
 
 
  

 

EasyVR 3 (Plus) 
User Manual 

Release 1.0.17 

 

www.veear.eu 

http://www.veear.eu/


www.veear.eu 

2 EasyVR 3 (Plus) User Manual (1.0.17) 

Table of Contents 
 

EasyVR 3 Module ............................................................................................................. 6 

Product Description ........................................................................................................6 

EasyVR 3 Features .......................................................................................................6 

Technical specifications ...................................................................................................7 

Pin assignment ...........................................................................................................8 
Settings and indicators .................................................................................................9 
Physical dimensions .....................................................................................................9 
Recommended Operating Conditions .............................................................................. 10 
Power Supply Requirements ......................................................................................... 10 
Electrical Characteristics ............................................................................................ 10 
Serial Interface ........................................................................................................ 11 
Microphone ............................................................................................................. 12 
Audio Output ........................................................................................................... 14 
General Purpose I/O .................................................................................................. 15 
Flash Update ........................................................................................................... 16 

Quick start  guide for using the module .............................................................................. 17 

Assembly notes ......................................................................................................... 17 
EasyVR 3 as a Development Board .................................................................................. 18 

EasyVR Shield 3 for Arduino .............................................................................................. 20 

Product description ....................................................................................................... 20 

EasyVR Shield 3 Features ............................................................................................. 20 

Technical specifications ................................................................................................. 21 

Board overview......................................................................................................... 21 
Pin assignment ......................................................................................................... 22 
Mode Jumper settings................................................................................................. 23 
Software Serial Pins settings ........................................................................................ 23 

Quick start guide for using the Shield ................................................................................. 24 

Assembly notes ......................................................................................................... 24 
Prepare the software ................................................................................................. 25 
Prepare the hardware ................................................................................................ 25 
Shield configuration table ........................................................................................... 26 
Test the Shield on Arduino ........................................................................................... 26 
Test the Shield from the EasyVR Commander .................................................................... 27 
Download custom data or Firmware update ...................................................................... 27 

EasyVR Programming ....................................................................................................... 28 

Communication Protocol ................................................................................................ 28 

Introduction ............................................................................................................ 28 
Arguments Mapping ................................................................................................... 29 
Command Details ...................................................................................................... 30 
Status Details ........................................................................................................... 37 

Communication Examples ............................................................................................... 40 

Recommended wake up procedure ................................................................................. 40 
Recommended setup procedure .................................................................................... 40 
Recognition of a built-in or custom SI command ................................................................. 41 
Adding a new SD command .......................................................................................... 41 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 3 

Training an SD command ............................................................................................. 42 
Recognition of an SD command ..................................................................................... 42 
Read used command groups ......................................................................................... 43 
Read how many commands in a group ............................................................................. 43 
Read a user defined command group .............................................................................. 43 
Use general purpose I/O pins ........................................................................................ 44 
Use custom sound playback .......................................................................................... 44 
Read sound table ...................................................................................................... 44 

Built-in Command Sets ................................................................................................... 45 
Error codes ................................................................................................................. 46 
Protocol header file ...................................................................................................... 47 

EasyVR Arduino Library ................................................................................................... 49 

EasyVR library settings ................................................................................................... 49 

Macros ................................................................................................................... 49 
Detailed Description .................................................................................................. 49 
Macro Definition Documentation ................................................................................... 49 

EasyVR Class Reference .................................................................................................. 50 

Public Types ............................................................................................................ 50 
Public Member Functions ............................................................................................. 50 
Detailed Description .................................................................................................. 51 
Member Enumeration Documentation ............................................................................. 51 
Constructor & Destructor Documentation ......................................................................... 56 
Member Function Documentation .................................................................................. 56 

EasyVR Commander ........................................................................................................ 69 

Getting Started ............................................................................................................ 69 
Remote Connections (Advanced Topic) ............................................................................... 70 

Configuring the Remote System ..................................................................................... 70 
Configuring the EasyVR Commander ............................................................................... 71 

Speech Recognition ....................................................................................................... 72 
Recognition Settings ...................................................................................................... 74 
Phone Tones Generation (DTMF) ....................................................................................... 75 
Testing SonicNetTM ........................................................................................................ 76 
Real-Time Lip-Sync ....................................................................................................... 78 
Import and Export of Custom Commands ............................................................................. 78 
Using Custom Data ........................................................................................................ 79 

Sound Table ............................................................................................................ 79 
Speaker Independent Custom Vocabularies ....................................................................... 80 
Updating Custom Data ................................................................................................ 81 

Message Recording ........................................................................................................ 83 
Updating Firmware ....................................................................................................... 84 

Important Upgrade Notice ........................................................................................... 84 

QuickUSB Adapter Cable .................................................................................................. 85 

Product Description ...................................................................................................... 85 

QuickUSB Features .................................................................................................... 85 

Technical Specifications ................................................................................................. 85 

Drawings and Schematics ............................................................................................ 85 
Pin Description ......................................................................................................... 85 
Operating Conditions.................................................................................................. 86 
Electrical Characteristics ............................................................................................ 86 



www.veear.eu 

4 EasyVR 3 (Plus) User Manual (1.0.17) 

Quick Start Instructions .................................................................................................. 86 

Software Setup ......................................................................................................... 86 
Using the Adapter ..................................................................................................... 86 

How to get support ......................................................................................................... 87 

 
  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 5 

Document History Information 
 

Revision Date Description 

1.0 2015/01/27  Initial draft 

1.0.3 2015/02/09  New drawings and updated descriptions 

1.0.4 2015/03/19  Added new pictures and minor updates 

1.0.5 2015/03/25  Updated pictures and quick-start sections 

1.0.6 2015/03/30  Added programming and library chapters 
 Added PC software description 
 Updated pictures and layout 

1.0.7 2015/03/31  Minor corrections 

1.0.8 2015/04/01  Updated custom data screenshots and description 

1.0.9 2015/04/02  Added chapter for QuickUSB adapter 

1.0.10 2015/04/22  Updated mechanical drawing of module 

1.0.11 2015/06/05  Added note about soldering headers 
 Removed old logo from drawings 

1.0.12 2015/07/02  Updated QuickT2SI screenshots 
 Added notes about message recording functions 

1.0.13 2016/03/10  Added J7 pin-out numbering on module picture 

1.0.14 2016/08/02  Fixed protocol description 
 Added missing protocol elements 
 Updated Arduino library documentation 
 Updated EasyVR Commander with new interface elements 
 Updated product features 

1.0.15 2017/03/20  Added configuration table for EasyVR Shield operating modes 
 Added advanced topic for remote connections 
 Updated quick start guides 
 Updated products pictures 

1.0.16 2018/04/05  Updated EasyVR features to latest firmware revision 
 Added firmware upgrade notice 

1.0.17 2019/01/28  Updated documentation for EasyVR 3+ 

  



www.veear.eu 

6 EasyVR 3 (Plus) User Manual (1.0.17) 

EasyVR 3 Module 

Product Description 

EasyVR 3 is a multi-purpose speech recognition module designed to 
easily add versatile, robust and cost effective speech recognition 
capabilities to almost any application. 
 
