming socket specified in the parameterSiteNumber of the ACI_PStatus_Params structure.
The function returns control immediately. In order to detect a moment of ending the ACI_GangStart

execution use the ACI_GetStatus function.

6.2.21 ACI_GetStatus

ACI_PStatus_Params * params);

Description

This function gets the programmer status that includes:

Programming Automation via DLL 115

© 2010 Phyton, Inc. Microsystems and Development Tools

1) The status of the programming operation initiated by the ACI_StartFunction call (whether it has
completed or it is still in progress);
2) The device insertion status (certainly if this option is enabled in the tab Option of the Program
Manager window).

6.2.22 ACI_TerminateFunction

ACI_FUNC ACI_TerminateFunction();

Description

This function terminates a current programming operation initiated by the ACI_StartFunction call.

6.2.23 ACI_FileLoad

ACI_FUNC ACI_FileLoad(ACI_File_Params * params);

Description

ChipProgUSB software takes care of this.

6.2.24 ACI_FileSave

ACI_FUNC ACI_FileSave(ACI_File_Params * params);

Description

This function saves a specified file from a specified buffer's layer. The ChipProgUSB software enables
saving files in all popular formats: HEX, Binary, etc..

6.2.25 ACI_SettingsDialog

Description

This macros opens the Configure > PreferencesChipProgUSB main window status - the main window
can remain closed but the Configure > Preferences setting dialog will appear on the computer screen
allowing manipulations in the dialog.

6.2.26 ACI_SelectDeviceDialog

ACI_SelectDeviceDialog();

ChipProg Device Programmers116

© 2010 Phyton, Inc. Microsystems and Development Tools

Description

This macros sends a command that opens the Select Device dialog. The dialog will appear on the
screen regardless of the ChipProgUSB main window status - the main window can remain closed but
the Select Device dialog will appear on the computer screen.

6.2.27 ACI_BuffersDialog

ACI_BuffersDialog();

This macros opens the Memory Dump Window Setup dialog. The dialog will be visible regardless of
the ChipProgUSB main window status - the main window can remain closed but the Memory Dump

Window Setup dialog will appear on the computer screen to allow the buffer setup. See the dialog
example below.

6.2.28 ACI_LoadFileDialog

ACI_LoadFileDialog();

Programming Automation via DLL 117

© 2010 Phyton, Inc. Microsystems and Development Tools

Description

This macros opens the Load File dialog. The dialog will be visible regardless of the ChipProgUSB main
window status - the main window can remain closed but the Load File

6.2.29 ACI_SaveFileDialog

ACI_SaveFileDialog();

Description

This macro sends a command that opens the Save File dialog. The dialog will be visible regardless of
the ChipProgUSB main window status - the main window can remain closed but the Save File dialog
will appear on the computer screen. See the dialog example below.

ChipProg Device Programmers118

© 2010 Phyton, Inc. Microsystems and Development Tools

6.3 ACI Structures

This chapter describes the structures used by the

Structure The ACI function that uses the structure

ACI_Launch_Params ACI_Launch

ACI_Config_Params ACI_LoadConfigFile, ACI_SaveConfigFile

ACI_Device_Params ACI_GetDevice,ACI_SetDevice,

ACI_Layer_Params ACI_GetLayer

ACI_Buffer_Params ACI_CreateBuffer, ACI_ReallocBuffer

ACI_Memory_Params ACI_ReadLayer, ACI_WriteLayer, ACI_FillLayer

ACI_Programming_Params
ACI_SetProgrammingParams,
ACI_GetProgrammingParams

ACI_ProgOption_Params ACI_GetProgOption, ACI_SetProgOption

ACI_Function_Params ACI_ExecFunction, ACI_StartFunction

ACI_PStatus_Params

ACI_FileLoad, ACI_FileSave

ACI_GangStart_Params ACI_GangStart, ACI_GetStatus

Here is an example of the structure syntax:

Programming Automation via DLL 119

© 2010 Phyton, Inc. Microsystems and Development Tools

typedef struct tagACI_Buffer_Params
{
 UINT Size; // (in) Size of structure, in bytes
 DWORD Layer0SizeLow; // (in || out) Low 32 bits of layer 0 size, in bytes
 DWORD Layer0SizeHigh; // (in || out) High 32 bits of layer 0 size, in bytes
 // Layer size is rounded up to a nearest value
supported by programmer.
 LPCSTR BufferName; // (in) Buffer name

 // For ACI_ReallocBuffer(): in: Buffer number to realloc
 UINT NumBuffers; // (out) Total number of currently allocated buffers
 UINT NumLayers; // (out) Total number of layers in a buffer
} ACI_Buffer_Params;

Each structure includes a number of parameters (here Size, Layer0SizeLow, NumBuffers, etc.). The
parameter's name follows its format (UINT, DWORD, LPCSTR, CHAR, BOOL, etc.). The comment to the
parameter begins from a bracketed symbol showing the direction of sending this parameter:

(in) - the parameter is sent from the instrumental computer to the programmer;
(out) - the parameter is sent from the programmer to the instrumental computer;
 - the parameter can be sent in either directions depending on the ACI function context.

6.3.1 ACI_Launch_Params

typedef struct tagACI_Launch_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR ProgrammerExe; // (in) Programmer executable file name

 BOOL DebugMode; // (in) Debug mode. Programmer window is not hidden
} ACI_Launch_Params;

ProgrammerExe

This is the name of the programmer executable file. If the parameter does not
include a full path then the program will search for the UprogNT2.EXE file into
the folder where the ACI.DLL resides.

The target folder name, where the the UprogNT2.EXE file resides, is defined
by the parameter "Folder" of the ""HKLM\SOFTWARE\Phyton\Phyton
ChipProgUSB Programmer\x.yy.zz" key. It is supposed that multiple
ChipProgUSB versions can be installed on the host computer.

CommandLine

This structure member specifies the command line options. One of the option
is NULL (no keys). If the host computer drives a cluster of multiple
programmers then the only way to launch a certain programmer is to specify
the /N<serial number> for the CommandLine structure member.

DebugMode

This key controls the ChipProgUSB main window visibility. Setting TRUE for
this structure member makes the ChipProgUSB main window visible. Then
you can manipulate with the programmer using its user interface - open
windows, set any programmer resources, execute programming operations,
etc..

See also: ACI_Launch

ChipProg Device Programmers120

© 2010 Phyton, Inc. Microsystems and Development Tools

6.3.2 ACI_Config_Params

typedef struct tagACI_Config_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR FileName; // (in) Options file name to load/save configuration
} ACI_Config_Params;

FileName This is the name of the file that configures the
programmer.

See also: ACI_LoadConfigFile, ACI_SaveConfigFile

6.3.3 ACI_Device_Params

typedef struct tagACI_Device_Params
{
 UINT Size; // (in) Size of structure, in bytes
 CHAR Manufacturer[64]; // (in || out) Device Manufacturer
 CHAR Name[64]; // (in || out) Device Name

Manufacturer The manufacturer of the device being programmed

Name
The device part number as it is displayed in the
programmer's device list

See also: ACI_SetDevice, ACI_GetDevice

6.3.4 ACI_Layer_Params

typedef struct tagACI_Layer_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT BufferNumber; // (in) Number of buffer of interest, the first
buffer number is 0
 UINT LayerNumber; // (in) Number of layer of interest, the first layer
number is 0
 DWORD LayerSizeLow; // (out) Low 32 bits of layer size, in bytes
 DWORD LayerSizeHigh; // (out) High 32 bits of layer size, in bytes
 DWORD DeviceStartAddrLow; // (out) Low 32 bits of device start address for this
layer
 DWORD DeviceStartAddrHigh; // (out) High 32 bits of device start address for
this layer
 DWORD DeviceEndAddrLow; // (out) Low 32 bits of device end address for this
layer

Programming Automation via DLL 121

© 2010 Phyton, Inc. Microsystems and Development Tools

 DWORD DeviceEndAddrHigh; // (out) High 32 bits of device end address for this
layer
 DWORD DeviceBufStartAddrLow; // (out) Low 32 bits of device memory start address
in buffer for this layer
 DWORD DeviceBufStartAddrHigh; // (out) High 32 bits of device memory start address
in buffer for this layer
 UINT UnitSize; // (out) Size of layer unit, in bits (8, 16 or 32)
 BOOL FixedSize; // (out) Size of layer cannot be changed with
ACI_ReallocBuffer()
 CHAR BufferName[64]; // (out) Buffer name
 CHAR LayerName[64]; // (out) Layer name, cannot be changed
 UINT NumBuffers; // (out) Total number of currently allocated buffers
 UINT NumLayers; // (out) Total number of layers in a buffer
} ACI_Layer_Params;

BufferNumber
The ordinal number of the memory buffer, content of which is required by
the ChipProg memory buffers begin from #0.

LayerNumber
The ordinal number of the layer in the memory buffer, the content of which
is required by the ACI_GetLayer function. The layer numbers begins from
#0.

LayerSizeLow,
LayerSizeHigh

Here the function returns the range of the memory layer's addresses in
bytes.

DeviceStartAddrLow,
DeviceStartAddrHigh

Here the function returns the device's start address for the selected
memory layer. This address is the device's property and strictly depends
on the device type - usually this value is zero. Do not mix it up with the
start address of a programming operation that can be shifted by a certain
offset value.

DeviceEndAddrLow,
DeviceEndAddrHigh

Here the function returns the device's end address for the selected memory
layer. This address is the device's property and strictly depends on the
device type. Do not mix it up with the end address of a programming
operation editable in the setup dialog. The selected layer's address range
can be defined as a difference between the end address and the start
address plus 1.

DeviceBufStartAddrL
ow,
DeviceBufStartAddrH
igh

Here the function returns the start address for the selected - usually this
value is zero.

UnitSize This structure member specifies formats of the data in memory layer: 8 for
the 8-bit devices, 16 - for 16-bit devices and 32 for 32-bit devices.

FixedSize

This flag, if TRUE, disables resizing the memory layer by the
ACI_ReallocBuffer function. There is one restriction on use of this flag:
since the layer #0 is always resizeable the FixedSize is always FALSE
for the layer #0.

The name of the memory buffer as it was defined in the ChipProg interface
or by the ACI_CreateBuffer

LayerName Reserved name of the memory buffer's layer that cannot be changed by the
ACI.DLL user.

ChipProg Device Programmers122

© 2010 Phyton, Inc. Microsystems and Development Tools

BufferNumber
The ordinal number of the memory buffer, content of which is required by
the ChipProg memory buffers begin from #0.

NumBuffers The number of the assigned memory buffers.

NumLayers The number of layers in the programmer's memory buffers. This is a pre-
defined device-specific value that is the same for all memory buffers.

See also: ACI_GetLayer

6.3.5 ACI_Buffer_Params

typedef struct tagACI_Buffer_Params
{
 UINT Size; // (in) Size of structure, in bytes
 DWORD Layer0SizeLow; // (in/out) Low 32 bits of layer 0 size, in bytes
 DWORD Layer0SizeHigh; // (in/out) High 32 bits of layer 0 size, in bytes
 // Layer size is rounded up to a nearest value
supported by programmer.
 LPCSTR BufferName; // (in) Buffer name
 UINT BufferNumber; // For ACI_CreateBuffer(): out: Created buffer number
 // For ACI_ReallocBuffer(): in: Buffer number to realloc
 UINT NumBuffers; // (out) Total number of currently allocated buffers
 UINT NumLayers; // (out) Total number of layers in a buffer
} ACI_Buffer_Params;

Layer0SizeLow,
Layer0SizeHigh

This structure member represents the buffer layer #0's size in Bytes. This
size lays in the range between 128K Bytes to 32G Bytes (may be
changed in the future). The ChipProgUSB allows assigning buffers with
fixed sizes only (see the list on the picture below). Any intermediate value
will be automatically rounded up to one of the reserved buffer sizes. For
example if you enter '160000' the programmer will assign a 1MB buffer
layer.

BufferName
ACI_CreateBuffer function this structure member represents the name of
buffer that will be created. This structure member used with the
ACI_ReallocBuffer function will be ignored.

BufferNumber
After calling the ACI_CreateBuffer function this structure member returns
the created buffer's number. After calling the ACI_ReallocBuffer function -
the number of the buffer, size of which should be changed (re-allocate).

NumBuffers
This structure member represents the current number (quantity) of
memory buffers being opened.

NumLayers
This structure member represents the number (quantity) of layers in
memory buffers. This value is the same for all opened buffers.

Programming Automation via DLL 123

© 2010 Phyton, Inc. Microsystems and Development Tools

See also: ACI_CreateBuffer, ACI_ReallocBuffer

6.3.6 ACI_Memory_Params

typedef struct tagACI_Memory_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT BufferNumber; // (in) Number of buffer of interest, the first buffer
number is 0
 UINT LayerNumber; // (in) Number of layer of interest, the first layer
number is 0
 DWORD AddressLow; // (in) Low 32 bits of address, in layer units (natural to
device address)

 PVOID Data; // (in || out) Buffer to data to read to or write from
 DWORD DataSize; // (in) Size of data to read or write, in layer units,
max. 16 MB (0x1000000)
 DWORD FillValue; // (in) Value to fill buffer with, used by ACI_FillLayer()
only
} ACI_Memory_Params;

BufferNumber The ordinal number of the buffer to read from or to write into. The buffer
numerical order begins from zero.

LayerNumber

AddressLow, The start address in the memory layer to read from or to write into

ChipProg Device Programmers124

© 2010 Phyton, Inc. Microsystems and Development Tools

AddressHigh
represented in the units specified by the chosen device manufacturer - Bytes,
Words, Double Words. This structure member is ignored in case of use with
the ACI_FillLayer function.

Data

Being used with different ACI functions this structure member has different
meanings. In case of use with the ACI_ReadLayer function it represents the
pointer to the data read out from the ChipProg buffer's layer. In case of use
with the ACI_WriteLayer - the pointer to the data to be written to the ChipProg
Data is ignored if it is used with the function.

DataSize
This structure member represents the data format given in memory units
specified by the device manufacturer (Bytes, Words or Double Words). The
program ignores the DataSize if it is used with the ACI_FillLayer function.

FillValue

This is the data pattern that fills an active ChipProg buffer's layer by means of
the ACI_FillLayer function. If, for example, the FillValue is presented in the
DWORD format then the 8-bit memory layers will be filled with the lower byte
of the FillValue pattern, the 16-bit layers - with the lower 16-bit word and the
32-bit layers - with a whole FillValue pattern.

