

Vishay Semiconductors

Standard Avalanche Sinterglass Diode

DESIGN SUPPORT TOOLS

click logo to get started

MECHANICAL DATA

Case: SOD-64

Terminals: plated axial leads, solderable per

MIL-STD-750, method 2026

Polarity: color band denotes cathode end

Mounting position: any Weight: approx. 858 mg

FEATURES

- · Glass passivated junction
- · Hermetically sealed package
- · Controlled avalanche characteristics
- Low reverse current
- High surge current loading
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ROHS
COMPLIANT
HALOGEN
FREE

APPLICATIONS

• Rectification diode, general purpose

ORDERING INFORMATION (Example)					
DEVICE NAME ORDERING CODE TAPED UNITS MINI			MINIMUM ORDER QUANTITY		
1N5627	1N5627-TR	2500 per 10" tape and reel	12 500		
1N5627	1N5627-TAP	2500 per ammopack	12 500		

PARTS TABLE					
PART	TYPE DIFFERENTIATION	PACKAGE			
1N5624	V _R = 200 V; I _{F(AV)} = 3 A	SOD-64			
1N5625	V _R = 400 V; I _{F(AV)} = 3 A	SOD-64			
1N5626	V _R = 600 V; I _{F(AV)} = 3 A	SOD-64			
1N5627	$V_R = 800 \text{ V}; I_{F(AV)} = 3 \text{ A}$	SOD-64			

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
		1N5624	$V_R = V_{RRM}$	200	V
Reverse voltage = repetitive peak reverse	See electrical characteristics	1N5625	$V_R = V_{RRM}$	400	V
voltage		1N5626	$V_R = V_{RRM}$	600	V
		1N5627	$V_R = V_{RRM}$	800	V
Peak forward surge current	$t_p = 10$ ms, half sine wave		I _{FSM}	100	Α
Repetitive peak forward current			I _{FRM}	18	Α
Average forward current			I _{F(AV)}	3	Α
Pulse avalanche peak power	$t_p = 20 \mu s$, half sine wave, $T_j = 175 ^{\circ} C$		P _R	1000	W
Pulse energy in avalanche mode, non repetitive (inductive load switch off)	I _{(BR)R} = 1 A, T _j = 175 °C		E _R	20	mJ
i ² *t-rating			i ² *t	40	A ² *s
Junction and storage temperature range			$T_i = T_{stq}$	-55 to +175	°C

Vishay Semiconductors

MAXIMUM THERMAL RESISTANCE (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Junction ambient	I = 10 mm, T _L = constant	R_{thJA}	25	K/W	
	On PC board with spacing 25 mm	R _{thJA}	70	K/W	

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 3 A		V_{F}	-	-	1	V
Reverse current	$V_R = V_{RRM}$		I _R	ı	0.1	1	μΑ
neverse current	$V_R = V_{RRM}$, $T_j = 100$ °C		I _R	ı	5	10	μΑ
Breakdown voltage	$I_R = 100 \mu A, t_p/T = 0.01,$ $t_p = 0.3 \text{ ms}$		V _(BR)	ı	-	1600	V
Diode capacitance	V _R = 4 V, f = 1 MHz		C_D	-	40	60	pF
Deverage receiver time	$I_F = 0.5 \text{ A}, I_R = 1 \text{ A}, I_R = 0.25 \text{ A}$		t _{rr}	-	3.5	5	μs
Reverse recovery time	$I_F = 1 \text{ A}, d_I/d_t = 5 \text{ A}/\mu\text{s}, V_R = 50 \text{ V}$		t _{rr}	-	4.5	7.5	μs
Reverse recovery charge	$I_F = 1 \text{ A, } d_l/d_t = 5 \text{ A/}\mu\text{s}$		Q _{rr}	ı	8	12	μС

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

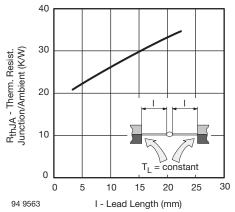


Fig. 1 - Max. Thermal Resistance vs. Lead Length

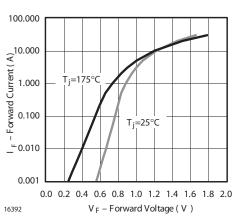


Fig. 2 - Forward Current vs. Forward Voltage

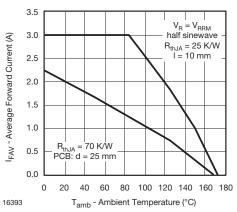


Fig. 3 - Max. Average Forward Current vs. Ambient Temperature

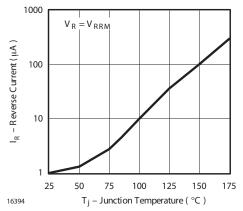


Fig. 4 - Reverse Current vs. Junction Temperature

Vishay Semiconductors

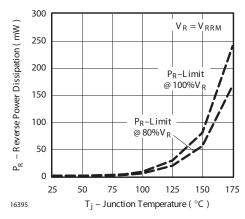


Fig. 5 - Max. Reverse Power Dissipation vs. Junction Temperature

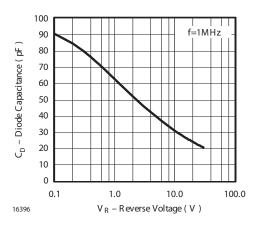
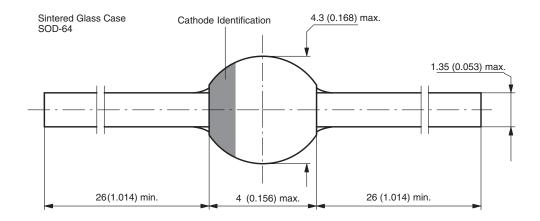



Fig. 6 - Diode Capacitance vs. Reverse Voltage

PACKAGE DIMENSIONS in millimeters (inches): SOD-64

Document-No.: 6.563-5006.4-4 Rev. 3 - Date: 09.February.2005 94 9587

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.