The EasyVR 3 module can be used with any host with an UART 
interface powered at 3.3V – 5V, such as PIC and Arduino boards. 
Some application examples include home automation, such as 
voice controlled light switches, locks, curtains or kitchen 
appliances, or adding “hearing” to the most popular robots on the 
market. 
 
It can be easily plugged into a solder-less breadboard or standard prototyping board, and it is compatible 
with the mikroBUS™ specifications (see www.mikroe.com/mikrobus). 
 
Separate male headers are provided inside the package, along with a microphone cable assembly and 
speaker wires (loudspeaker not included). 

EasyVR 3 Features 

 Up to 28 custom Speaker Independent (SI) command vocabularies1. 
Supported Languages: 

o US English 
o British English 
o French 
o German 
o Italian 
o Japanese 
o Korean 
o Mandarin 
o Spanish 

 Up to 64 (256 on EasyVR 3+) user-defined Speaker Dependent (SD) or Speaker Verification (SV) 
commands, that can be trained in ANY language, divided into maximum 16 groups (up to 32 SD or 
5 SV commands each). 

 A selection of built-in Speaker Independent (SI) commands for ready-to-run basic controls, in the 
following languages: 

o English (US) 
o Italian 
o German 
o French 
o Spanish 
o Japanese 

 SonicNet™ technology for wireless communications between modules or any other sound source 
(Audio CD, DVD, MP3 Player). 

 Up to around 21 minutes of pre-recorded sounds or speech2. 
 Up to about 120 (137 on EasyVR 3+) seconds of live message recording and playback. 
 Real-time Lip-sync capability. 
 DTMF tone generation. 
 Differential audio output that directly supports 8Ω speakers. 
 Easy-to-use Graphical User Interface to program Voice Commands and audio. 
 Standard UART interface (powered at 3.3V - 5V). 
 Simple and robust documented serial protocol to access and program through the host board. 
 6 General purpose I/O lines that can be controlled via UART commands. 

                                                 
1 A QuickT2SI™ Lite license (sold separately) is required to enable creation of Speaker Independent 
vocabularies (maximum 12 commands per set). No license required to use SI grammars. 
2 At the maximum compression rate. 

http://www.mikroe.com/mikrobus


www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 7 

Technical specifications 

 

   CABLES MISC   

   SPEAKER MIC R4 D2   

G
P
IO

 

IO1 

 

SP+ 

A
U

D
IO

 IO2 SP- 

IO3 VM 

IO4 MIC 

IO5 RET 

IO6 VDD 

 

  

 

 

  

 

M
IK

R
O

B
U

S
 

 XM 

M
IK

R
O

B
U

S
 

RST DE 

 TX 

 RX 

  

  

3V3 5V 

GND GND 

    

  PWR SEL QUICK USB D1   

  MISC ADAPTER MISC   

 

The outer headers J1 and J2 are the mikroBUS™ interface connectors, providing selectable 3.3V/5V power 
input to the module and voltage translated digital I/O lines, including: UART receive/transmit lines and 
control pins. 
 
The header J3 provides configurable I/O expansion lines (inputs with weak internal pull-up by default), 
powered at the internal logic voltage VDD. 
 
The header J4 contains the main analog signals, such as microphone signals and amplified DAC outputs, 
which are also available on the internal right angle connectors J5 and J6. 
 
The module can also be operated through the programming connector J7 alone, by using the QuickUSB 
Adapter Cable. 

  

6   4   2 
5   3   1 



www.veear.eu 

8 EasyVR 3 (Plus) User Manual (1.0.17) 

Pin assignment 

Group Name Number Pin Type Description 

● MIKROBUS 

J1 

1 - - (Not connected) 

2 RST I Active low asynchronous reset (internal pull-up) 

3-6 - - (Not connected) 

7 3V3 I 3.3V DC power input 

8 GND - Ground 

J2 

1 XM I Boot select (internal pull-down) 

2 DE O (Reserved) 

3 TX O Serial Data Transmit 

4 RX I Serial Data Receive 

5-6 - - (Not connected) 

7 5V I 5.0V DC power input 

8 GND - Ground 

● GPIO J3 

1 IO1 I/O General purpose I/O (VDD logic levels) 

2 IO2 I/O General purpose I/O (VDD logic levels) 

3 IO3 I/O General purpose I/O (VDD logic levels) 

4 IO4 I/O General purpose I/O (VDD logic levels) 

5 IO5 I/O General purpose I/O (VDD logic levels) 

6 IO6 I/O General purpose I/O (VDD logic levels) 

● AUDIO J4 

1 SP+ O Differential audio output (can directly drive 8Ω 
speaker) 2 SP- O 

3 VM O 
Microphone power (to support custom 
microphones) 

4 MIC I Microphone audio input 

5 RET - Microphone return (analog ground) 

6 VDD O Internal logic voltage (for reference only) 

● CABLES 

J5 

1 SP- O Differential audio output (can directly drive 8Ω 
speaker) 3 SP+ O 

2 - - (Not connected) 

J6 
1 MIC I Microphone audio input 

2 RET - Microphone return (analog ground) 

● ADAPTER J7 

1 RX_P O Programming cable serial data receive 

2 RTS_P I 
Programming cable request to send (reset/boot 
control) 

3 GND - Programming cable ground 

4 5V_P I Programming cable 5V DC power output 

5 TX_P I Programming cable serial data transmit 

6 CTS_P O Programming cable clear to send (tied to ground) 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 9 

Note: The General Purpose I/O lines (J3.1-6) are at nominal 3.0VDC level. Do not connect 
higher voltages directly to these pins! 