See also: ACI_ReadLayer, ACI_WriteLayer, ACI_FillLayer

6.3.7 ACI_Programming_Params

typedef struct tagACI_Programming_Params
{
 UINT Size; // (in) Size of structure, in bytes
 BOOL InsertTest; // (in || out) Test if device is attached
 BOOL CheckDeviceId; // (in || out) Check device identifier
 BOOL ReverseBytesOrder; // (in || out) Reverse bytes order in buffer
 BOOL BlankCheckBeforeProgram; // (in || out) Perform blank check before
programming
 BOOL VerifyAfterProgram; // (in || out) Verify after programming
 BOOL VerifyAfterRead; // (in || out) Verify after read
 BOOL SplitData; // (in || out) Split data: see ACI_SP_xxx constants
 BOOL DeviceAutoDetect; // (in || out) Auto detect device in socket (not
all of the programmers provide this feature)
 BOOL DialogBoxOnError; // (in || out) On error, display dialog box
 UINT AutoDetectAction; // (in || out) Action to perform on device
autodetect or 'Start' button, see ACI_AD_xxx constants
 DWORD DeviceStartAddrLow; // (in || out) Low 32 bits of device start address
for programming operation
 DWORD DeviceStartAddrHigh; // (in || out) High 32 bits of device start address
for programming operation
 DWORD DeviceEndAddrLow; // (in || out) Low 32 bits of device end address
for programming operation
 DWORD DeviceEndAddrHigh; // (in || out) High 32 bits of device end address
for programming operation

 DWORD DeviceBufStartAddrHigh; // (in || out) High 32 bits of device memory start
address in buffer for programming operation

Programming Automation via DLL 125

© 2010 Phyton, Inc. Microsystems and Development Tools

} ACI_Programming_Params;

InsertTest
This is the command to check the device insertion before starting any
programming operations on the device. The procedure will check if every chip
leads have good contact in the programming socket.

CheckDeviceId This is the command to check a unique internal device identifier before the
device programming.

This is the command to reverse the byte order in 16-bit words when
programming the device, reading it or verifying the data. This structure member
does not effect the data value in the ChipProg memory buffers - these data
remain the same as they were loaded.

BlankCheckBeforeProg
ram

device is blank every time before executing the command.

VerifyAfterProgram This is the command to verify the data written into the device every time after
executing the Program command.

VerifyAfterRead This is the command to verify the data written into the device every time after
executing the Read command.

SplitData

This is the command to split data in accordance with the value of the constants
ACI_SP_xxx* in the aciprog.h file (see below). This allows 8-bit memory devices
to be cascaded in multiple memory chips to be used in the systems with 16- and
32-bit address and data buses.

DeviceAutoDetect

This is the command to scan all the device's leads in a process of the device
insertion into the programming socket. If the DeviceAutoDetect is TRUE the
programmer will check whether all of the device's leads are reliably gripped by
the programmer socket's sprung contacts. Only when the reliable device
insertion is acknowledged, the program launches a chosen programming
operation, script or a batch of single operations programmed in the
AutoProgramming dialog.

DialogBoxOnError
If this structure member is TRUE then any error occurred in a process of any
programming operation will generate error messages and will open associated
dialogs. If this attribute is FALSE the error messages will not be issued.

AutoDetectAction

If the DeviceAutoDetect is TRUE then values of the ACI_AD_xxx** constants in
the aciprog.h file define a particular action triggered either on manual pushing
the Start button or upon auto detecting reliable insertion of the device into the
programmer's socket (see below).

AutoDetectAction

value

What to do (action)

ACI_AD_EXEC_FUNC

TION

Launch the programming operation (function) currently highlighted

in the .

ACI_AD_EXEC_AUT

O

Launch a batch of single operations programmed in the

AutoProgramming dialog.

ACI_AD_EXEC_SCRI

PT

Perform the script specif ied in the Script File dialog.

ACI_AD_DO_NOTHIN

G

Do not act (ignore). Then it is possible to resume operations only by

executing either the ACI_ExecFunction or ACI_StartFunction.

DeviceStartAddrLow,
DeviceStartAddrHigh

This structure member defines a physical start address of the device to perform
a specified programming operation (function). For example: "...read the chip
content beginning the address 7Fh". Not all the functions use this parameter.

ChipProg Device Programmers126

© 2010 Phyton, Inc. Microsystems and Development Tools

DeviceEndAddrLow,
DeviceEndAddrHigh

This parameter defines a physical end address of the device's to perform a
specified programming operation (function) to. For example: "...program the chip
till the address 0FFh". Not all the programmer functions use this parameter.

DeviceBufStartAddrLo
w,
DeviceBufStartAddrHi
gh

This structure member defines the buffers layer's start address to perform a
specified programming operation (function) from. For example: "...read the chip
and move the data to the buffer beginning the address 10h". Not all the
programmer functions use this parameter.

This is the bit definition from the aciprog.h header file:

* // ACI Data Split defines

#define ACI_SP_NONE 0
#define ACI_SP_EVEN_BYTE 1
#define ACI_SP_ODD_BYTE 2
#define ACI_SP_BYTE_0 3
#define ACI_SP_BYTE_1 4
#define ACI_SP_BYTE_2
#define ACI_SP_BYTE_3 6

** // ACI Device Auto-Detect or 'Start' button action

#define ACI_AD_EXEC_FUNCTION 0 // Execute the function currently selected in the list
#define ACI_AD_EXEC_AUTO 1 // Execute Auto Programming
#define ACI_AD_EXEC_SCRIPT 2 // Execute the script chosen in the programmer Script File
dialog
#define ACI_AD_DO_NOTHING 3 // Do nothing

See also: ACI_SetProgrammingParams, ACI_GetProgrammingParams

6.3.8 ACI_ProgOption_Params

typedef struct tagACI_ProgOption_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR OptionName; // (in) Name of the option. For lists, it should be in
the form "List array name^List Name", e.g. "Configuration Bits^Oscillator"
 CHAR Units[32]; // (out) Option measurement units ("kHz", "V", etc.)
 CHAR OptionDescription[64]; // (out) Description of the option
 CHAR ListString[64]; // (out) For ACI_PO_LIST option: Option string for Value.
ListIndex
 UINT OptionType; // (out) Option type: see ACI_PO_xxx constants
 BOOL ReadOnly; // (out) Option is read-only
 union // (in || out) Option value
 {
 LONG LongValue; // (in || out) Value for ACI_PO_LONG option
 FLOAT FloatValue; // (in || out) Value for ACI_PO_FLOAT option
 LPSTR String; // (in || out) Pointer to string for ACI_PO_STRING option
 ULONG CheckBoxesValue; // (in || out) Value for ACI_PO_CHECKBOXES option
 UINT StateIndex; // (in || out) State index for ACI_PO_LIST option
 LPBYTE Bitstream; // (in || out) Pointer to bitstream data for
ACI_PO_BITSTREAM option

Programming Automation via DLL 127

© 2010 Phyton, Inc. Microsystems and Development Tools

 } Value;

 UINT VSize; // For ACI_SetProgOption():
 // in: Size of Bitstream if OptionType ==
ACI_PO_BITSTREAM
 // For ACI_GetProgOption():
 // in: Size of buffer pointed by Bitstream if
OptionType == ACI_PO_BITSTREAM
 // in: Size of buffer pointed by String if OptionType
== ACI_PO_STRING
 // out: Size of buffer needed for storing Bitstream
data if OptionType == ACI_PO_BITSTREAM.

 // out: Size of buffer needed for storing String if
OptionType == ACI_PO_STRING, including the terminating NULL character.
 // Set Value.String to NULL to get buffer size
without setting the string
 UINT Mode; // (in) For ACI_SetProgOption(): SEE ACI_PP_MODE_...
constants
} ACI_ProgOption_Params;

The name of the programming option - for example "Vcc". For the ACI_PO_LIST

- type options, where the options are grouped into a list, you should specify both
the list name and the option name in the following way: For example,
Configuration_bits^Generator. There are no restrictions on use of uppercase
and lowercase characters in the option names.

Units
After executing the ACI_GetProgOption function this structure member returns
an abbreviation of the units, in which the programmer represents or measures
the OptionName. For example, for the Vcc structure member, Units = "V".

OptionDescription After executing the ACI_GetProgOption function this structure member returns
the option description.

ListString

After executing the ACI_GetProgOption function for the ACI_PO_LIST - type
options this structure member returns a string that describes the current
option's value or status. For example, XT - Standard Crystal for the option
Configuration bits^Generator.

OptionType
After executing the function this structure member returns the option's
presentation format - for example: integer, floating point, list, bitstream, etc..
See the ACI_PO_xxx* constant description in the aciprog.h header file below.

ReadOnly Setting ReadOnly=TRUE disables modification of the option specified by the
ACI_GetProgOption function.

Value

Use of this union depends on the ACI_PO_LONG*

Option type

ACI_PO_LONG The option is in the

ACI_PO_FLOAT Value.FloatValue

ACI_PO_STRING The option is represented as a string, the pointer on w hich

is in the Value.String. See the note below .

ACI_PO_CHECKBOXES The option represents a 32-bit integer w ord, in w hich you

can individually toggle each bit that represents a particular

ChipProg Device Programmers128

© 2010 Phyton, Inc. Microsystems and Development Tools

f lag in the option setting dialog. The option is in the Value.

CheckBoxesValue. See, for example, the Fuse setting

dialog for the ATtiny45 MCU implemented as an array of .

ACI_PO_LIST It represents a list of alternative choices - only one of them

can be selected at a time, so the parameter changes its

value in a range 0, 1, 2 to N. The option is in the Value.

CheckStateIndex. See, for example, the Oscillators setting

dialog for the PIC12F509 MCU implemented as an

alternatively chosen radio buttons

ACI_PO_BITSTREAM Stream of bits. This option type is not in use yet but can be

used for future applications.

VSize Size of the buffer assigned for storing the string if the option type is the
ACI_PO_STRING. See the note below.

Mode

ACI_PP_xxx** constants in the aciprog.h<) header file:

Use of the parameter Value

ACI_PP_MODE_VALUE 1) For measuring (getting): use the in order to get an

actual Option value;

2) For setting: use the Value to set a particular Option

value.

ACI_PP_MODE_DEFAULT

_VALUE

1) Being used w ith the ACI_GetProgOption function it

commands to put the default Option value into the Value

2) Being used w ith the ACI_SetProgOption function the

Value w ill be ignored; the Option w ill be set to the default

level defined in the ChipProg hardw are.

ACI_PP_MODE_MIN_VAL

UE

1) Being used w ith the ACI_GetProgOption function it

commands to put the minimal Option value into the Value.

2) Being used w ith the ACI_SetProgOption function the w ill

be ignored; the Option w ill be set to the minimal level

defined in the ChipProg hardw are, if it is possible for the

Option of this type.

ACI_PP_MODE_MAX_VAL

UE

1) Being used w ith the ACI_GetProgOption function it

commands to put the maximal Option value into the Value.

2) If it is used w ith the ACI_SetProgOption function the

Value w ill be ignored; the Option w ill be set to the maximal

level defined in the ChipProg hardw are, if it is possible for

the Option of this type.

This is the bit definition from the aciprog.h header file:

#define ACI_PO_LONG 0 // Signed integer option
#define ACI_PO_FLOAT 1 // Floating point option
#define ACI_PO_STRING 2 // String option
#define ACI_PO_CHECKBOXES 3 // 32-bit array of bits
#define ACI_PO_LIST 4 // List (radiobuttons)
#define ACI_PO_BITSTREAM 5 // Bit stream - variable size bit array

**// ACI Programming Option Mode constants for ACI_GetProgOption()/ACI_SetProgOption()

#define ACI_PP_MODE_VALUE 0 // Get/set value specified in Value member of the
ACI_ProgOption_Params structure
#define ACI_PP_MODE_DEFAULT_VALUE 1 // Get/set default option value, ignore Value member

2 // Get/set minimal option value, ignore Value member

Programming Automation via DLL 129

© 2010 Phyton, Inc. Microsystems and Development Tools

#define ACI_PP_MODE_MAX_VALUE 3 // Get/set maximal option value, ignore Value
member

Note for use of the ACI_GetProgOption
In order to get the buffer size necessary for storing the Option ACI_PO_STRING make the first call of the
ACI_GetProgOption function with the Value.String= NULL. Then the function will return the VSize equal
to the buffer size, including zero at the string's end. In your program assign the buffer of this size, put the
Value.String into the buffer pointer and call the ACI_GetProgOption again.

See also: ACI_GetProgOption,

6.3.9 ACI_Function_Params

typedef struct tagACI_Function_Params
{
 UINT Size; // (in) Size of structure, in bytes

ChipProg Device Programmers130

© 2010 Phyton, Inc. Microsystems and Development Tools

 LPCSTR FunctionName; // (in) Name of a function to execute. If a function is
under a sub-menu, use '^' to separate menu name from function name, e.g. "Lock
Bits^Bit 0"
 // To execute Auto Programming, set FunctionName
to NULL, empty string or "Auto Programming".
 UINT BufferNumber; // (in) Buffer number to use
 BOOL Silent; // (in) On error, do not display error message box,
just copy error string to ErrorMessage
 CHAR ErrorMessage[512]; // (out) Error message string if ACI_ExecFunction()
fails
} ACI_Function_Params;

FunctionName

The name of the ChipProg function - one of those listed in the window Functions

of the ChipProgUSB Program Manager tab. They are divided in two group (see the
picture below): the main functions applicable to a majority of the target devices (
Blank Check, Erase, Read, Program, Verify) and the device-specific lower level
functions accessible through expandable sub-menus (for example, Program

Device Parameters, Erase Sectors, Lock Bits > Program Lock Bit 1,

EEPROM > Read, etc.). For such device-specific functions the FunctionName
should be specified in the following way: <List name>^<Function name> (for
example, Device Parameterŝ Program).

To launch the AutoProgramming batch set the FunctionName either to NULL,
a blank string, or the "Auto Programming".

There is no restrictions in use of uppercase and lowercase characters in the
function names.

BufferNumber The ordinal number of the buffer the function operates with.

Silent
If this parameter is TRUE, then the error message dialog will be suppressed, the
function execution will be terminated returning the ACI_ERR_FUNCTION_FAILED

code, and the error message will be copied to the ErrorMessage.

ErrorMessage The destination of the error message that will be issued if the function fails.