Settings and indicators 

Group Name Type Description 

● MISC 

PWR SEL 
3-Way Jumper 

(SMD 0603) 
Select power input and voltage level between +3.3V 
and +5V with a zero Ohm resistor or solder bridge 

D1 LED 
Red light indicator, normally ON when the board is 
powered, briefly blinking on serial data received 

D2 LED 
Green light indicator, turns ON when the module is 
listening to its audio input 

R4 
Resistor 

(SMD 0603) 
Microphone gain resistor, default is 1.2kΩ 

Physical dimensions 

 

 

 

Symbol Parameter Units (mm / Inches) 

W Width 25.4 1.000 

L Length 56.4 2.220 

H1 Height (without outer strips J1-J4) 9.5 0.375 

H2 Height (with outer strips J1-J4) 17.0 0.670 

E1 Connector pitch and pin spacing (of outer strips J1-J4) 2.54 0.100 

E2 Connector pitch (of inner connectors J5-J7) 2.00 0.079 

A Headers horizontal spacing 22.86 0.900 

B Headers vertical spacing 20.32 0.800 

C Header vertical offset 3.81 0.150 

D Header horizontal offset 1.27 0.050 

H1 

H2 

W 

L 

L
 

W 

  

E2 

E2 

E1 

  E2 

E2 

  E1   E1 

  E1 

A 

C
 

B
 

  D   D 



www.veear.eu 

10 EasyVR 3 (Plus) User Manual (1.0.17) 

Recommended Operating Conditions 

Symbol Parameter Min Typ Max Unit 

5V 
DC Power Input (Host) = VSEL 

3.15 5.0 5.5 V 

3V3 3.15 3.3 5.5 V 

5V_P DC Power Input (Programming cable) 4.0 5.0 5.5 V 

Ta Ambient Operating Temperature Range 0 25 70 °C 

 

Power Supply Requirements 

Symbol Parameter Min Typ Max Unit 

ISLEEP Sleep current (VSEL = 5.0V)  6  mA 

IOPER Operating current (VSEL = 5.0V)  25 35 mA 

IAUDIO Audio playback current (with 8Ω speaker)  175 250 mA (RMS) 

ITOT Total current consumption (excluding I/O)  25 285 mA (RMS) 

IPEAK Peak supply current (excluding I/O)  400  mA 

 

Electrical Characteristics 

These are applicable to pins RX, TX_P. 

Symbol Parameter Min Typ Max Unit 

VIH Input High Voltage 2.1  5.5 V 

VIL Input Low Voltage 0.0  0.9 V 

IIL Input Leakage Current (0 < VI < 5.5V)  -65  µA 

 
These are applicable to pins TX, DE. 

Symbol Parameter Min Typ Max Unit 

VOH 
Output High Voltage (IOH = -0.3 mA, VSEL = 3.3V) 2.6  3.3 V 

Output High Voltage (IOH = -0.3 mA, VSEL = 5.0V) 4.3  5.0 V 

VOL Output Low Voltage (IOL = 5 mA) 0.0  0.2 V 

 
These are applicable to pin XM. 

Symbol Parameter Min Typ Max Unit 

VIH Input High Voltage 1.4 (0.8) 5.5 V 

VIL Input Low Voltage 0.0 (0.7) 0.5 V 

IIN 
Input Current (0 < VI < 3.3V) 0 0.2 0.4 mA 

Input Current (0 < VI < 5.5V) 0 0.5 0.7 mA 

 
These are applicable to pin RST. 

Symbol Parameter Min Typ Max Unit 

VIH Input High Voltage 2.1  5.5 V 

VIL Input Low Voltage 0.0  0.6 V 

IIL Input Leakage Current (0 < VI < 5.5V)  -85  µA 

 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 11 

These are applicable to pin RX_P. 

Symbol Parameter Min Typ Max Unit 

VOH Output High Voltage (IOH = -5 mA) 2.4  3.0 V 

VOL Output Low Voltage (IOL = 8 mA) 0.0  0.6 V 

 

These are applicable to pins IO1 – IO6. 

Symbol Parameter Min Typ Max Unit 

VIH Input High Voltage 2.4 3.0 3.3 V 

VIL Input Low Voltage -0.1 0.0 0.75 V 

IIL Input Leakage Current (0 < VI < 3V, Hi-Z Input)  <1 10 µA 

RPU Pull-up Resistance 
Strong  10  kΩ 

Weak  200  kΩ 

VOH Output High Voltage (IOH = -5 mA) 2.4  3.0 V 

VOL Output Low Voltage (IOL = 8 mA) 0.0  0.6 V 

 

Serial Interface 

The EasyVR 3 communicates via an asynchronous serial interface (commonly known as UART interface), 
with the following features: 
 

 Baud Rate: 9600 (default), 19200, 38700, 57600, 115200 
 Frame: 8 Data bits, No parity, 1 Stop bit 

 
The receiver input data line is RX, while the transmitter output data line is TX. No handshake lines are 
used. 
 
Example of a serial data frame representing character “A” (decimal 65 or hexadecimal 41): 
 

VCC             

 Idle Start 1 0 0 0 0 0 1 0 Stop Idle 

0V             
 
See also chapter Communication Protocol later on this manual for communication details. 
  



www.veear.eu 

12 EasyVR 3 (Plus) User Manual (1.0.17) 

Microphone 

The microphone provided with the EasyVR 3 module is an omnidirectional electret condenser microphone 
(Horn EM9745P-382): 

 Sensitivity -38dB (0dB=1V/Pa @1KHz) 
 Load Impedance 2.2K 
 Operating Voltage 3V 
 Almost flat frequency response in the range 100Hz – 20kHz 

The microphone circuit is optimized for use at ARMS_LENGTH (default, about 60cm) or FAR_MIC distance 
settings. 
 
If you use a microphone with different specifications the recognition accuracy may be adversely affected. 
Differences in rated load impedance and sensitivity can be compensated to a certain extent by changing 
the microphone gain. This can be done in several ways: 

 Replacing the internal gain resistor R4 (1.2kΩ) 
 Adding an external resistor Rx going in parallel with R4 (it can only reduce gain, useful for 

HEADSET distance settings) 
 Removing the internal resistor R4 and using only the external resistor Rx 

 

MIC

VM

RET

3V

AGND

R4

1.2kΩ

Module

Internals

External

Microphone

+

-

Rx Optional

 

Microphone circuit 

Modifying gain resistance 

You can calculate the overall microphone gain resistance using the formula below: 
               
 
Rs is the optimal microphone gain resistance 
I is the impedance rating of the microphone 
G is the desired overall system gain, defined as follows: 
 

 1. If the module is configured for HEADSET microphone distance (typically a few centimeters from 
the user’s mouth), then the overall system gain should be -49 dB (0dB=1v/Pa@1KHz); 

 2. If the module is configured for ARMS_LENGTH microphone distance (typically 60-90 cm from the 
user's mouth – this is the default setting of EasyVR), then the overall system gain should be -44 dB; 

 3. If the module is configured for FAR_MIC microphone distance (up to about 3 meters from the user's 
mouth), then the overall system gain should be -43 dB. 

 
S is the sensitivity rating of the microphone you want to use, and it is specified in –dB in the microphone’s 
specification3. 

                                                 
3
 Converting μBars to Pascal: microphone manufacturers specify the sensitivity referencing to μBars or 

Pascal. If the microphone sensitivity is referenced to μBars, simply add 20 dB to the rating. For example, -
58 dB/μBars + 20dB = -38 dBV/Pa. 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 13 

Examples 

1) The optimal gain resistance for the bundled microphone at ARMS_LENGTH distance is:               –              
 
Use the closest standard 5% resistor to Rs. In this example, it would be 1.1 kΩ. The EasyVR uses a 1.2 kΩ 
resistor to allow use of “FAR” settings without replacing the internal resistor. 
Sometimes you might also need to compensate some gain loss for a voltage lower than the microphone 
ratings (using a larger resistor value sets a higher input gain). 
 