Programming Automation via DLL 131

© 2010 Phyton, Inc. Microsystems and Development Tools

See also: ACI_ExecFunction, ACI_GetStatus

6.3.10 ACI_PStatus_Params

typedef struct tagACI_PStatus_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT SiteNumber; // (in) For the Gang mode: site number to get status of, oth
 BOOL Executing; // (out) The function started by ACI_StartFunction() is
executing
 UINT PercentComplete; // (out) Percentage of the function completion, valid id
Executing != FALSE
 UINT DeviceStatus; // (out) Device/socket status, see the ACI_DS_XXX
constants
 BOOL NewDevice; // (out) New device inserted, no function has been
executed yet. Valid if DeviceAutoDetect is ON.
 BOOL FunctionFailed; // (out) TRUE if last function failed
 CHAR FunctionName[128]; // (out) Name of a function being executed if
Executing != FALSE. If a function is under a sub-menu, function name will be like
this: "Lock Bits^Bit 0"
 CHAR ErrorMessage[512]; // (out) Error message string if FunctionFailed != FALSE
} ACI_PStatus_Params;

SiteNumber

If the ChipProgUSB was launched an the Gang mode (with the command line key /
gang) and controls either the gang programmer or a cluster of single programming
machines then before starting the ACI_GetStatus function the SiteNumber

parameter must contain an ordinal number of the programming site (socket) for
which the status is inquired. The site numbers begin from #0.

Executing This parameter is TRUE while the ChipProg operation, launched by the

ChipProg Device Programmers132

© 2010 Phyton, Inc. Microsystems and Development Tools

ACI_StartFunction

PercentCompl
ete

While the Executing == TRUE this parameter represents a percentage of the
function completion - from 0 to 100.

DeviceStatus

This structure member defines insertion of the device into the programmer ZIF
socket if the device insertion auto detection function is enabled. See the description
of the ACI_DS_XXX* constants in the aciprog.h

Status Description

ACI_DS_OK The device is in the socket and the device's leads are reliably gripped

by the programmer ZIF socket's sprung contacts.

ACI_DS_OUT_OF_SOCKE

T

There is no device in the programmer's ZIF socket.

ACI_DS_SHIFTED The device's leads are reliably inserted into the socket but the device

is incorrectly positioned in the socket (shifted or inserted upside

dow n). The same status may indicate that the device type selected in

the Select Device does not correspond to the type of the chip in the

programmer's socket.

ACI_DS_BAD_CONTACT The device's leads are not reliably gripped by the socket's sprung

contacts. In most cases this is an intermediate situation w hile an

operator is inserting the chip to the socket or is removing it.

ACI_DS_UNKNOWN It is impossible to detect the status due to the device insertion auto

detection feature is disabled or this feature is not supported by this

programmer at all.

NewDevice

This structure member is a flag that acknowledges replacing a programmed device
in the programmer's socket by a new, presumably a blank device. It works only
when the device insertion auto detection function is enabled. The NewDevice ==
FALSE while the already programmed chip is still into the socket and has not been
replaced by a new one. After removing the programmed device from the socket the
NewDevice toggles to TRUE.

FunctionFail
ed

This is an indicator of the function execution's result. It sets to FALSE when the
ACI_StartFunction launches a programming operation and remains the FALSE
while the operation is in progress. If the programming operation fails and the
parameter Executing becomes FALSE the FunctionFailed flag toggles to TRUE.

FunctionName This is either the name of the programming operation (function) being currently
executed or the name of the failed function, if the FunctionFalied == TRUE.

ErrorMessage The destination of the error message if the function fails, i.e. the FunctionFalied

== TRUE.

This is the bit definition from the aciprog.h header file:

*// ACI Device Status

0 // Device detected, pin contacts are ok
#define ACI_DS_OUT_OF_SOCKET 1 // No device in the socket
#define ACI_DS_SHIFTED 2 // Wrong device insertion is detected (shifted or inserted
upside down)
#define ACI_DS_BAD_CONTACT 3 // Bad pin contact(s)
#define ACI_DS_UNKNOWN 4 // Unknown (Auto Detect is probably off)

Programming Automation via DLL 133

© 2010 Phyton, Inc. Microsystems and Development Tools

See also: ACI_ExecFunction, ACI_StartFunction, ACI_GetStatus

6.3.11 ACI_File_Params

typedef struct tagACI_File_Params
{
 UINT Size; // (in) Size of structure, in bytes
 LPCSTR FileName; // (in) File name
 UINT BufferNumber; // (in) Buffer number
 UINT LayerNumber; // (in) Layer number
 UINT Format; // (in) File format: see ACI_PLF_... and ACI_PSF_xxx
constants
 DWORD StartAddressLow; // (in) Low 32 bits of start address for ACI_FileSave
().
 // For ACI_FileLoad(): Ignored if Format !=
ACI_PLF_BINARY
 DWORD StartAddressHigh; // (in) High 32 bits of start address for ACI_FileSave
().
 // For ACI_FileLoad(): Ignored if Format !=
ACI_PLF_BINARY
 DWORD EndAddressLow; // (in) ACI_FileSave(): Low 32 bits of end address
 DWORD EndAddressHigh; // (in) ACI_FileSave(): High 32 bits of end address
 DWORD OffsetLow; // (in) Low 32 bits of address offset for ACI_FileLoad
()
 DWORD OffsetHigh; // (in) High 32 bits of address offset for ACI_FileLoad
()
} ACI_File_Params;

FileName The name of the file to be loaded to the ChipProg buffer.

BufferNumber The ordinal number of the destination buffer. Buffer numbers begins from zero.

LayerNumber
The ordinal number of the memory layer in the buffer. Layer numbers begins
from zero.

Format
The loadable file's format. See the description of the ACI_PLF_XXX*
constants in the aciprog.h header file (see below).

StartAddressLow,
StartAddressHigh

1) Being used with the ACI_FileSave function this parameter specifies the first
(start) address in the source memory layer, from which the file will be saved.
2) Being used with the ACI_FileLoad function, but only when it loads a file in
the binary format (Format == ACI_PLF_BINARY), this parameter specifies
the first (start) address of the destination memory layer, in which the file will
be load into. Binary images do not carry any addresses for the file loading.

EndAddressLow,
EndAddressHigh

Being used with the ACI_FileSave

OffsetLow,
OffsetHigh

The address offset that shifts the file position in the destination memory layer.
The offset can be negative as well as positive.

ChipProg Device Programmers134

© 2010 Phyton, Inc. Microsystems and Development Tools

This is the bit definition from the aciprog.h header file:

*// ACI File formats for ACI_FileLoad()

#define ACI_PLF_INTEL_HEX 0 // Standard/Extended Intel HEX
#define ACI_PLF_BINARY 1 // Binary image
#define ACI_PLF_MOTOROLA_S 2 // Motorola S-record
#define ACI_PLF_POF 3 // POF
#define ACI_PLF_JEDEC 4 // JEDEC
#define ACI_PLF_PRG 5 // PRG
#define ACI_PLF_OTP 6 // Holtek OTP
#define ACI_PLF_SAV 7 // Angstrem SAV
#define ACI_PLF_ASCII_HEX 8 // ASCII Hex
#define ACI_PLF_ASCII_OCTAL

See also: ACI_FileLoad, ACI_FileSave.

6.3.12 ACI_GangStart_Params

typedef struct tagACI_GangStart_Params
{
 UINT Size; // (in) Size of structure, in bytes
 UINT SiteNumber; // (in) Site number to start auto programming at
 UINT BufferNumber; // (in) Buffer number to use
 BOOL Silent; // (in) On error, do not display error message box. Use
} ACI_GangStart_Params;

SiteNumber

The number of the device programmer socket in the gang programmer or in a
programming cluster comprised of multiple ChipProg programmers for which
the ACI_GangStart function is launched. The site (socket) numbers begin
from #0.

BufferNumber
The ordinal number of the memory buffer, content of which is required by the
ACI_GangStart function. Numbers of ChipProg memory buffers begin from #0.

Silent
If this parameter is TRUE, then the error message dialog will be suppressed,
the function execution will be terminated returning the
ACI_ERR_FUNCTION_FAILED code. Use the ACI_GetStatus

See also: ACI_GangStart, ACI_GetStatus

6.4 Examples of use

The ChipProgUSB software includes a few examples of use the Application Control Interface

functions and structures. The examples reside in the subdirectory ACI\Programmer ACI Examples in
the directory where the ChipProg program is installed.

The examples are written in the C language and are represent the projects that can be compiled by the

Programming Automation via DLL 135

© 2010 Phyton, Inc. Microsystems and Development Tools

Microsoft Visual Studio® 2008. The project sources can be also compiled by other C/C++ compilers,
sometimes with minor adjustments. After building the project you get the Windows consol application
executable file.

In order to adjust the example project (or a part of it) for use in your application you have to set correct
paths to the ACI functions called by the main() function. This includes paths to the ChipProg executable
file, to the file that is supposed to be loaded to the programmer's memory buffer or to be saved from the
buffer. You also have to specify your target device. See an example of the main() function's fragment
below.

/*+ main ° 01.07.09 17:37:24*/

......

 // Launch the programmer executable

 if (!Attach("C:\\Program Files\\ChipProgUSB\\4_72_00\\UPrognt2.exe", "", FALSE)) return -1;

 // Select device to operate on

 if (!SetDevice("Microchip", "PIC18F242")) return -1;

 // Load .hex file to buffer 0, layer 0

 if (!LoadHexFile("C:\\Program\\test.hex", 0, 0)) return -1;

All examples uses the ACI.DLL file that must be either in the same folder where the example executable
file resides or in the folder specified in the variable PATH. In the supplied examples the ACI.DLL file is
already copied into the folders where the MS Visual Studio creates executable files.

Example Descriptions

Each example has a comment header briefly describing the program purposedo. Additionally, some
comments are inserted in the code texts. All examples begin from executing the ACI_Launch() function
that activate the programmer.

AutoProgramming.c

This is the simplest and frequently used example of the ChipProg external control. The program
launches the programmer, selects the PIC18F242 target device, loads the test.hex file into the
programmer buffer, sets default programming options and then executes a preset AutoProgramming
batch of functions: Erase, Blank Check, Program, Verify.

LongProgramming.c

This example shows how to monitor a process of the AutoProgramming procedure if it may last quite a
long time. The program acts as the the example above. The programming launches by the
ACI_StartFunction then it keeps checking percentage of the operation completion by means of the
ACI_GetStatus function. If the operation fails the programmer issues an error message, otherwise it
allows continuing operations.

ProgrammingOptions.c

This example shows how to get, print out and change options settable in the Device and Algorithm

ChipProg Device Programmers136

© 2010 Phyton, Inc. Microsystems and Development Tools

Parameters Editor window. First, the program checks the device insertion into the programmer's socket
by calling the ACI_GetStatus(&Status) function. Then, after detecting correct and reliable insertion of the
device into the programmer's socket, the program reads the current set of options by the
ACI_GetProgOption function and print them out. Then it changes the Vpp value from the default to 10.5V
and disables the device Brown-out Reset feature.

SaveMemory.c

This example shows how to save a binary image of the device in a file. First, the program checks the
device insertion into the programmer's socket by calling the ACI_GetStatus(&Status) function. Then,
after detecting correct and reliable insertion of the device into the programmer's socket, the program
reads data from a specified range of the SST89V564RD device's memory and saves them in the file test.
bin.

Checksum.c

This example shows how to calculate a checksum of the data read out from a device. First, the program
checks the device insertion into the programmer's socket by calling the ACI_GetStatus(&Status)
function. After detecting correct and reliable insertion of the device into the programmer's socket the
program figures out a real size of the SST89V564RD device's flash memory by executing the
ACI_ExecFunction function then it assigns the buffer 'buf' in the host computer's memory in order to
accommodate the data read out from the device, moves the data to this buffer and calculates the
checksum of the buffer's content.

Script Files 137

© 2010 Phyton, Inc. Microsystems and Development Tools

7 Script Files

The program ChipProgUSB can execute so-called script files in a way similar to how DOS executes
the batch files. Use of script files is to automate usage of the ChipProgConsole window or other
special windows generated by the script itself, including displaying graphical data in special windows;
to create user's custom menus, etc. The script language is similar to C program language; almost all
C constructions are supported, except for structures, conjunctives and pointers. There are also many
built-in functions available, such as printf(), sin() and strcpy(). The extension of script source file is .
CMD.

When the ChipProgUSB program starts, it searches for the script with the reserved name START.CMD. So, if
you wish the ChipProgUSB program would automatically perform some operations immediately after you
launch the program, you can create a special script. The ChipProgUSB program begins searching for the
START.CMD in the current directory on the disc, then it searches for this script in the directory where the
ChipProgUSB.exe file resides. If the START.CMD is not located then a default ChipProg shell will open.

The scrips controls and associated dialogs and windows are concentrated under the Script menu.
The major dialog that controls scripts is the .

See also:

Simple example of a script file

How to write a script file

How to start a script file

How to debug a script file

Description of Script Language

Script Language Built-in Functions

Script Language Built-in Variables

Difference Between the Script Language and the C Language

Alphabetical List of Script Language Built-in Functions and Variables

7.1 The Script Files Dialog

This dialog is used for controlling the , it allows to start, stop and debug scripts.

ChipProg Device Programmers138

© 2010 Phyton, Inc. Microsystems and Development Tools

In the upper window of this dialog you see the list of loaded script files with the current state of each file.
Any script can be in one of the following states:

State of File Description

Stopped Execution of the script file is temporarily stopped.

Running The script file is being executed.

Waiting The script is waiting for an event. This state is initiated by calling certain
wait functions in the script file text (for example, Wait).

Cancelled The script execution is terminated, but the script file is not yet unloaded
from the memory.

To select a script file, highlight its name in the window. The four buttons on the right of the list control the
highlighted script:

Button Description

Terminate Unloads the selected script file if it can be unloaded. Otherwise, it sets up
the flag for the selected script that then goes to the Canceled state.

Terminate All Unloads all script files visible in the window.

Restart Restarts a highlighted script file.

Script Files 139

© 2010 Phyton, Inc. Microsystems and Development Tools

Debug Switches to the Debugger mode for the highlighted script file. This
command stops execution of the script and opens it in the source
window of the script for debugging. If the script is in the wait state, then
execution will immediately stop after the script returns from the Waiting

status.

When you use several script files simultaneously and unload or restart some of them, remember that
script files can share global data and functions. If one script accesses data or the functions belonging to
another one that is already unloaded, then the script interpreter will issue error messages and the active
script file will be also be unloaded (terminated).