2) The gain resistance for the bundled microphone at HEADSET distance would be:               –             
 
In this case you may just add an external 1.2 kΩ resistor to get a gain resistance of 600 Ω (close enough). 

Positioning guidelines 

Please note that improper acoustic positioning of the microphone will reduce recognition accuracy. Many 
mechanical arrangements are possible for the microphone element, and some will work better than 
others. When mounting the microphone in the final device, keep in mind the following guidelines: 
 

1. Flush Mounting - The microphone element should be positioned as close to the mounting surface 
as possible and should be fully seated in the plastic housing. There must be no airspace between 
the microphone element and the housing. Having such airspace can lead to acoustic resonance, 
which can reduce recognition accuracy. 
 

 
2. No Obstructions, Large Hole - The area in front of the microphone element must be kept clear of 

obstructions to avoid interference with recognition. The diameter of the hole in the housing in 
front of the microphone should be at least 5 mm. Any necessary plastic surface in front of the 
microphone should be as thin as possible, being no more than 0.7 mm, if possible. 
 

 
3. Insulation - The microphone should be acoustically isolated from the housing if possible. This can 

be accomplished by surrounding the microphone element with a spongy material such as rubber or 
foam. The provided microphone has this kind of insulating foam. The purpose is to prevent 

clear area 

internal 
diaphragm 

GOOD BAD 

cavity 



www.veear.eu 

14 EasyVR 3 (Plus) User Manual (1.0.17) 

auditory noises produced by handling or jarring the device from being “picked up” by the 
microphone. Such extraneous noises can reduce recognition accuracy. 
 

 
4. Distance - If the microphone is moved from 15 cm to 30 cm from the speaker’s mouth, the signal 

power decreases by a factor of four. The difference between a loud and a soft voice can also be 
more than a factor of four. Although the internal preamplifier of the EasyVR compensates for a 
wide dynamic range of input signal strength, if its range is exceeded, the user application can 
provide feedback to the speaker about the voice volume (see appendix Error codes). 

Audio Output 

The EasyVR 3 audio output interface is capable of directly driving an 8Ω speaker. It can also be connected 
to an external audio amplifier to drive lower impedance loudspeakers. 

Note: Connecting speakers with lower impedance directly to the module may permanently 
damage the EasyVR audio output or the whole module. 

 

 
 

It is possible to connect higher impedance loads such as headphones, provided that you scale down the 
output power according to the speaker ratings, for example using a series resistor. The exact resistor 
value depends on the headphone sensitivity and the desired output volume (usually in the order of 1-
10kΩ). 

Note: Connecting headphone speakers directly to the EasyVR audio output may damage your 
hearing. 

 

absorbent 
material 

fastened 
directly 

GOOD BAD 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 15 

General Purpose I/O 

Since the EasyVR communication interface takes two pins of the host controller, a few spare I/O pins are 
provided, which can be controlled with the communication protocol, to get those pins back for basic 
tasks, such as lighting an LED or reading a switch. 
 

The six I/O pins IO1–IO6 are connected directly to the embedded microcontroller on the EasyVR module, 

so they are referenced to the internal 3.0V regulated power supply VDD. If you need to interface to 

circuits using a different supply, there are a number of solutions you can adopt. Some of these are 

outlined below (here IOn indicates any one of the six I/O pins of the EasyVR). 

Use a pin as an output 

All the I/O pins are inputs with weak internal pull-up after power on. You must explicitly configure a pin 

before you can use it as an output (see the example code Use general purpose I/O pins). 

 

IOn

LED

 

IOn

Inverted 

OUT

5V

 

IOn
-

12V

RELAY

Z

Switched

Load

AC MAINS

Voltage

 

I/O pin directly driving a 
low-current LED 

I/O pin connected to high 
impedance 5V circuit (such as 

MCU input pin) 

I/O pin switching a load on a high voltage 
line using a 12V relay 

 

The exact components values in these circuits may vary. You need to calculate required values for your 

application and choice of components. For example, resistor value for the LED circuit can be calculated 

approximately as:          –         

 

Where VLED is the LED forward voltage, as reported on the LED datasheet, at the driving current IOH (see 

section Electrical Characteristics). Let’s assume a typical low-current LED has a VF=1.8V at 5mA, the 

resistor value is:                            

 

Now stay on the safe side and choose a slightly larger resistor, such as 150Ω. 
If you want to drive higher current LEDs, you need a circuit like the second one, where you put the LED 

between the output resistor and the collector of the NPN transistor. 

Use a pin as an input 

All the I/O pins are inputs with weak internal pull-up after power on or reset. You may also configure the 

pin to have a strong pull-up or no pull-up at all (see the example code Use general purpose I/O pins). 

 



www.veear.eu 

16 EasyVR 3 (Plus) User Manual (1.0.17) 

IOn

SWITCH

optional 

filter

 

IOn

5V

IN

 

IOn
Isolated

IN

optocoupler

 

I/O pin connected to a switch 
(or switching sensor) 

I/O pin connected 5V source 
(such as MCU output pin) 

I/O pin with isolated input (for 
safety circuits) 

 

All these circuits assume the EasyVR pin has been configured with an internal pull-up (passive components 

value can be adjusted to account for weak or strong pull-up). 

 

Disabling the internal pull-up could be used to put the pin in high-impedance state, for example to 

simulate a tri-state or open-drain output port. 

 

Again, you should refer to the manufacturer’s datasheet when interfacing any external components and to 
calculate required resistors values or other passive components. 

 

Flash Update 

The EasyVR module includes a boot loader that allows to update the firmware and to download new sound 

tables or custom grammars to the on-board memory. 

 

The boot mode is activated by keeping the XM signal to a high logical level at power on or reset. This can 

be easily done with a jumper (or switch) taking the signal to a suitable pull-up resistor. 

 

To download a firmware update, a sound table or a custom grammar to the EasyVR, power on the module 

with the jumper closed. For normal operation, just leave the jumper open. Do not change the jumper 

position while the module is already powered on. It is safe to change XM level while the module is reset 

(RST low). 

 

/XM

VCC

Jumper

Internal

Pull-down

 

Boot mode selection circuit 

 

To learn how to download new sound tables or custom grammars to your EasyVR 3 module, have a look at 

the section Using Custom Data. 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 17 

Quick start  guide for using the module 

Assembly notes 

The EasyVR 3 is provided with separate standard 2.54mm-pitch 
male headers that can be used to connect the module to a 
breadboard, prototyping board, custom boards or carrier boards 
like the EasyVR Shield 3. 
 