Element of dialog Description

Script File Name Specifies a name of the script file to be loaded. You can either typed in the
file name with a full path to the box or to take it from the drop-down history
list or browse it from a computer disc.

Browse Opens the Load/Execute Script File dialog for locating and loading script
files into the Script File Name box.

Defines Defines the processor text variables for compilation. For more information,
see below the Processor text variables.

#include-file

Directories

Specifies the directories in which the script file will search for the files
specified in the #include <file_name> directive(s). To specify more than
one directory, separate them by semicolons. The current directory is
scanned as well.

Debug (open Script

Source window)

If this box is unchecked, a script file automatically starts execution upon the
file loading. If the box is checked, then upon loading a script file, the
program immediately opens the window for debugging the script. See also
How to Debug a Script File.

If this box is checked when you click the ChipProgUSB automatically saves
the source texts of all script files visible in the Script Source windows.

Start Starts the script file specified in the Script File Name box.

Processor text variables

The content of the text box is equivalent to the #define directive in the C language. For example, if you
type DEBUG in this text box, the result will be as if the #define DEBUG directive is placed in the first line of
the script source text.

You can specify values for variables. For example, DEBUG=3 is equivalent to #define DEBUG 3.

You can list several variables in a line and separate them with semicolons. For example:

DEBUG;Passes=3;Abort=No

Also, see Predefined Symbols at the Script File Compilation.

7.2 How to create and edit script files

A script file is similar to a source program text written in programming language (C, for example), e.g. a
script file can be created and edited either in the Editor window by the ChipProgUSB built-in editor or by
any other editor. You can allocate script files in your work directory or in the directory where the

ChipProg Device Programmers140

© 2010 Phyton, Inc. Microsystems and Development Tools

ChipProgUSB program is installed.

Normally the Editor toolbar that collects all the edit function buttons is hidden. To create a customized
editor toolbar right click on the blank area of the main toolbar, select the Customize line in the drop-down
menu and check the boxes of the editor functions which you would like to make visible.

To open a new script file for editing open the Script menu > Editor window > New. This will open a blank
window below. Right clicking within the window pops up the Editor command menu that includes the
buttons which you can bring up to the local Editor toolbar. Here the toolbar is shown above the window.

Now you can compose your script right in the window.

Note that you should not use the punctuation characters (braces, dash, etc.) in the script file name.

When you complete the file composing click on the Save button on the window local toolbar or on the
Editor toolbar and the program will prompt you to name the script file and to specify its location.

7.2.1 The Editor Window

Commands of this menu refer to the currently active Edit window.

Button Command Description

Script Files 141

© 2010 Phyton, Inc. Microsystems and Development Tools

New Opens the Editor window for a new script file.

Open... Opens the Open file dialog to load a script file for editing. The file
name and path can be either entered or browsed here.

Save Saves the file from the currently active window to a disc.

Opens the Save file as... dialog.

Print Opens the standard Print dialog for the default printer. You can
print an entire file or a selected text block.

Properties.. The common properties for open files.

7.2.2 Text Edit

Commands of this menu refer to the currently active Edit window.

Button Command Description

Undo Undoes the last text editing action executed in this window. For
example, if the last action deleted a line, then the deleted line will be
restored. The number of steps provided by the Undo function is set
in the of the Configure > Editor Options > General tab.

Copy Copies the marked block to the clipboard. The text format in the
clipboard is standard and the copied block is accessible to other
programs.

Cut Removes the marked block to the clipboard..

Paste Copies the block from the clipboard, starting at the cursor position.

Clipboard History/

Repository

Opens the Clipboard History/Repository dialog.

Append to

Clipboard

Cut & Append to

Clipboard

Cuts the marked block of text and appends it to the block in the
clipboard.

Fast Copy Copies a block to a specified position in the same window.

Fast Move Moves a block from one position in the window to another position
in this window.

Block Off Unmarks a marked text block.

Search Opens the Search for Text dialog.

Next Search Repeats search with the parameters used in the previous search.

ChipProg Device Programmers142

© 2010 Phyton, Inc. Microsystems and Development Tools

Replace Opens the Replace Text dialog.

Display Multi-file

Search Results

Re-opens the last multi–file search results in the Multi-File Search

Results dialog.

Display from line

number...

Opens the Display from Line Number dialog for you to specify a line
number. Source text will be displayed from this line.

Set bookmark... Opens the Set Bookmark dialog

Retrieve bookmark Opens the Retrieve Bookmark dialog to retrieve a local bookmark.

Condensed mode Toggles the Condensed display mode on and off.

Condensed mode

setup

Opens the Condensed Mode Setup

Line numbers on/off Toggles the availability of the line numbers on and off.

Return to last
editing context

 Activates the most recently edited Source window, and places the
cursor in its final position during the edit.

7.2.2.1 The Search for Text Dialog

This dialog sets complex criteria and parameters for searching text in files. This dialog and the Replace

Text dialog have a number of common parameters, which function in the same way in both dialogs. To
specify file names, you can use one or several wildcards. Also, the names may contain paths. You can
search in more than one file at once by using parameters of the Multi-File Search area.

Description

String to Search for Specifies the text string to search for.

Case Sensitive This box is unchecked by default. Checking this box specifies that the case of
the string is to be matched.

Whole Words Only This box is unchecked by default. If checked, the editor will search only for
whole words: the string will be found only if it is enclosed between
punctuation or separation characters (spaces, tabulation symbols, commas,
quotation marks, etc.).

Regular Expressions This box is unchecked by default. Checking of this box specifies that the
search string is a regular expression.

Global Search the entire file for the string. Enabled by default.

Selected Text Search the string in the selected block.

From Cursor Search from the current cursor position.

Entire Scope Search from the beginning or end of the file (depending on the search
direction). Enabled by default.

Perform Multi-File

Search

If this box is checked the editor will search in all project files (see the notes
below). If the box is unchecked, then the search will be performed in the
current window only.

Search All Source If this box is checked the editor will search in all the source files included in

Script Files 143

© 2010 Phyton, Inc. Microsystems and Development Tools

Files in Project the project.

Include Dependency

Files

If this box is checked the editor will search in all the source files included in
the project and all files on which the source files depend, whether explicitly or
implicitly. For C language, these are the header files (*.h).

Search Wildcard(s) Check this box to search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *.txt;*.c;c:\prog*.h.
This option and the Search All Source Files in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search

Subdirectories

If this box is checked the editor will search in subdirectories of all the
directories specified by the Search All Source Files in Project option and by
wildcards.

Starting Path Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as
the following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*.txt;*.doc) and common path
(c:\prog\text\source).

Notes

1. When you search in the file opened in the Source

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search

Results dialog remains open.

7.2.2.2 The Replace Text Dialog

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam velit risus, placerat et, rutrum nec,
condimentum at, leo. Aliquam in augue a magna semper pellentesque. Suspendisse augue. Nullam est
nibh, molestie eget, tempor ut, consectetuer ac, pede. Vestibulum sodales hendrerit augue.
Suspendisse id mi. Aenean leo diam, sollicitudin adipiscing, posuere quis, venenatis sed, metus. Integer
et nunc. Sed viverra dolor quis justo. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
elementum. Nullam a arcu. Vivamus sagittis imperdiet odio. Nam nonummy. Phasellus ullamcorper velit
vehicula lorem. Aliquam eu ligula. Maecenas rhoncus. In elementum eros at elit. Quisque leo dolor,
rutrum sit amet, fringilla in, tincidunt et, nisi.

Donec ut eros faucibus lorem lobortis sodales. Nam vitae lectus id lectus tincidunt ornare. Aliquam
sodales suscipit velit. Nullam leo erat, iaculis vehicula, dignissim vel, rhoncus id, velit. Nulla facilisi.
Fusce tortor lorem, mollis sed, scelerisque eget, faucibus sed, dui. Quisque eu nisi. Etiam sed erat id
lorem placerat feugiat. Pellentesque vitae orci at odio porta pretium. Cras quis tellus eu pede auctor
iaculis. Donec suscipit venenatis mi.

Aliquam erat volutpat. Sed congue feugiat tellus. Praesent ac nunc non nisi eleifend cursus. Sed nisi
massa, mattis eu, elementum ac, luctus a, lacus. Nunc luctus malesuada ipsum. Morbi aliquam, massa
eget gravida fermentum, eros nisi volutpat neque, nec placerat nisi nunc non mi. Quisque tincidunt quam
nec nibh sagittis eleifend. Duis malesuada dignissim ante. Aliquam erat volutpat. Proin risus lectus,
pharetra vel, mollis sit amet, suscipit ac, sapien. Fusce egestas. Curabitur ut tortor id massa egestas
ullamcorper. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec fermentum. Curabitur ut ligula ac ante scelerisque consectetuer. Nullam at turpis quis nisl
eleifend aliquam. Sed odio sapien, semper eget, rutrum a, tempor in, nibh.

ChipProg Device Programmers144

© 2010 Phyton, Inc. Microsystems and Development Tools

7.2.2.3 The Confirm Replace Dialog

This dialog requires your permission to replace a found string. You can turn the prompt on/off by checking/
clearing the Prompt at Replace box in the dialog.

Button Function

Yes Replace the found string.

No Cancel this replacement. If the procedure is started with the Change All

button for all occurrences in the search area, then the search-and-
replace process will continue.

Non-Stop From this moment, replace all found strings in this file without prompt.

Cancel Cancel the search-and-replace process.

Stop search in this file and switch to the next one.

Replace in All Files Replace all occurrences in all other files without confirmation.

Move cursor to the

Yes/No Buttons

When this box is checked the cursor will be automatically placed on the
Yes button on each inquiry for confirmation.

7.2.2.4 The Multi-File Search Results Dialog

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam velit risus, placerat et, rutrum nec,
condimentum at, leo. Aliquam in augue a magna semper pellentesque. Suspendisse augue. Nullam est
nibh, molestie eget, tempor ut, consectetuer ac, pede. Vestibulum sodales hendrerit augue.
Suspendisse id mi. Aenean leo diam, sollicitudin adipiscing, posuere quis, venenatis sed, metus. Integer
et nunc. Sed viverra dolor quis justo. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
elementum. Nullam a arcu. Vivamus sagittis imperdiet odio. Nam nonummy. Phasellus ullamcorper velit
vehicula lorem. Aliquam eu ligula. Maecenas rhoncus. In elementum eros at elit. Quisque leo dolor,
rutrum sit amet, fringilla in, tincidunt et, nisi.

Donec ut eros faucibus lorem lobortis sodales. Nam vitae lectus id lectus tincidunt ornare. Aliquam
sodales suscipit velit. Nullam leo erat, iaculis vehicula, dignissim vel, rhoncus id, velit. Nulla facilisi.
Fusce tortor lorem, mollis sed, scelerisque eget, faucibus sed, dui. Quisque eu nisi. Etiam sed erat id
lorem placerat feugiat. Pellentesque vitae orci at odio porta pretium. Cras quis tellus eu pede auctor
iaculis. Donec suscipit venenatis mi.

Aliquam erat volutpat. Sed congue feugiat tellus. Praesent ac nunc non nisi eleifend cursus. Sed nisi
massa, mattis eu, elementum ac, luctus a, lacus. Nunc luctus malesuada ipsum. Morbi aliquam, massa
eget gravida fermentum, eros nisi volutpat neque, nec placerat nisi nunc non mi. Quisque tincidunt quam
nec nibh sagittis eleifend. Duis malesuada dignissim ante. Aliquam erat volutpat. Proin risus lectus,
pharetra vel, mollis sit amet, suscipit ac, sapien. Fusce egestas. Curabitur ut tortor id massa egestas
ullamcorper. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Donec fermentum. Curabitur ut ligula ac ante scelerisque consectetuer. Nullam at turpis quis nisl
eleifend aliquam. Sed odio sapien, semper eget, rutrum a, tempor in, nibh.

7.2.2.5 Search for Regular Expressions

The text editor supports "regular expressions," which can be used to search for special cases of text
strings. Regular expressions contain the control characters in the search argument string:

? Means any one character in this place. Example: if you specify ?ell as the search string,
then "bell," "tell," "cell," etc. will be found.

% Means the beginning of line. The characters following '%' must begin from column 1.

Script Files 145

© 2010 Phyton, Inc. Microsystems and Development Tools

Example: - find the word "Counter," which begins at the first column.

$ The end of line. The characters preceding the '$' should be at the last positions of the
line. Example: Counter$ - find the word "Counter" at the line end.

@ Match the next character literally; '@' lets you specify the control characters as usual
letters. Example: @? - search for the question mark character.

\xNN\xA7 - find the character with the hexadecimal code of A7.

+ Indefinite number of repetitions of the previous character. For example, if you specify
1T+2, then the editor will find the lines containing "1" followed by "2", which are separated
with any number of repetitions of the letter T.

[c1-c2] Match any character in the interval from c1 to c2. Example: [A-Z]

[~c1-c2] Match any character whose value is outside the interval from c1 to c2. Example: [~A-Z]
means any character except for the uppercase letters.

text1|text2 The "|" character is the logical "OR" and the editor will look for either text1 or text2.
Example: LPT|COM|CON means search for "LPT" or "COM" or "CON."

7.2.2.6 The Set/Retrieve Bookmark Dialogs

Bookmarks help you to return to a marked cursor position in a source file.

You can set and retrieve up to 10 local bookmarks. Every local bookmark has an individual numbered
button assigned to it.

To open the Set Bookmark dialog, press . To open the dialog, press Alt+]. To set/retrieve a bookmark,
press its numbered button. The number of the bookmarked line, the bookmark position in the line (in
brackets) and the text of the line are shown at the right of the button.

Local bookmarks are stored in the configuration file and you can work with them in the next session.

7.2.2.7 Condensed Mode

In the Condensed mode, only lines that satisfy a specified criterion are displayed in the window. There are
two available criteria:

the line must contain a given sub-string;
the first non-space character in a line must be at a specified position (column).

Examples: (a) with the sub-string criterion and the sub-string set to "counter," only the lines containing the
word "counter" will be displayed; (b) with the second criterion and the position set to four, only the lines in
which text begins at column 4 will be displayed.

The Condensed mode brings the lines having some common feature to "one place." If you attentively follow
a rule to begin the declaration of data at position 2, procedures at position 3, and interrupt handlers at
position 4, then the Condensed mode will help you to find a necessary declaration. If you comment certain
lines with the same or similar comments and use the Condensed mode with sub-string, you will be able to
benefit from your composing style. In the Condensed mode, you can move the cursor just as in the normal
mode.