When male headers are necessary, make sure they are well 
soldered on the module in order to prevent electrical issues. 
 
Some practical guides to hand soldering: 

 Adafruit Guide To Excellent Soldering 
 Sparkfun How to Solder: Through-Hole Soldering 

 
When assembling the module, especially in preparation for the EasyVR Shield 3, make sure you insert male 
headers from the bottom side and solder them on the top side, and that all the headers are straight and 
vertical for a smooth insertion on the carrier board. 
 
The end result should be similar to the following pictures: 
 

 
 
 
  

https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering


www.veear.eu 

18 EasyVR 3 (Plus) User Manual (1.0.17) 

EasyVR 3 as a Development Board 

 
The EasyVR 3 module has been designed to allow use as a 
standalone development board when combined with a USB-
Serial adapter. 
 
The QuickUSB adapter cable can be used to program voice 
commands and sound outputs directly to an EasyVR 3 module 
and quickly test its functions from your PC. 
 
Just connect the microphone and an 8Ω speaker to the 
module, plug-in the adapter cable and you are ready to go. 
 
The EasyVR 3 boot mode is managed automatically through 
the serial handshake lines and you don’t need to set any 
jumper. 

Getting started 

1. Connect the microphone to the 2-way socket MIC (J6) 

2. Connect an 8Ω speaker to the 3-way socket SPEAKER (J5) 

3. Connect a QuickUSB cable to the 3x2 pins socket (J7) 

4. Plug the USB end of the adapter cable to your PC. 

The first time it may take some time to install the required drivers (see Software Setup) 

5. If your installation is successful you will see a new virtual COM port in your Device Manager: 

 

 

(The actual COM port number may vary) 

 
6. Now start the EasyVR Commander software 

7. Choose your COM Port and click connect 

8. Then enjoy your EasyVR! 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 19 

Serial Adapter Interface 

Connector J7 is a 6-pin socket specifically designed for the QuickUSB serial adapter cable, but another 
adapter may also be connected to this port, as long as it uses the same connector type, pin assignment 
and electrical specifications. 
 

Pin Name Type4 Notes 

1 RX_P I Adapter should have TTL/LVTTL compatible inputs (VIH = 2.0V) 

2 RTS_P O 
Adapter outputs can have 3.3V or 5V levels 
RTS handshake is required for automatic reset and boot mode control 

3 GND - Common ground 

4 5V_P O 
Adapter should provide a 5V DC power output for the module 
(see Recommended Operating Conditions and Power Supply 
Requirements) 

5 TX_P O Adapter outputs can have 3.3V or 5V levels 

6 CTS_P I CTS is tied to GND on the module 

 
Connector type is Hirose DF11 Series (female on the adapter cable, male on the module). 
  

                                                 
4 Please note that pin direction here is referring to the external adapter 



www.veear.eu 

20 EasyVR 3 (Plus) User Manual (1.0.17) 

EasyVR Shield 3 for Arduino 

Product description 

The EasyVR Shield 3 is an adapter board for the EasyVR 3 
module, designed to simplify its use among the Arduino 
community. 
 
The Shield is compatible with any Arduino board using UNO-R3 
Shield headers, running at either 3.3V or 5V levels, by using the 
IOREF pin to select the EasyVR operating voltage. 
 
It is also backward compatible with earlier Arduino boards that 
don’t have the IOREF pin, which are using 5V I/O levels by 
default. 
 
If your board does not have the IOREF pin but it is running at 3.3V, you can still operate the EasyVR Shield 
3 correctly if you manually connect pins IOREF and 3V3 together, for example with a jumper wire. 
 
The board comes with separate Arduino stackable headers for the Shield interface. The EasyVR 3 module 
is also provided separately. 

Note: The EasyVR 3 module and all stackable headers must be soldered before use! 

EasyVR Shield 3 Features 

 Compatible with Arduino boards that have the 1.0 Shield interface (UNO R3) including, but not 
limited to: 

o Arduino Zero 
o Arduino Uno 
o Arduino Mega 
o Arduino Leonardo 
o Arduino Due 

 Supports 5V and 3.3V main boards through the IOREF pin (defaults to 5V if this pin is absent) 
 Supports direct connection to the PC on main boards with a separate USB/Serial chip and a special 

software-driven “bridge mode” on boards with only native USB interface, for easy access and 
configuration with the EasyVR Commander 

 Enables different modes of serial connection and also flash updates to the embedded EasyVR 
module (through the Mode Jumper) 

 Supports remapping of serial pins used by the Shield (in SW mode) 
 Provides a 3.5mm audio output jack suitable for headphones or as a line out 

 

 

EasyVR Shield 3 fully assembled 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 21 

Technical specifications 

Board overview 

 

 PROG 
 

MODE JUMPER  

 

L
E
D

 
 S
W

 

H
W

 

P
C
 

U
P
 

L
E
O

  

 

 

  

E
A
S
Y
V
R

 

G
P
IO

 

IO1 

IO2 

IO3 

IO4 

IO5 

IO6 

  

A
R

D
U

IN
O

 

P
O

W
E
R

 

IOREF 

RESET 

3V3 

5V 

GND 

GND 

VIN 

  

A
R

D
U

IN
O

 

A
N

A
L
O

G
 

A0 

A1 

A2 

A3 

A4 

A5 

  
 

 

  

SDA 

A
R

D
U

IN
O

 

D
IG

IT
A
L
 

SCL 

AREF 

GND 

13 

12 

11 

10 

9 

8 
  

7 

A
R

D
U

IN
O

 

D
IG

IT
A
L
 

6 

5 

4 

3 

2 

1 

0 

  
 

 
 3.5mm JACK  MIC SPEAKER 

 LINE OUT  EASYVR AUDIO 
 

 

(Top View) 

 

S
W

 S
E
R
IA

L
 

P
IN

S
 

 

 

 

S
W

 S
E
R
IA

L
 

P
IN

S
 

TX – D13 D9 – TX 
  

RX – D12 D8 – RX 

  

(Detail – Bottom View) 



www.veear.eu 

22 EasyVR 3 (Plus) User Manual (1.0.17) 

Pin assignment 

Group Pin Description 

● ARDUINO 
HEADERS 

- 
Arduino UNO-R3 Shield interface, pass-through connectors 
(Pins 0-1 are in use when J12 is set to UP, PC, HW or LEO) 
(Pins 12-13 or 8-9 are in use when J12 is set to SW) 

● EASYVR 
AUDIO 

- Audio cables connectors of the EasyVR 3 module (microphone and speaker) 

● LINE OUT - 3.5mm stereo/mono jack (16Ω - 32Ω headphones or line-level output) 