How to control

The criterion for display is set in the Main menu > Script > Text Edit > Condensed Mode Setup dialog. To
toggle the Condensed mode on/off, use the Edit menu command, the Condensed Mode command of the
local menu or the F12 hotkey. To exit the Condensed mode, press Esc. When you exit, the cursor returns to
the position at which it was before the mode was turned on. To exit the mode and remain in the line from
which you moved the cursor while in the mode, press Enter or begin editing the line.

ChipProg Device Programmers146

© 2010 Phyton, Inc. Microsystems and Development Tools

7.2.2.8 The Condensed Mode Setup Dialog

This dialog sets up the parameters for the Condensed mode of the Source window.

The Display Lines of Text area has radio buttons for switching between two alternative criteria for
condensing text in the Source window: Containing String and Where First Non-blank Column Is:

1. If you check the Containing String radio button the Source window will display only the lines with text that
match the sub-string specified in the text box at the right. Additionally, you can specify that the case should
be matched the case, that whole words only should be used, and that the sub-string is a regular
expression.

2. If you check the Where First Non-blank Column Is radio button, the Source window will display the lines
where text begins from the position specified in the Column box. Then you should select one of four
options by checking an appropriate radio button:

 - the first non-space character should be exactly in the specified column. For example, if you specify
position number 2, the window will display only the lines whose text begins in column 2.
Not Equal to - the first non-space character should be in any column except the position specified here.
For example, if you specify position number 2, the window will not display all the lines beginning in this
column. All other lines will be displayed.
Less than - display only the lines in which text begins at a position less than the specified one.
Greater than - display only the lines in which text begins at a position greater than the specified one.

When you have completed setup click OK to switch the Source window to the Condensed mode.

7.2.2.9 Automatic Word Completion

It is normal for words (labels, names of variables) to be repeated within a limited part of a file. In such
cases, the Source window helps you finish typing the whole word.

If the cursor is at the end of line that is being composed, then upon typing a letter, the editor scans the
text above and below the current line. If a word beginning with the letters that you have just typed is found
in these lines, then the editor will "complete" this word for you by writing the remaining part of the word
from the current cursor position. If this word suits you, press Alt+Right (Alt+<right arrow>) and the editor
will append the remaining part of the word to the text as if you have typed it yourself. If the word doesn’t
suit you, just continue typing and the editor will accept whatever you type. At any point during the typing,
you may press Alt+Right

You can press Alt+Right at any time and not only when the editor offers you to complete a word. In this
case, the editor will open a list of words that begin with the typed letters. If the list does not include an
applicable word, just ignore the prompt. The right pane of the Source window, if it is open, also displays
the word completion list.

How to control

To disable automatic word completion, uncheck the Automatic Word Completion box in the Main menu

> Configure>Editor Options> General tab. When the box is checked, a number placed in the Scan

Range

7.2.2.10 Syntax Highlighting

When the Source window displays the source text, it marks different C language constructions with
different colors. This feature improves readability. The following constructions are highlighted separately:

Punctuation and special characters: () [] { } . , : ; and so on.
Comments that begin with // are highlighted. Comments enclosed in the /* */ character pairs are
highlighted, if the opening and closing pairs are placed in the same line.
Strings enclosed in double or single quotation marks.
Keywords of the C language (for, while, and so on).

Script Files 147

© 2010 Phyton, Inc. Microsystems and Development Tools

Type names of the C language (char, float

Library function names of the C language (printf, strcpy, and so on).

How to control

Main menu > Configure>Editor Options> General tab>Syntax Highlighting flag In addition, you can
change the color for each construction. To do the latter, use any of the following items: Main menu >

Configure> Environment > Colors tab.

7.2.2.11 The Display from Line Number Dialog

Use this dialog to display the source file in the active Source window starting with a specified line. Enter
the line number or select any previous number from the History list. The number of the first line is 1.

7.2.2.12 The Quick Watch Function

The Quick Watch function works as follows: if you roll the mouse pointer over a variable name in the
Source window or the Script Sourcewindow, a small box containing the value of the variable will be
opened. This box disappears upon moving the mouse off the object.

7.2.2.13 Block Operations

Block operations apply an editing action to more than one character at once. The Source window
supports persistent blocks and performs a full range of operations with standard (stream), vertical
(column) and line blocks of text.

Non-persistent blocks In this mode, once a block is marked, you have to immediately carry out an
operation with it (delete, copy, etc.), because any movement of cursor takes the marking off the block. If a
block is marked, then any entered text will replace the block with the typed text.

Persistent blocks In this mode, the block remains marked until the marking is explicitly removed (hot
key Shift+F3Ctrl+X). The Paste operation for persistent blocks has specifics. Two additional block
operations are available for persistent blocks: fast copy and fast move. These operations do not use the
clipboard and require fewer manipulations of the keyboard.

To enable the persistent block mode check the namesake box on the Main menu > Configure>Editor

Options> General tab.

Standard blocks The standard (stream) block contains a "text stream" that begins from the initial line
and column of the block and ends at the final line and column.

The Standard blocks is enabled by default.

Line blocks The line block contains whole lines of text. To mark a line block, put the cursor anywhere in
the first line and press Alt+Z; then put the cursor anywhere in the last line of the block and press Alt+Z

once more (the latter is not necessary if the block is to be immediately deleted or copied to the clipboard).

Line blocks are always available.

Vertical blocks The vertical block contains a rectangular text fragment. Characters within the block,
which goes beyond the end of the line, are considered to be spaces. Vertical blocks are convenient in
cases like the following example of source text:

ChipProg Device Programmers148

© 2010 Phyton, Inc. Microsystems and Development Tools

char Timer0 far ;

char Timer1 far ;

char Int0 far ;

char Int1 far ;

Assume the word "far" is to be moved to the place right after the word "char" in each line. The stream
blocks are of little help here. However the task can be easily done with one vertical block. Mark the
persistent vertical block containing the word "far" in each line, place the cursor on the first letter of word
"Timer0" and press Shift+F2

Checking/Clearing the Vertical Blocks box toggles between the vertical block and the stream block
modes in the the Main menu > Configure>Editor Options> General tab. The standard blocks are
enabled by default; i.e. the Vertical Blocks box in the Editor Options dialog is unchecked by default. The
line blocks are always accessible, irrespective of the status of the Vertical Blocks box.

To mark a block, either move the mouse while pressing its left button or use the arrow keys of the
keyboard while pressing the Shift key. To unmark the block, press Shift+F3.

Copying / moving blocks

A marked block can be copied or moved within the same Source window in two ways: directly (fast
copying, fast moving) and through the clipboard (Copy/Cut-n-Paste). Copying and moving blocks
between the windows, or to another application should always be made through the clipboard.

Note. The result of copying the stream or vertical non-persistent block depends on the INSERT mode. If
the mode is enabled, then the block is inserted into the text, starting at the cursor position; otherwise the
copied block overwrites the text on an area of equivalent size.

Fast copying (moving) the blocks in the same window directly (without the clipboard) is convenient
because it requires pressing of keys only once per operation. Mark a persistent block, then place the
cursor at the destination position and press Shift+F1 to copy, or Shift+F2 to move.

7.3 How to start and debug script files

Starting scripts

Scripts can be started and restarted in several ways. The easiest one uses the commands of the Script

Files dialog:

to start a new script enter the file name into Start new script file box and click the Start button in the
bottom part of the dialog box;

to restart a stopped script highlight its name in the dialog window that displays all the loaded scripts
and click the Restart button.

A script can be also started by means of the StartCommandFile() function executed by another running
script.

Debugging scripts

A script can be started for an immediate execution (read above) and can be launched in the Debug mode

Script Files 149

© 2010 Phyton, Inc. Microsystems and Development Tools

that usually is necessary while you master the script and need to check if it properly works and make
necessary corrections in it. To start the script debugging highlight its name in the Script Files dialog window
and click the Debug button - the program opens the window with the script file's editable text. right one is the
AutoWatches pane. If you check the Debug box then every time when you start a script it will automatically
switch to the , stop the script execution and open the window with the script file.

Syntax constructions and the lines, which correspond to the current PC value (blue strip) and the
breakpoints (red strips), are highlighted in the script file text (for more information, see Syntax
Highlighting).

Local menu and toolbar

Command Window Toolbar

Step Step Executes one operator of the script.

Run Run Starts continuous execution of the script in the
window. Then the script execution can be broken
either by hitting a set breakpoint or by the command
Stop

Run to Cursor

Stop Stops the running script.

Origin Origin Displays the source text from the line whose
address corresponds to the script file Program
Counter. This operation is not available when
source text lines do not exist for the program
addresses.

New PC New PC Sets the script file’s Program Counter value to the

ChipProg Device Programmers150

© 2010 Phyton, Inc. Microsystems and Development Tools

address corresponding to the line where the caret is
positioned.

Sets up or clears the breakpoint at the address
corresponding to the line where the caret is
positioned. When you execute the Run or Run to

cursor command the program execution will be
stopped at the breakpoint.

Add to Watches

Window

+Watch Opens the Watches window (if not yet opened) and
places the name at the caret position into it.

Restart Restart Restarts the highlighted script.

Note. To get help on a function or variable, point to the function or variable with the cursor and click. For
more information, see How to Debug a Script File and Script Files.

For customizing the ChipProgUser window and the I/O Stream window.

7.3.1 The AutoWatches Pane

The ChipProgUSB program displays a visible portion of the script in the Script window. The names of
variables, called which belong to the visible script lines, are listed together with their current values in the
right pane of the window. When you scroll through the Script window the contents of the AutoWatches

pane automatically refreshes.

AutoWatches can be presented in the pane in the binary, hexadecimal, decimal or ASCII formats. To set
the format you need to click the Setup button on the pane local toolbar or right click on the pane space to

open the local menu.

7.3.2 The Watches Window

While the AutoWatches pane of the Script window displays values of the script variables visible in the
current window scope you may want to monitor changing other explicitly specified script variables and
expressions. To do so the ChipProgUSB allows opening the Watches windows. For each variable, the
window displays its name, value, type and address, if any.

A newly opened Watches window has one Main tab. You can add custom tabs (with the Display Options

command of the local menu) or rename any existing tabs. The tabs operate independently of each other;
each tab is functionally equivalent to a separate Watches window. However, if needed, you can open
several Watches windows.

Each of the above windows has the +Watch button on its toolbar. Clicking this button opens a dialog for
adding a selected object to the Watches window.

Grids in the Watches window

Script Files 151

© 2010 Phyton, Inc. Microsystems and Development Tools

For better readability the Watches window can be divided in cells by vertical and horizontal grid lines.
Enable the grids to be visible within the Watches window by checking the corresponding boxes in the
Configure menu > Environment > Fonts tab.

Local menu

The window local menu contains the following commands, most of which are duplicated by corresponding
buttons on the window toolbar.

Command Description

Add Watch Adds one or more objects to the window. Opens the Add Watch dialog to
choose an object by name. Also, you can enter an expression as a name.

Delete Watch Watches window.

Delete All Watches Deletes all watches from the window.

Modify Opens the Modify dialog to set a new value for a selected variable.
Alternatively, just enter the new value.

Move Watch Up Moves a selected watch up the list.

Move Watch Down Moves a selected watch down the list.

Display Options Opens the Display Optionsdialog to change the display settings for a
selected object and also to add/delete tabs to/from the window.

7.3.2.1 The Display Watches Options Dialog

Use this dialog to set the display options for the selected variable or in the Watches window.

Element of dialog Description

Watch Expression Contains a selected expression. The drop–down list contains the
previously used expressions.

Display Format Specifies the format for displaying a selected expression (binary,
hexadecimal, decimal or ASCII).

Pop-up Description Contains check boxes that let you choose formats for displaying pop-
up SFR descriptions.

Display Bit Layout If this box is checked the SFR bits will be displayed in the pop-up layout
descriptions.

Display Bit Descriptions Checking this box enables displaying the pop-up descriptions for the
SFR bits, if any.

Auto-size Name Field When this box is checked and when the vertical grid is visible (see note
below), the window automatically adjusts the Name column width to fit

ChipProg Device Programmers152

© 2010 Phyton, Inc. Microsystems and Development Tools

the longest record in the column.

Tabs Lists all the tabs present in the window.

Add Tab Opens the Add New Tab to Watches Window dialog for entering a
new tab’s name. The window adds this new tab upon pressing OK.

Remove Tab Removes the tab selected in the Tabs list.

Edit Tab Name Opens the Edit Watch Window Tab Name dialog for editing the tab
name.

Global Debug/ Display

Options

Opens the Debug Options dialog.

Note. To make grids visible in the Watches window open the Configure menu, the Environment dialog,
the Fonts tab and check corresponding boxes in the Grid field.

7.3.2.2 The Add Watch Dialog

Use this dialog box to add symbol names (for example, a variable name or an expression) to the Watches

window. The dialog contains a list of the symbol names defined in or known to the program.

Element of dialog Description

Name or expression to

watch:

Enter into this box the symbol name or expression to be added. You
can specify several names and expressions either manually
(separated with semicolons) or by selecting in the list with the Ctrl key
pressed.

History The list of previous names and expressions.

7.3.3 The User Window

The User window is a window that can be created by means of the built-in OpenUserWindow function
executed from the script itself. The User windows enable:

drawing graphical objects (indicators, LEDs, buttons, arrows, etc. by means of the built-in graphical
output functions;
displaying texts in the window;
User windows (see WaitWindowEvent).

With this capability, you can organize window operations in the interactive mode. For more information,
see Script Files.

All functions working with windows (including the User window) obtain the window identifier (handle) as
a parameter. Therefore, you can have several windows of this type opened at the same time.

The User windows do not have a local menu. They only have toolbars with 16 buttons (0...F), and each
button can be programmed to perform a certain function. Pressing a button generates the
WE_TOOLBARBUTTON event.

Script Files 153

© 2010 Phyton, Inc. Microsystems and Development Tools

7.3.4 The I/O Stream Window

The I/O Stream window is a window that can be created by means of the built-in OpenUserWindow

The functions, which operate with windows (including the I/O Stream window), receive the window
identifier (handle) as a parameter. Therefore, several windows of this type can be open at the same time.

When the text display function sends text to this window, the window displays the text from the current
cursor position. To begin the next line, this function outputs '\n' (the line feed character).