● MODE 
JUMPER 

SW Arduino Software Serial (connected to pins 12-13 or 8-9) 

HW Arduino Hardware Serial (connected to pins 0-1) 

PC PC Mode (Arduino disabled, EasyVR in command mode) 

UP Update Mode (Arduino disabled, EasyVR in boot mode) 

LEO Leonardo Update (Arduino enabled, EasyVR in boot mode) 

● PROG - Red light indicator for Flash programming modes (UP and LEO) 

● SW SERIAL 
PINS 

RX Use resistor to select Software Serial RX pin: 12 or 8 

TX Use resistor to select Software Serial TX pin: 13 or 9 

● EASYVR 
GPIO 

IO1 

General purpose I/O as found on the embedded EasyVR 3 module 
(referenced at the internal VDD logic level – see note below) 

IO2 

IO3 

IO4 

IO5 

IO6 

Note: The General Purpose I/O lines (IO1-IO6) are at nominal 3.0VDC level. Do not connect 
higher voltages directly to these pins! 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 23 

Mode Jumper settings 

This jumper selects the operating mode of the EasyVR Shield and it can be placed in one of four positions: 

o SW – Software Serial mode 
Use it for controlling the EasyVR module from your Arduino sketch through a software serial port 
(using pins 12-13). You can also connect the EasyVR Commander in this mode, provided that the 
running sketch implements bridge mode (see the Arduino library examples). 

o HW – Hardware Serial mode 
Use it for controlling the EasyVR module from your Arduino sketch through the hardware serial 
port (using pins 0-1). 

o PC – PC Connection mode 
Use it for direct connection with the EasyVR Commander. In this mode, the Arduino controller is 
held in reset and only the embedded USB/Serial adapter is used. 

o UP – Flash Update mode 
Use it for firmware updates or to download sound table data and custom grammars to the on-
board flash memory from the EasyVR Commander. In this mode, the Arduino controller is held in 
reset and only the embedded USB/Serial adapter is used. The EasyVR module is set in boot mode. 

o LEO – Leonardo Update mode 
This is similar to the regular Flash Update mode, for Arduino boards that don’t have a separate 
USB/Serial adapter, such as Arduino Leonardo. The EasyVR module is set in boot mode, but the 
Arduino controller is not reset and it must be running the special “bridge” sketch. 

Software Serial Pins settings 

On the bottom side of the board there are two SMD resistors that you can move to select the two pins of 

Arduino that the EasyVR will be connected to when in Software Serial mode (Mode Jumper on SW). 

o RX – Software Serial Receiver pin 
 D12 – Use digital pin 12 as serial receiver (default) 
 D8 – Use digital pin 8 as serial receiver 

o TX – Software Serial Transmitter pin 
 D13 – Use digital pin 13 as serial transmitter (default) 
 D9 – Use digital pin 9 as serial transmitter 

The choice of pins 12-13 is maintained for backward compatibility with the previous hardware revisions of 

the EasyVR Shield. However those pins may also be used for the SPI interface, so another choice of pins 8-

9 is provided. If you want to use different pins make sure the receiver pin supports change interrupts. 

  



www.veear.eu 

24 EasyVR 3 (Plus) User Manual (1.0.17) 

Quick start guide for using the Shield 

Assembly notes 

The EasyVR Shield 3 is provided with separate through-hole 
headers to connect the Shield to Arduino boards and other 
microcontroller-based boards adopting an Arduino compatible 
interface. 
 
The EasyVR 3 module is provided separately and it should be 
fully assembled before it is soldered on top of the Shield. 
Make sure they are both well soldered in order to prevent 
electrical issues (see highlighted areas in the picture below). 
 
Some practical guides to hand soldering: 

 Adafruit Guide To Excellent Soldering 
 Sparkfun How to Solder: Through-Hole Soldering 

 
Before you mount the EasyVR 3 module on the top, make sure you have assembled the pass-through 
headers on the EasyVR Shield 3 in the correct position and orientation. It is easier if you place all the 
connectors through the Shield with their plastic housings faced down on your desk, so that they can stand 
straight and vertical, and allow soldering of the metal leads easily from the back side of the board, which 
is now facing up. 
 
As the last step, insert an already assembled EasyVR 3 module on its reserved footprint on the Shield, 
make sure it is plugged all the way in, and then complete soldering of male headers on the bottom side. 
 
The end result should be similar to the following pictures: 
 

 
 

Note: Pay attention to the tail of male headers (red areas) on the bottom of the EasyVR 3 
module when you plug the Shield on a base board and make sure they are not touching other 
metal parts or connectors. If necessary you can trim the tails to prevent undesired contacts. 

https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering


www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 25 

Prepare the software 

1. Install the EasyVR Commander, available on the VeeaR website: 
http://www.veear.eu/downloads/ 

2. Install a recent version of the Arduino IDE, available from the official Arduino community: 
https://www.arduino.cc/en/main/software 

3. Install the EasyVR Arduino libraries5 on your PC. 
You can use the “Library Manager” in recent versions of the Arduino IDE to automatically 
download and install the latest version of the library. 
In alternative, to perform a manual install see: 
https://www.arduino.cc/en/Guide/Libraries 

 

 

Figure 1 - Manual installation of Arduino library 

Prepare the hardware 

1. Insert the EasyVR Shield on top of your Arduino board 
2. If you want audio output, either wire an 8Ω speaker into the SPEAKER connector (J5) on the 

EasyVR module or connect headphones or amplified speakers to the LINE OUT 3.5mm audio jack on 
the Shield 

3. Connect the supplied microphone to the MIC connector (J6) on the EasyVR module 
4. Make sure the Mode Jumper (J7) is in the correct position (see table below) 
5. Connect a USB cable from your PC to the appropriate USB port for your Arduino board (see table 

below) 

  

                                                 
5 The Arduino library archive file can also be found in the EasyVR Commander program folder. 

http://www.veear.eu/downloads/
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/Guide/Libraries


www.veear.eu 

26 EasyVR 3 (Plus) User Manual (1.0.17) 

Shield configuration table 

Each Arduino board requires the correct combination of jumper settings and USB port, according to the 
operating mode and usage of the Shield. 
 
The EasyVR Shield can be configured to support several operating modes using the Mode Jumper (J7) and 
the special “bridge mode” software provided by the EasyVR Arduino library and included in all the 
example sketches. 
 
There are three main operating modes: 

1. Arduino Sketch 
The Shield can connect the EasyVR module to either the first Hardware Serial port on pins 0/1 or a 
Software Serial port on pins 8/9 or 12/13 (default). 
The example sketches will auto-configure the library to use the default settings in the table 
below, but customization is possible within some constraints. 
The Mode Jumper can be in the HW or SW position (sketch running normally). 