The window features two text display modes: with the automatic line advance (Wrap) and without it. In the
automatic line feed mode, every text line that does not fit in the window is wrapped to the next line. In the
other mode, if the line does not fit in the window, its end will lie beyond the window border and will be
invisible. The Wrap button in the toolbar toggles the window between these modes. The Clear

Windows of this type do not have a local menu.

8 References

8.1 Command line keys

The ChipProgUSB can be launched from the command line with addition of optional keys (parameters)
that vary the program default configuration and/or automatically executes some function.

The command line mnemonic is: UPROGNT2.EXE /Key1 /Key2 ... , where each '/Key' parameter specifies
a certain function as described in the table below. (more than one key can follow the executable file;
each '/KeyX' parameter should be separated by a space symbol from each other and from the
executable file). The '/KeyX' parameters below are case-insensitive. See the command line example
below.

Keys Description

/S<file> Opens the program with a pre-loaded Session configurationSession

configuration file is loaded instead of the default one. The default session file
UPROG.ses resides in the ChipProgUSB folder.

/D<file> Opens the program with a pre-loaded Desktop configuration file, the name of
which is specified in the <> brackets. This Desktop configuration file is loaded
instead of the default one. The default session file UPROG.dsk resides in the
ChipProgUSB folder.

/O<file> Opens the program with a pre-loaded Option configuration file, the name of
which is specified in the <> brackets. This Option configuration file is loaded
instead of the default one. The default session file resides in the ChipProgUSB
folder.

/C"<device_name>" Opens the program with a pre-selected device type, which is specified in the <>
brackets. If the device_name does not exist in the ChipProg database the
program will immediately open the Select device dialog.

/L<file> Opens the program with a pre-loaded file, the name of which is specified in the
<> brackets. A full path to the file should be specified. If the specified file cannot
be found the program will immediately opens the Load File dialog.

/F<format> This key works together with the '/L<file>' and specifies the format of the file to

ChipProg Device Programmers154

© 2010 Phyton, Inc. Microsystems and Development Tools

be loaded.

/A Opens the program that is configured and ready for AutoProgramming. The
list of the functions preset for AutoProgramming is defined by the loaded
Configuration Files.

/I This key is used when some external application controls the programmer and
the ChipProgUSB window should be invisible. The command line with the '/I'
key starts the ChipProgUSB program but it works in the background.

/I1 This key is similar to the '/I' key with the following addition - the program does
not write error messages to the console buffer.

/I2 This key is similar to the '/I1' key with the following addition - the program
copies error text to the system clipboard.

/ES<script_file> The ChipProgUSB executes a script file, the name of which is specified in the
<> brackets.

/GANG ChipProgUSB program in the multi-programming mode.

/M
 The Demo mode.

Note. The file names above must follow the parameter without a blank space.

Here is an example of the command line that controls the ChipProg:

"C:\Program Files\Chipprogusb\4_57_00\uprognt2.exe" /Lc:\work\program.hex /FH /A /I2.

The command above starts the C:\Program Files\Chipprogusb\4_57_00\uprognt2.exe program in the
hidden mode, loads the file c:\work\program.h in the Intel HEX format, starts AutoProgramming,
completes the application that controls the programmer and if there is an error then copies it to the
computer clipboard.

8.2 Errors Messages

Enter topic text here.

8.2.1 Error Load/ Save File

5005 "Error reading file"

5004 "CRC mismatch, loading terminated"

5003 "Invalid .HEX file format"

5043 "Address out of range"

5078 "End address should be greater than start address"

5151 "Invalid file format"

5007 "Error writing file"

6899 "Cannot load file '%s': buffer #%u does not exist"

References 155

© 2010 Phyton, Inc. Microsystems and Development Tools

6900 "Cannot load file '%s': sub-level #%u does not exist"

7019 "Unable to open project file: '%s'.\n\nAfter start, the programmer attempts to load the most recent project.
This error means that the project file does not exist on disk."

8.2.2 Error Addresses

5189 "Device start address (0x%LX) is too large.\nMax. address is 0x%LX."

5190 "Device end address (0x%LX) is too large.\nMax. address is 0x%LX."

5191 "Buffer start address is too large"

4024 "Address %s is out of range (%s...%s)"

4106 "File format does not allow addresses larger than 0xFFFFFFFF"

6626 "Buffer start address must be even"

6627 "Device start address must be even"

6628 "Buffer end address must be odd"

8002 "Buffer named '%s' already exists. Please choose another name for the buffer."

8.2.3 Error sizes

6372 "Buffer size is too small for selected split data option"

6495 "Requested buffer size (%lu) is too large"

6441 "Size of file is greater than buffer size:\nAddr = %08lX, length = %u"

6431 "Source block does not fit into destination sub-level"

6859 "File size is %u bytes that is less than header size (%u bytes), loading terminated. Probably, you have
specified an invalid file format."

4107 "Cannot allocate %Lu MBytes for the buffer, maximal buffer size is %Lu MBytes"

5192 "Invalid number: '%s'"

.

8.2.4 Error command-line option

5329 "/%s command-line option: Device name required"

5330 "/%s command-line option: Missing file name"

5331 "/%s command-line option: Missing file format tag"

ChipProg Device Programmers156

© 2010 Phyton, Inc. Microsystems and Development Tools

5332 "/%s command-line option: Invalid file format tag"

5333 "Command line: unable to determine the file format"

4104 "Command-line option /I ignored because /A option is not specified"

8.2.5 Error Programming option

6409 "Invalid programming function or menu name:\n'%s'"

6410 "Invalid programming option name '%s'"

6902 "Invalid '%s' programming option value string: '%s'"

6411 "Programming option '%s' cannot be changed"

6412 "Programming option string is too long.\nMax. length is %u."

6854 "Programming option '%s' has type of '%s'. Use '%s()' script function to get the value of this option."

5188 "Value %.2f is out of range of %.2f...%.2f for programming option '%s'"

6561 "Value %ld is out of range of %ld...%ld for programming option '%s'"

4001 "Not all of the saved auto-programming functions were restored. Check the auto-programming functions
list."

8.2.6 Error DLL

6499 "Cannot find bit resource with id 0x%X in DLL:\n'%s'"

6500 "Error handling bit resource with id 0x%X in DLL:\n'%s'"

6502 "Unable to find device '%s' in DLL:\n'%s'"

8.2.7 Error USB

4015 "USB device driver error 0x%04X in '%s'.\n\nCannot recover from this error, exiting.\n\nPlease check if
the programmer power is on. If yes, disconnect the USB cable from computer and connect it again, then restart
the %s shell."

4016 "All sites reported USB device driver error.\n\nCannot recover from this error, exiting.\n\nPlease check if
the programmer(s) power is on. If yes, disconnect the USB cable from computer and connect it again, then
restart the %s shell."

4017 "The following site(s):\n\n%s\n\nreported USB device driver error.\n\nThese site(s) will be removed from
the gang programming process.\n\nPlease check if the programmer(s) power is on. If yes, disconnect the USB
cable from computer and connect it again, then restart the %s shell."

References 157

© 2010 Phyton, Inc. Microsystems and Development Tools

8.2.8 Error programmer hardware

6546 "Source area does not fit into destination address space"

4005 "Attempt to read memory beyond buffer end: Addr = %s, len = %u bytes"

6988 "Unable to establish connection with programmer hardware. Please check if:\n\n"

4006 "Attached programmers have duplicate serial number '%s'"

4010 "This programmer with serial number '%s' has been already assigned the site number = %u"

4011 "This gang programmer with serial number '%s' has been already assigned the site numbers = %u..%
u"

4013 "The programmers attached are of different types and cannot be used for gang mode.\n\nExiting."

4014 "ExecFunction() does not work in Gang mode"

4020 "%s reported hardware error 0x%X, error group 0x%X. If problem persists, please contact Phyton."

4000 "The attached programmer with id = %u is not supported"

4102 "Device programming countdown value is zero%s"

8.2.9 Error internal

4025 "Internal Error: Unable to allocate %u bytes for the buffer. Please contact Phyton."

8.2.10 Error confiquration

6503 "No programmer configuration files found (prog.ini)"

5325 "The device type '%s %s' stored in configuration "
 "or choosen from script file function 'SetDevice()' is not supported by %s.\n"
 "The device '%s %s' will be selected.\n"
 "Use 'Configure / Select device' to choose the device "
 "you need to operate on."

4002 "The '%s' configuration option has been set to an illegal state due to the data read from file. Setting this
option to its default state ('%s')."

8.2.11 Error device

5326 "Device selection error"

ChipProg Device Programmers158

© 2010 Phyton, Inc. Microsystems and Development Tools

8.2.12 Error check box

6852 "Error in check box option specification string: '=' expected"

6853 "Cannot find check box option string '%s'"

8.2.13 Error mix

5195 " Number of repetitions cannot be zero"

5206 "The 'View only' option is on; editing disabled. Click the 'View' button on toolbar to enable editing."

6501 "No power-on tests defined in:\n'%s'"

6903 "'%s' is a sub-menu name, not a function name"

6401 "No more occurences"

6387 "Invalid fill string"

5172 "Checksum = %08lX"

5311 "No more mismatches"

8.2.14 Warning

5339 "Warning: JEDEC file has invalid CRC"

6933 "Warning: no 'file end' record in file"

6845 "Attention! The %s %s device must be inserted into the programmer's socket shifted by %d row(s)
relative to the standard position as shown in the Device Information window."

6846 "Attention! Insert device into socket shifted by %d row(s) as shown on the picture."

8.3 Expressions

Expressions in the program are the mathematical constructions for calculating results with the use of one
or more operands. It supports various operations on expressions. The following operands are used:

numbers
example of expressions

When a number is required, you may use an expression; <%CM%> will accept the value of the expression.
For example, when using the Modify command in the Buffer window, you can enter the new value in the

form of a number or arithmetic expression.

Interpreting the expression result

The expression result is interpreted in accordance with the context in which it is used.

In the dialog box, when an address is required, the program tries to interpret the expression’s value as the

References 159

© 2010 Phyton, Inc. Microsystems and Development Tools

address. If you enter a variable name, the result of the expression will be the variable’s address but not the
value of the variable.

If the dialog expects a number to be entered, the expression’s value will be interpreted as a number (for
example, the Modify Memory dialog box of the Buffer Dump window). If you enter a variable name there,
then the result will be the value of the variable, but not its address.

Nonetheless, you can follow the default rules:

If you need to use the variable’s value, where an address is expected, then you can write something like
var + 0. In this case, the variable’s value will be used in the expression.

If you need to use the variable address& (address) operation, that is, &var.

8.3.1 Operations with Expressions

The program supports all arithmetic and logical operations valid for the C language, as well as pointer
and address operations:

Designation Description

() Brackets (higher priority)

[] Array component selector

. Structure component or union selector

-> Selection of a structure component or a union addressed with a pointer

!

Logical negation

~ Bitwise inversion

- Bitwise sign change

& Returns address

* Access by address

(type) Explicit type conversion

(sizeof) (returns size of operand, in bytes)

*

/ Division

Modulus operator (produces the remainder of an integer division)

+ Addition

- Subtraction

<<

Left shift

>> Right shift

ChipProg Device Programmers160

© 2010 Phyton, Inc. Microsystems and Development Tools

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

Not equal to

&

Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

Logical OR

= Assignment

The types of operands are converted in accordance with the ANSI standard.

The results of logical operations are 0 (false) or 1 (true).

Allowed type conversions:
Operands can be converted to simple types (char, int, ... float).

The word "struct" is not necessarily (MyStruct *).

8.3.2 Numbers

By default, numbers are treated as decimals. Integers should fit into 32 bits; floating point numbers should
fit into the single precision format (32 bits).

The following formats are supported:

1) Decimal integer.

Example: 126889

2) Decimal floating point.

Examples: 365.678; 2.12e-9

3) Hexadecimal.

 <%CM%> understands numbers in C format and assembly format.

Examples: 0xF6D7; 0F6D7H; 0xFFFF1111

4) Binary.

 Binary numbers must end with 'B'.

Examples: 011101B; 111111111111111000011B

References 161

© 2010 Phyton, Inc. Microsystems and Development Tools

5) Symbol (ASCII).

'a'; 'ab'; '$B%8'.'.

8.3.3 Examples of Expressions

Examples of expresions

 #test#i + #test#j << 2
 (unsigned char)#test#i + 2
 sizeof(##array) > 200

main

i + j << 2 / :CW0x1200

(unsigned char)i + 2

sizeof(array) > 200

(a == b && a <= 4) || a > '3'

sptr -> Member1 -> a[i]

*p

*((char *)ptr)

8.4 Script Language

The program ChipProgUSB can execute so-called script files in a way similar to how DOS executes the
batch files.

The main objective of script files is to automate usage of the emulator. Using script files makes it
possible to load programs, set up breakpoints, start program execution, manipulate windows and
perform any actions available to you in automatic (batch) mode. It is also possible to display various
messages in the Console window or other special windows, to create user's custom menus, etc. There
is the option of displaying any graphical data in special windows.

The script language is similar to C: almost all C constructions are supported, except for structures,
conjunctives and pointers. However, there are some differences. There are also many built-in functions
available, such as printf(), sin() and strcpy().

The extension of script source file is .CMD.

Simple example of a script file

How to write a script file

How to start a script file

How to debug a script file

Description of Script Language

Script Language Built-in Functions

ChipProg Device Programmers162

© 2010 Phyton, Inc. Microsystems and Development Tools

Script Language Built-in Variables

Difference Between the Script Language and the C Language

Alphabetical List of Script Language Built-in Functions and Variables

8.4.1 Simple example

This example shows how to load a file and automatically program it and display the result.

 #include <system.h>
 #include <mprog.h>

 void main()
 {

 LoadProgram("test.hex", F_HEX, SubLevel(0, 0)); // load file "test.hex" that is an Intel HEX
file //
to buffer 0, sub-level 0

 if (ExecFunction("Auto Programming") == EF_OK) // perform an automatic programming
 {
 if (ExecFunction("Verify", SubLevel(0, 0), 10) != EF_OK) // verify 10 times
 {
 printf("Verify failed: %s", LastErrorMessage); // display error message if verify failed
 return; // terminate script
 }
 printf("Verify ok."); // display Ok result
 }
 else
 printf("Programming failed: %s", LastErrorMessage); // display error message
 }

8.4.2 Description

The language used for writing the script files is similar to the C language. If you are familiar with the C
language, you can skip this chapter and switch to reading about the differences between the script
language and the C language.

This manual contains just a few examples of programming in the script language. To find more
examples, refer to books on the C language.

General Syntax of Script Language
Basic Data Types
Data byte order
Operations and Expressions
Operators
Functions
Descriptions

Predefined Symbols in the Script File Compilation

References 163

© 2010 Phyton, Inc. Microsystems and Development Tools

8.4.3 Built-in Functions

The script file system provides you with a large set of built-in functions intended for work with lines, files,
for mathematical calculations, and access to the processor resources. The system.h file contains
descriptions of these built-in functions. You should include the system.h file in the script file source text
with the #include directive:

You can use these built-in functions in the same way you use any function that you have defined.

Buffer access functions

Device programming control functions

String Operation Functions
Character Operation Functions
Functions for File and Directory Operation
Stream File Functions

Script File Manipulation Functions
Text Editor Functions
Control Functions
Windows Operation Functions and Other System Functions
Graphical Output Functions
I/O Stream Window Operation Functions

Event Wait Functions
Other Various Functions

Note. To get help on a function or variable, while editing the script source with the <%CM%> built-in
editor, point that function/variable name with the cursor and hit Alt+F1.

8.4.4 Built-in Variables

 You can access script language built-in variables in the same way as regular global variables. However,
some built-in variables are accessible only for reading, and in case of attempt to write to such variable.

The built-in variables are declared in the system.h header file.

Programming variables:

InsertTest
ReverseBytesOrder
BlankCheck
VerifyAfterProgram
VerifyAfterRead

ChipEndAddr
BufferStartAddr
LastErrorMessage
DialogOnError

ChipProg Device Programmers164

© 2010 Phyton, Inc. Microsystems and Development Tools

Text editor built-in variables:

InsertMode
CaseSensitive
WholeWords
RegularExpressions
BlockCol1
BlockCol2
BlockLine1
BlockLine2
BlockStatus
CurLine
CurCol
LastFoundString

Miscellaneous variables:

WorkFieldWidth
WorkFieldHeight
ApplName[]
DesktopName[]
SystemDir[]
errno
_fmode
MainWindowHandle
NumWindows
WindowHandles[]
SelectedString[]
LastMessageInt
LastMessageLong

8.4.5 Difference between the Script and the C Languages

The script files are written in a C-type language and you should not expect it to meet standards. Many
features are not supported because they are not necessary and complication of the language can cause
compiler errors (the script file language compiler is not a simple thing).

 Pointers are not directly supported. But arrays are supported, therefore a pointer can always be
built from an array and element number. Note that, for example, string operation functions, such as
strcpy, receive a string and a byte number (index) as parameters, which form the pointer. In function

References 165

© 2010 Phyton, Inc. Microsystems and Development Tools

declarations, index is equal to zero by default.
 Pointers to functions are not supported. If necessary, a table call can always be replaced with the
switch operator.

 Multidimensional arrays are not supported. If it is necessary, you can write a couple of functions,
such as:

 int GetElement(int array[], int index1, int index2);

 Structures (and unions) are not supported. In fact, you can always do without structures. Structures
may be required for API Windows and user DLLs operations, but as a rule only experienced
programmers should do it, such as those who know how to reach structure elements. As a tip, there are
functions, such as memcpy, which receive a void "pointer").

 Enumerated types (enum) are not supported #define.

 #define half(x) (x / 2), are not supported. The same operations can be done with functions.

 Conditional operators such as x = y == 2? 3 : 4;, are not supported; the operator "comma" outside
variable declaration is not supported. For example,

 int i = 0, j = 1; is supported, but
 for (i = 0, j = 1; ...) is not supported.

 User functions with a variable amount of parameters are not supported. However, there are many
system functions, such as printf, with a variable number of parameters.

 Declaration of user function parameters such as void array[] is not supported. The system
functions such as memcpy, have such parameters.

 Logical expressions are always fully computed. It is very important to remember it, as a situation
like

 char array[10];

 if (i < 10 && array[i] != 0)

 array[i] = 1;

will cause an error at the execution stage, if i is greater than 9, because the expression of array[i] will be
computed. In a standard compiler such an expression is not computed, because the condition of i > 10

would cancel any further processing of the expression.

 Constant expressions are always computed during execution. For example, int i = 10 * 22 will be
computed not during compilation, but during execution.

 The const key word is absent.

 Static variables cannot be declared inside functions.

But

 Variables can be declared anywhere, not just in front of the first executed operator. For example:

 void main()
 {
 GlobalVar = 0;
 int i = 1; // will be OK as in C++
 }

 Nested comments are allowed.

 Expressions like array = "1234" are allowed.

 Default parameter values in declared functions, as in C++, are allowed. For example, void func

(char array[],int index = 0);. Expressions can also serve as default values, for example void func(char

array[], int index = func1() + 1);.

 Expressions in global variable initializers are allowed. For example:

 float table[] = { sin(0), sin(0.1) };

 void main()

 ...

 }

ChipProg Device Programmers166

© 2010 Phyton, Inc. Microsystems and Development Tools

8.4.6 Script Language Built-in Functions and Variables

The list below includes all the names of the script language built-in functions and variables:

AllProgOptionsDefault

API

ActivateWindow

AddButton

AddWatch

BackSpace

BlankCheck

BlockBegin

BlockCol1

BlockCol2

BlockCopy

BlockDelete

BlockEnd

BlockFastCopy

BlockLine1

BlockLine2

BlockMove

BlockOff

BlockPaste

BlockStatus

BufferStartAddr

CaseSensitive

CheckSum

ChipEndAddr
ChipStartAddr

ClearWindow

CloseProject

CloseWindow

Cr

CurChar

CurCol

CurLine

Curcuit

DelChar

DelLine

DesktopName[]

DialogOnError

DisplayText

DisplayTextF

Down

Ellipse

References 167

© 2010 Phyton, Inc. Microsystems and Development Tools

Eof

Eol

ExecFunction

ExecMenu

ExecScript

ExitProgram

Expr

FileChanged

FillRect

FindWindow

FirstWord

FloatExpr

ForwardTillNot

FrameRect

FreeLibrary

GetByte

GetDword

GetFileName

GetLine

GetMark

GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong

GetProgOptionString

GetScriptFileName

GetWindowHeight

GetWindowWidth

GetWord

GotoXY

InsertMode

Inspect

InvertRect

LastChar

LastErrorMessage

LastEvent

LastEventInt{1...4}

LastFoundString

LastMessageInt

LastMessageLong

LastString

Left

LineTo

LoadDesktop

ChipProg Device Programmers168

© 2010 Phyton, Inc. Microsystems and Development Tools

LoadLibrary

LoadOptions

LoadProgram

LoadProject

MainWindowHandle

MaxAddr

MessageBox

MessageBoxEx

MinAddr

MoveTo

MoveWindow

OpenEditorWindow

OpenStreamWindow

OpenUserWindow

OpenWindow

Polyline

ProgOptionDefault

Rectangle

RedrawScreen

RegularExpressions

ReloadProgram

RemoveButtons

Right

SaveData

SaveDesktop

SaveFile

SaveOptions

Search

SearchReplace

SelectBrush

SelectFont

SelectPen

SelectedString[]

SetBkColor

SetBkMode

SetByte

SetCaption

SetDevice

SetDWord

SetFileName

SetMark

SetMemory

SetProgOption

SetTextColor

References 169

© 2010 Phyton, Inc. Microsystems and Development Tools

SetToolbar

SetUpdateMode

SetWindowFont

SetWindowSize

SetWindowSizeT

SetWord

SystemDir[]

TerminateAllScripts

TerminateScript

Text

Tof

Up

UpdateWindow

VerifyAfterProgram

WaitEprTrue

WaitGetMessage

WaitSendMessage

WaitWindowEvent

WholeWords

WindowHandles[]

WindowHotkey

WordLeft

WordRight

WorkFieldHeight

WorkFieldWidth

_GetWord

_ff_attrib

_ff_date

_ff_name

_ff_size

_ff_time

_fmode

_fullpath

_printf

abs

acos

asin

atan

atoi

ceil

chdir

chsize

clearerr

close

cos

ChipProg Device Programmers170

© 2010 Phyton, Inc. Microsystems and Development Tools

creat

creatnew

creattemp

delay

difftime

eof

errno

exec

exit

exp

fabs

fdopen

feof

ferror

fflush

fgetc

fgets

filelength

fileno

findfirst

findnext

floor

fmod

fnmerge

fnsplit

fopen

fprintf

fputc

fputs

fread

freopen

frexp

fscanf

fseek

ftell

fwrite

getc

getcurdir

getcwd

getdate

getdfree

getdisk()

getenv

getftime

References 171

© 2010 Phyton, Inc. Microsystems and Development Tools

gettime

inport

isalnum

isalpha

isascii

isatty

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

lock

locking

log

log10

lseek

ltoa

memccpy

memchr

memcmp

memcpy

memicmp

memset

mkdir

movmem

mprintf

open

outport

outportb

peek

peekb

poke

pokeb

pow

pow10

printf

pscanf

putc

putenv

ChipProg Device Programmers172

© 2010 Phyton, Inc. Microsystems and Development Tools

putw

rand

random

randomize

read

rename

rewind

rmdir

scanf

searchpath

setdisk

setftime

setmem

setmode

sin

sprintf

sqrt

srand

sscanf

stpcpy

strcat

strcmp

strcmpi

strcpy

strcspn

strlen

strlwr

strncat

strncmp

strncmpi

strncpy

strnicmp

strnset

strpbrk

strrchr

strrev

strset

strspn

strstr

strtol

strtoul

strupr

tan

tanh

tell

References 173

© 2010 Phyton, Inc. Microsystems and Development Tools

toascii

tolower

toupper

unlink

unlock

wgetchar

wgethex

wgetstring

wprintf

write

8.5 In-System Programming for different devices

NOTE! Always carefully check connecting your ChipProg programmer to the target. Wrong

connecting may and probably will cause destruction of the programmer's and/or the target

system's hardware.

Most embedded microcontrollers have different algorithms for the ISP procedure. See the following
topics regarding the ISP for popular microcontrollers:

Specific of the in-system programming of the Microchip PICmicro

Specific of the in-system programming of the Atmel AVR microcontrollers

Specific of the in-system programming of the Atmel 8051 microcontrollers

8.5.1 Specific of programming PICmicro

1. Most of the PIC microcontrollers produced by Microchip Technology Corporation require a special
HV ISP Programming Mode (High-Voltage in-System Programming Mode). In this mode a relatively
high voltage of 13V is applied to the MCLR device pin. The user's equipment to be programmed
should be designed in the way tolerating a 13V signal to be applied to the MCLR device pin - in
particular this pin should not be connected to the Vcc pin of the device.

2. Though the PIC microcontrollers are capable to work in a certain range on the Vcc voltage (the
range varies from 2 to 5V for some PICmicro derivatives) the device being under programming must
have the 5V voltage level applied to the Vcc device pin. If in the working mode the target
microcontroller works under the Vcc lower than 5V and the target cannot tolerate applying the 5V
voltage to the Vcc pin, then, if the user needs to program the PICmicro device in-system, it is
necessary to change the schematic to have an ability to connect 5V to the Vcc pin while the target
is under the programming. However, verification of the correct programming can be conducted under
the voltages allowed by the manufacturer (Vcc min - Vcc max).

ChipProg Device Programmers174

© 2010 Phyton, Inc. Microsystems and Development Tools

8.5.2 Specific of programming AVR microcontrollers

Microcontrollers of the Atmel AVR series can be programmed in-system being under a normal Vcc
voltage. Practically all AVR microcontrollers require clocking while they are under in-system
programming. ChipProg programmers are capable to send clocks to the target microcontroller but
sometimes the systems based on AVR microcontrollers have their own built-in clock generators.

1. If the system has its own built-in clock generator then make sure that the clock line of the
ChipProgis not connected to the clock input pin of the target microcontroller, otherwise it may
destroy either the target or programmer hardware. What you need in this case is just to enter a
value of the generator clock frequency in the Algorithm Parameters > Oscillator Frequency field
in the Device and Algorithm Parameters Editor window (see on the picture below). By default
the Oscillator Frequency value is 2.5 MHz. To change it double click the Oscillator Frequency

line displayed in blue color and enter the Fclk value into the popped up dialog. If the actual clock
frequency differs from the value set in the window the correct programming will be impossible.

2. If the target system does not have its own built-in clock generator then, the target AVR device
needs to get clocks from the built-in generator; thus the clock output wire of the cable-adapter
should be connected to an appropriate clock input pin of the target device. By default the Fclk= 2.5
MHz. It can be set in the range of the Fclk allowed for a particular selected target AVR device in
the Algorithm Parameters > Oscillator Frequency field in the Device and Algorithm

Parameters Editor window (see the picture above).

8.5.3 Specific of programming Atmel 8051 microcontrollers

Microcontrollers of the Atmel 8051 family (AT89 series) can be programmed in-system being under a
normal Vcc voltage. Practically all these microcontrollers require clocking while they are under in-
system programming. ChipProg programmers are capable to send clocks to the target microcontroller
but sometimes the systems based on the Atmel 8051 microcontrollers have their own built-in clock
generators.

References 175

© 2010 Phyton, Inc. Microsystems and Development Tools

1. If the system has its own built-in clock generator then make sure that the clock line of the
ChipProg cable adapter is not connected to the clock input pin of the target microcontroller,
otherwise it may destroy either the target or programmer hardware.

2. If the target system does not have its own built-in clock generator then, the target device
needs to get clocks from the ChipProg built-in generator; thus the clock output wire of the cable-
adapter should be connected to an appropriate clock input pin of the target device.