2. EasyVR Commander 
Some Arduino main boards have a second controller with a USB/Serial adapter that can be used for 
direct connection to the EasyVR module from the PC. 
Some boards have a native USB interface, or have a serial adapter which is not routed to the first 
Hardware Serial port. In those cases the “bridge” code running on the Arduino controller can soft-
connect the EasyVR module to the PC. 
The Mode Jumper can be in the PC position (sketch not running) or the HW or SW position (sketch 
running the “bridge” software). 

3. Download / Update 
This is similar to the above, except that the EasyVR module is configured to enter “boot mode” at 
power on or reset. 
The Mode Jumper can be in the UP position (sketch not running) or LEO position (sketch running 
the “bridge” software). 

Each board should also be connected to the correct on-board USB port (when more are available), which is 
used by the example sketches to provide feedback on the “Monitor Window” and to run the “bridge” 
software for the EasyVR Commander. 
 
Supported combinations are detailed in the table below: 
 

 Arduino Sketch EasyVR Commander Download / Update 

Main Board 
Mode 

Jumper 
USB Port 

Mode 
Jumper 

USB Port 
Mode 

Jumper 
USB Port 

Arduino Zero / M0 Pro HW Programming HW Programming LEO Programming 

Arduino Uno / Mega / 2009 SW Monitor SW / PC Monitor UP Monitor 

Arduino Leonardo / Due HW Native HW Native LEO Native 

Arduino Due HW Native PC Programming UP Programming 

 

Test the Shield on Arduino 

1. Select your Arduino board from Arduino IDE menu “Tools” > “Board” and the correct serial port 
(both choices must match the on-board USB port you have connected) 

2. Open and upload the example sketch “TestEasyVR” from the Arduino IDE menu  
3. Open the “Serial Monitor” window at 9600 bps 
4. Send a question mark “?” (without quotes) and after a few seconds you should receive an “EasyVR 

detected” message, along with a summary of the module configuration 
5. See the comments on top of the sketch for usage details and other tests you can perform 

Other examples are also included with the library, to test special features of the EasyVR module. 
 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 27 

 

Figure 2 - Finding example sketches for the EasyVR 

Test the Shield from the EasyVR Commander 

1. Select your Arduino board from Arduino IDE menu “Tools” > “Board” and the correct serial port 
(both choices must match the on-board USB port you have connected) 

2. Open and upload the example sketch “TestEasyVR” or “EasyVRBridge” from the Arduino IDE menu 
“File” > “Examples” > “EasyVR” 

3. Make sure the “Serial Monitor” window is not open in the Arduino IDE 
4. Open the EasyVR Commander and connect to the same serial port used by Arduino 

When the EasyVR Commander is connected, you can also generate a template code for Arduino that will 
use the provided libraries (see EasyVR Arduino Library Documentation). All you need is to write actions for 
each recognized command. 

Download custom data or Firmware update 

1. Follow the same steps for the EasyVR Commander above, but make sure to adjust the Mode 
Jumper settings for your main board (see table above) and that the PROG red LED is on 

2. While the EasyVR Commander is disconnected choose “Update Custom Data” from the “File” 
menu or “Update firmware” from the “Help” menu 

 
  



www.veear.eu 

28 EasyVR 3 (Plus) User Manual (1.0.17) 

EasyVR Programming 

Communication Protocol 

Introduction 

Communication with the EasyVR module uses a standard UART interface compatible with 3.3-5V TTL/CMOS 
logical levels, according to the powering voltage VCC. 
A typical connection to an MCU-based host: 
 

 
 
The initial configuration at power on is 9600 baud, 8 bit data, No parity, 1 bit stop. The baud rate can be 
changed later to operate in the range 9600 - 115200 baud. 
 
The communication protocol only uses printable ASCII characters, which can be divided in two main 
groups: 

 Command and status characters, respectively on the TX and RX lines, chosen among lower-case 
letters. 

 Command arguments or status details, again on the TX and RX lines, spanning the range of capital 
letters. 

Each command sent on the TX line, with zero or more additional argument bytes, receives an answer on 
the RX line in the form of a status byte followed by zero or more arguments. 
 
There is a minimum delay before each byte sent out from the EasyVR module to the RX line, that is 
initially set to 20 ms and can be selected later in the ranges 0 - 9 ms, 10 - 90 ms, and 100 ms - 1 s. That 
accounts for slower or faster host systems and therefore suitable also for software-based serial 
communication (bit-banging) or communication proxies/bridges. 
 
Since the EasyVR serial interface also is software-based, a very short delay might be needed before 
transmitting a character to the module, especially if the host is very fast, to allow the EasyVR to get back 
listening to a new character. 
 
The communication is host-driven and each byte of the reply to a command has to be acknowledged by 
the host to receive additional status data, using the space character. The reply is aborted if any other 
character is received and so there is no need to read all the bytes of a reply if not required. 
 
Invalid combinations of commands or arguments are signaled by a specific status byte, that the host 
should be prepared to receive if the communication fails. Also a reasonable timeout should be used to 
recover from unexpected failures. 
 
If the host does not send all the required arguments of a command, the command is ignored by the 
module, without further notification, and the host can start sending another command. 
 
The module automatically goes to lowest power sleep mode after power on. To initiate communication, 
send any character to wake-up the module. 
 
  

VCC 
GND 
ERX 
ETX 

EasyVR 

3.3V – 5V 
GND 
TX 
RX 

Host MCU 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 29 

Arguments Mapping 

Command or status messages sent over the serial link may have one or more numerical arguments in the 
range -1 to 31, which are encoded using mostly characters in the range of uppercase letters. These are 
some useful constants to handle arguments easily: 

ARG_MIN 

'@' (40h) Minimum argument value (-1) 

ARG_MAX 

'`' (60h) Maximum argument value (+31) 

ARG_ZERO 

'A' (41h) Zero argument value (0) 

ARG_ACK 

' ' (20h) Read more status arguments 

 
Having those constants defined in your code can simplify the validity checks and the encoding/decoding 
process. For example (in pseudo-code): 

# encode value 5 
FIVE = 5 + ARG_ZERO 
# decode value 5 
FIVE – ARG_ZERO = 5 
# validity check 
IF ARG < ARG_MIN OR ARG > ARG_MAX THEN ERROR 

 
Just to make things clearer, here is a table showing how the argument mapping works: 
 

ASCII @ A B C ... Y Z ^ [ \ ] _ ` 

HEX 40 41 42 43 ... 59 5A 5B 5C 5D 5E 5F 60 

Value -1 0 1 2 ... 24 25 26 27 28 29 30 31 

 

  



www.veear.eu 

30 EasyVR 3 (Plus) User Manual (1.0.17) 

Command Details 

This section describes the format of all the command strings accepted by the module. Please note that 
numeric arguments of command requests are mapped to upper-case letters (see above section). 
 