ChipProg Device Programmers176

© 2010 Phyton, Inc. Microsystems and Development Tools

Index

- A -
Acceptable number of errors

Tolerant Verify Feature 97

Access mode

Device and Algorithm Parameters 93

Device Parameters 93

Access Mode Parameters 95

ACI

DLL 104

External application 104

External control 104

ACI examples 134

ACI functions

ACI structures 105

ACI structures

ACI functions 118

Adapters 79

Adapters attachment

list 81

Adapters Connections List 79

Add Watch

dialog 152

Algorithm Parameters 67

Alphabetical List of Script Language Built-in Functions
and Variables 166

Angstrem SAV 77

Application Control Interface

ACI 104

ACI functions 104

ACI header 104

ACI structures 104

DLL 104

External application 104

External control 104

Programming automation 104

Application Control Interface exaples 134

ASCII Hex 77

Auto Programming 63

Auto-detect

device in a socket 83

Auto-detect device in a socket 83

Automatic Word Completion 146

AutoWatches

pane 150

AutoWatches pane 150

AVR microcontroller 174

- B -
Backspace unindents 55

Bad Block Management 93

Bad block map

Bad blocks 90

Invalid blocks 90

Bad blocks 89, 91

Binary image 77

Block Operations 147

Blocks

copying / moving 147

line blocks 147

non-persistent blocks 147

persistent 55

persistent blocks 147

standard blocks 147

vertical 55

vertical blocks 147

Buffer 10

Buffer Configuration

dialog 46

Buffer Dump

window 70

Buffers

dialog 45

memory allocation 45

- C -
Calculator

dialog 58

Check Blank 84

check box 69

Checksum 48

ChipProg

main menu 39

ChipProg programmers 13

ChipProg-40 33

brief characteristics 19

bundle 18

hardware characteristics 19

software characteristics 20

Index 177

© 2010 Phyton, Inc. Microsystems and Development Tools

ChipProg-48 32

brief characteristics 16, 21

bundle 15

hardware characteristics 17

software characteristics 17

ChipProg-G4 34

bundle 20

hardware characteristics 21

software characteristics 22

ChipProg-ISP 35

brief characteristics 25

bundle 23

hardware characteristics 25

software characteristics 25

Colors 52

tab 52

Command-Line Parameters 153

Commands

menu 58

Commands Menu 58

Condensed Mode 145

Condensed Mode Setup

dialog 146

Configurating Editor

dialog 55

Configuration

buffer 46

editor Options 44

environment 44

Configuration Files 41

Configuration Menu 44

Configure the device to be programmed 85

Configuring a Buffer

dialog 71

Confirm Replace

dialog 144

Console

window 82

Window Console 82

Contact Information 37

- D -
Define Font 52

Define key 53

Definitions

adapter 9

buffer 9

memory buffer 9

sub-level 9

Description of Script Language 162

Detect

device in a socket 83

Device

set into a socket 83

Device and Algorithm Parameters

window 67

Device Information

window 79

Device parameters 67, 68

Difference Between the Script Language and the C
Language 164

Display from address

dialog 74

Display from Line Number

dialog 147

Display Watches Options

dialog 151

Drivers

USB 29

drop-down menu 69

Duplicate a device 87

- E -
ECC 90

ECC frame 97

Edit Information to be programmed 85

Edit Key Command

dialog 57

Editor Key Mapping

tab 57

Editor window 140

Environment

dialog 51

Erase 84

Error Checking and Correction 90, 97

Even byte 65

Examples of ACI use 134

Examples of Expressions 161

Expressions 158

- F -
File format 77

ChipProg Device Programmers178

© 2010 Phyton, Inc. Microsystems and Development Tools

File Menu

overview 40

Fonts 52

tab 52

- G -
General Editor

settings 55

Guard Solid Area 94

- H -
Help

menu 61

On-line 36

Highlight

multi-line Comments 55

Highlight Active Tabs 54

Highlighting

Syntax 55, 146

History file 41

Holtek OTR 77

Hot Keys 53

How to Get On-line Help 36

How to start a script file 148

How to write a script file 139

- I -
I/O Stream

window 153

ICP 9

Insert DIP in socket 83

Install ChipProg 27

Install the ChipProg Software 27

Installing the USB Drivers 29

In-System programming 102, 173

Introduction 9

Invalid block

Array 89

Spare area 89

Invalid Block Indication

IB displaying 95

Invalid Block Management 93

Invalid block map 90

Invalid blocks

ECC 89

Error Checking and Correction 89

Reserved Block Area method 89

Skip Block method 89

ISP

ISP HV Mode 9

ISP Mode 9

- J -
JEDEC 77

- L -
List

Adapters connections 79

Load file

dialog 76

Load session 41

Load the file into the buffer 85

Log file 49

- M -
Main menu

commands 39

Main menu bar 39

Mapping

hot keys 53

Marking bad blocks 91

MCS-51 microcontroller 174

Memory Dump Window Setup

dialog 72

Memory Blocks

operations 74

Menu

Project 42

View 41

Menu File

load file 40

save file 40

Menu Help 61

Menu Script 59

Message box

always display 54

Messages

tab 54

Index 179

© 2010 Phyton, Inc. Microsystems and Development Tools

Microchip PICmicro microcontroller 173

Miscellaneous Settings 54

Modify Address

dialog 74

Modify Memory

dialog 74

Motorola S-record 77

Multi-File Search Results

dialog 144

Multi-programming mode 97

- N -
NAND 87

NAND Flash 87

Block 87

Large page 87

NAND Flash architecture 87

Small page 87

NAND Flash memory

Programming NAND devices 87

NAND Flash programming

Access mode 92

Device and Algorithm Parameters 92

Device Parameters 92

Numbers 160

- O -
Odd byte 65

On-line Help 36

Open Project 43

dialog 43

Operations with Expressions 159

Operations with Memory Blocks 74

Options

dialog 51

Options&split

dialog 64, 100

Overview

User Interface 38

- P -
Packages/Adapters 45

POF 77

Preferances 51

PRG 77

Program a Device 84

Program Manager

Auto Programming 62, 99

dialog 62, 99

Operation Progress 62, 99

window 61, 99

Programmer 9

ChipProg-40 33

ChipProg-48 32

ChipProg-G4 34

ChipProg-ISP 35

work with 83

Programmers

ChipProgUSB 13

comparison characteristics 14

Programmers ChipProg-40 18

Programmers ChipProg-48 15

Programmers ChipProg-G4 20

Programmers ChipProg-ISP 23

Programming

check blank 84

configure the device 85

duplicate a device 87

edit Information 85

erase 84

load the file 85

program a Device 84

program functions 84

read a device 86

save the data 86

verify 86

write Information into the Device 85

Programming adapters 79

Programming automation 104

Programming characteristics

AVR microcontroller 174

MCS-51 microcontroller 174

PICmicro microcontroller 173

Programming in target board 102, 173

Project Menu 42

Project Options 42

dialog 42

Project Repository

dialog 43

ChipProg Device Programmers180

© 2010 Phyton, Inc. Microsystems and Development Tools

- Q -
Quick Start 27

Quick Watch

enabled 54

Quick Watch Function 147

- R -
Read a Device 86

Regular Expressions

search for 144

Replace Text

dialog 143

Repository 43

Reserved Block Area 89

Reserved Block Area Parameters

RBA 97

RBA parameters 97

Reserved Block Area 97

Run ChipProg 11

- S -
Save file from buffer

dialog 78

Save session 41

Save the data read out from a device 86

Script 137, 161

menu 59

Script Files 137, 161

dialog 137

Script Language Built-in Functions 163

Script Language Built-in Variables 163

Script source window

open 137

Search for Regular Expressions 144

Search for Text

dialog 142

Search mask 45

Select color 52

Select device 45

dialog 45

Serialization 47

Serialization, Checksum, Log file

dialog 47

Set device into a socket 83

Set/Retrieve Bookmark

dialog 145

Signature String 49

Simple example of a script file 162

Skip Block method

Bad blocks 89

Invalid blocks 89

Skipping invalid blocks 89

Solid Area 94

Solid Area Parameters

Number of Blocks 96

Start Block 96

Sounds 51

Spare Area Usage

SpareArea 93

Split data 65

Standard/Extended Intel HEX 77

Statistics

dialog 66, 101

Sub-layer

additional 47

main 46

Sub-Layer 'Code' 46

Sub-layer 'ID location' 47

Support 36

Syntax Highlighting 146

System Requirements 11

- T -
Tab Size 55

Technical Support 36

Terminology 9

Terminology and Definitions 9

Text Edit 141

Tolerant Verify Feature

Tolerant Verify 95

Toolbar

tab 54

- U -
Undo Count 55

USB Drivers 29

User

window 152

Index 181

© 2010 Phyton, Inc. Microsystems and Development Tools

User area

Number of blocks 96

Start block 96

User Block Area

Bad blocks 89

Block reservoir 89

Invalid blocks 89

RBA 89

UBA 89

User Interface

overview 38

- V -
Verify programming 86

View 41

View Menu 41

- W -
Watches

window 150

Watches Window

add Watch 152

display Watches Options 151

Window

menu 60

Menu Window 60

Window Device Information 79

Window Dump Setup

dialog 72

Window Editor 140

Window I/O Stream 153

Window Program Manager 61, 99

Window User 152

Window Watches 150

Windows 61

Word Completion 146

Work with Programmer 83

Write Information into the Device 85

Back Cover

	Introduction
	Terms and Definitions
	System Requirements

	ChipProg Family Brief Description
	Comparisson matrix
	ChipProg-48
	Major features
	Hardware characteristics
	Software features

	ChipProg-40
	Major features
	Hardware characteristics
	Software features

	ChipProg-G4
	Major features
	Hardware characteristics
	Software features

	ChipProg-ISP
	Major features
	Hardware characteristics
	Software features

	Quick Start
	Installing the ChipProgUSB Software
	Installing the USB Drivers
	Hardware installation
	ChipProg-48
	ChipProg-40
	ChipProg-G4
	ChipProg-ISP

	Getting Assistance
	On-line Help
	Technical Support
	Contact Information

	Graphical User Interface
	User Interface Overview
	Toolbars
	Menus
	The File Menu
	Configuration Files

	The View Menu
	The Project Menu
	The Project Options Dialog
	The Open Project Dialog
	Project Repository

	The Configure Menu
	The Select Device dialog
	The Buffers dialog
	The Buffer Configuration dialog
	Main Buffer Layer
	Buffer Layers

	The Serialization, Checksum and Log dialog
	Device Serialization
	Checksum
	Signature string
	Log file

	The Preferences dialog
	The Environment dialog
	Fonts
	Colors
	Mapping Hot Keys
	Toolbar
	Messages
	Miscellaneous Settings

	Configurating Editor Dialog
	General Editor Settings
	The Editor Key Mapping
	The Edit Key Command Dialog

	The Commands Menu
	Calculator

	The Script Menu
	The Window Menu
	The Help Menu

	Windows
	The Program Manager Window
	The Program Manager tab
	Auto Programming

	The Options tab
	Split data

	The Statistics tab

	The Device and Algorithm Parameters window
	Buffer Dump Window
	The 'Configuring a Buffer' dialog
	The 'Buffer Setup' dialog
	The 'Display from address' dialog
	The 'Modify Data' dialog
	The 'Memory Blocks' dialog
	The 'Load File' dialog
	File Formats

	The 'Save File' dialog

	The Device Information window
	Phyton programming adapters
	Adapters for in-system programming

	The Console Window
	Windows for Scripts

	Operating with Programmers
	Inserting devices to a programming socket
	Auto-detecting the device
	Basic programming functions
	How to check if a device is blank
	How to erase a device
	How to program a device
	How to load a file into a buffer
	How to edit information before programming
	How to configure the chosen device
	How to write information into the device

	How to read a device
	How to verify programming
	How to save data on a disc
	How to duplicate a device

	Programming NAND Flash memory
	NAND Flash memory architectures
	Invalid blocks
	Managing invalid blocks
	Skipping invalid blocks
	Reserved Block Area
	Error Checking and Correction

	Invalid block map

	Marking invalid blocks

	Programming NAND Flash devices by ChipProg
	Access Mode
	Invalid Block Management
	Spare Area Usage
	Guard Solid Area
	Tolerant Verify Feature
	Invalid Block Indication Option

	Access Mode Parameters
	User Area
	Solid Area
	Reserved Block Area
	ECC Frame size
	Acceptable number of errors

	Multi- and Gang-programming
	The Program Manager Window
	The Program Manager tab
	The Options tab
	The Statistics tab

	In-System Programming

	Programming Automation via DLL
	Application Control Interface
	ACI Functions
	ACI_Launch
	ACI_Exit
	ACI_LoadConfigFile
	ACI_SaveConfigFile
	ACI_SetDevice
	ACI_GetDevice
	ACI_GetLayer
	ACI_CreateBuffer
	ACI_ReallocBuffer
	ACI_ReadLayer
	ACI_WriteLayer
	ACI_FillLayer
	ACI_GetProgrammingParams
	ACI_SetProgrammingParams
	ACI_GetProgOption
	ACI_SetProgOption
	ACI_AllProgOptionsDefault
	ACI_ExecFunction
	ACI_StartFunction
	ACI_GangStart
	ACI_GetStatus
	ACI_TerminateFunction
	ACI_FileLoad
	ACI_FileSave
	ACI_SettingsDialog
	ACI_SelectDeviceDialog
	ACI_BuffersDialog
	ACI_LoadFileDialog
	ACI_SaveFileDialog

	ACI Structures
	ACI_Launch_Params
	ACI_Config_Params
	ACI_Device_Params
	ACI_Layer_Params
	ACI_Buffer_Params
	ACI_Memory_Params
	ACI_Programming_Params
	ACI_ProgOption_Params
	ACI_Function_Params
	ACI_PStatus_Params
	ACI_File_Params
	ACI_GangStart_Params

	Examples of use

	Script Files
	The Script Files Dialog
	How to create and edit script files
	The Editor Window
	Text Edit
	The Search for Text Dialog
	The Replace Text Dialog
	The Confirm Replace Dialog
	The Multi-File Search Results Dialog
	Search for Regular Expressions
	The Set/Retrieve Bookmark Dialogs
	Condensed Mode
	The Condensed Mode Setup Dialog
	Automatic Word Completion
	Syntax Highlighting
	The Display from Line Number Dialog
	The Quick Watch Function
	Block Operations

	How to start and debug script files
	The AutoWatches Pane
	The Watches Window
	The Display Watches Options Dialog
	The Add Watch Dialog

	The User Window
	The I/O Stream Window

	References
	Command line keys
	Errors Messages
	Error Load/ Save File
	Error Addresses
	Error sizes
	Error command-line option
	Error Programming option
	Error DLL
	Error USB
	Error programmer hardware
	Error internal
	Error confiquration
	Error device
	Error check box
	Error mix
	Warning

	Expressions
	Operations with Expressions
	Numbers
	Examples of Expressions

	Script Language
	Simple example
	Description
	Built-in Functions
	Built-in Variables
	Difference between the Script and the C Languages
	Script Language Built-in Functions and Variables

	In-System Programming for different devices
	Specific of programming PICmicro
	Specific of programming AVR microcontrollers
	Specific of programming Atmel 8051 microcontrollers