Some commands share the same lower case letter, because there were no command identifiers available 
when the protocol has been expanded, but the first argument is used to discriminate. 

CMD_BREAK 

'b' (62h) 

Abort recognition, training or playback in progress if any or do nothing 
 
Known issues: 
In firmware ID 0, any other character received during recognition will prevent this command 
from stopping recognition that will continue until timeout or other recognition results. 

Expected replies: STS_SUCCESS, STS_INTERR, STS_AWAKEN (if sleeping) 

CMD_SLEEP 

's' (73h) Go to the specified power-down mode 

[1] 

Sleep mode (0-8): 
  0 = wake on received character only 
  1 = wake on whistle or received character 
  2 = wake on loud sound or received character 
  3-5 = wake on double clap (with varying sensitivity) or received character 
  6-8 = wake on triple clap (with varying sensitivity) or received character 

Expected replies: STS_SUCCESS  

CMD_ID 

'x' (78h) Request firmware identification 

Expected replies: STS_ID 

CMD_DELAY 

'y' (79h) Set transmit delay 

[1] Time (0-10 = 0-10 ms, 11-19 = 20-100 ms, 20-28 = 200-1000 ms) 

Expected replies: STS_SUCCESS 

CMD_BAUDRATE 

'a' (61h) Set communication baud-rate 

[1] 

Speed mode: 
  1 = 115200 
  2 = 57600 
  3 = 38400 
  6 = 19200 
  12 = 9600 

Expected replies: STS_SUCCESS 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 31 

CMD_LEVEL 

'v' (76h) Set SD level 

[1] 

Strictness control setting (1-5): 
  1 = easy 
  2 = default 
  5 = hard 
A higher setting will result in more recognition errors. 

Expected replies: STS_SUCCESS 

CMD_KNOB 

'k' (6Bh) Set SI knob to specified level 

[1] 

Confidence threshold level (0-4): 
  0 = loosest: more valid results 
  2 = typical value (default) 
  4 = tightest: fewer valid results 
 
Note: knob is ignored for trigger words 

Expected replies: STS_SUCCESS 

CMD_MIC_DIST 

'k' (6Bh) Set the microphone operating distance 

[1] Fixed to (-1) 

[2] 

Distance settings (1-3): 
  1 = “headset” (around 5cm from speaker’s mouth) 
  2 = “arm’s length” (default setting, from about 50cm to 1m) 
  3 = “far mic” (up to around 3m) 

Expected replies: STS_SUCCESS 

CMD_TRAILING 

't' (74h) Set trailing silence for SI recognition 

[1] Fixed to (-1) 

[2] 

Amount of silence at the end of an utterance (0-31): 
  0 = 100ms 
  … in steps of 25ms 
  31 = 875ms 

Expected replies: STS_SUCCESS  

CMD_FAST_SD 

'f' (66h) Set fast operating mode for SD/SV recognition 

[1] Fixed to (-1) 

[2] Operating mode (0 = normal/default, 1 = fast/low-latency) 

Expected replies: STS_TOKEN, STS_TIMEOUT 

  



www.veear.eu 

32 EasyVR 3 (Plus) User Manual (1.0.17) 

CMD_LANGUAGE 

'l' (6Ch) Set SI language 

[1] 

Language: 
  0 = English 
  1 = Italian 
  2 = Japanese 
  3 = German 
  4 = Spanish 
  5 = French 

Expected replies: STS_SUCCESS 

CMD_TIMEOUT 

'o' (6Fh) Set recognition timeout 

[1] Timeout (-1 = default, 0 = infinite, 1-31 = seconds) 

Expected replies: STS_SUCCESS 

CMD_RECOG_SI 

'i' (69h) Activate SI recognition from specified word set 

[1] Word set index (0-3) 

Expected replies: STS_SIMILAR, STS_TIMEOUT, STS_ERROR 

CMD_TRAIN_SD 

't' (74h) Train specified SD/SV command 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

Expected replies: STS_SUCCESS, STS_RESULT, STS_SIMILAR, STS_TIMEOUT, STS_ERROR 

CMD_GROUP_SD 

'g' (67h) Insert new SD/SV command 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Position (0-31) 

Expected replies: STS_SUCCESS, STS_OUT_OF_MEM 

CMD_UNGROUP_SD 

'u' (75h) Remove SD/SV command 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Position (0-31) 

Expected replies: STS_SUCCESS 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 33 

CMD_RECOG_SD 

'd' (64h) Activate SD/SV recognition 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

Expected replies: STS_RESULT, STS_SIMILAR, STS_TIMEOUT, STS_ERROR 

CMD_ERASE_SD 

'e' (65h) Erase training of SD/SV command 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

Expected replies: STS_SUCCESS 

CMD_NAME_SD 

'n' (6Eh) Label SD/SV command 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

[3] Length of label (0-31) 

[4-n] 
Text for label (ASCII characters from 'A' to '`') 
EasyVR Commander encodes digits 0-9 as A-J prefixed by '^' 

Expected replies: STS_SUCCESS 

CMD_COUNT_SD 

'c' (63h) Request count of SD/SV commands in the specified group 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

Expected replies: STS_COUNT 

CMD_DUMP_SD 

'p' (70h) Read SD/SV command data (label and training) 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

Expected replies: STS_DATA 

CMD_MASK_SD 

'm' (6Dh) Request bit-mask of non-empty groups 

Expected replies: STS_MASK 

CMD_RESETALL 

'r' (72h) Reset all (erase commands/groups and messages) 

'R' (52h) Confirmation character 

Expected replies: STS_SUCCESS 



www.veear.eu 

34 EasyVR 3 (Plus) User Manual (1.0.17) 

CMD_RESET_SD 

'r' (72h) Reset only commands and groups 

'D' (52h) Confirmation character 

Expected replies: STS_SUCCESS 

CMD_RESET_RP 

'r' (72h) Reset only message recordings 

'M' (52h) Confirmation character 

Expected replies: STS_SUCCESS 

CMD_QUERY_IO 

'q' (71h) Configure, query or modify general purpose I/O pins 

[1] Pin number (1 = pin IO1, 2 = pin IO2, 3 = pin IO3) 

[2] 

Pin mode (0 = output low, 1 = output high, 2 = input*, 3 = input strong**, 4 = input weak***) 
* High impedance input (no pull-up) 
**Strong means ~10K internal pull-up 
***Weak means ~200K internal pull-up (default after power up) 

Expected replies: STS_SUCCESS (mode 0-1), STS_PIN (mode 2-4) 

CMD_PLAY_SX 

'w' (77h) Wave table entry playback 

[1-2] 
Two positive values that form a 10-bit index to the sound table (index = [1] * 32 + [2], 0 = 
built-in “beep”, 1-1023 = sound index) 

[3] Playback volume (0-31, 0 = min volume, 15 = full scale, 31 = double gain) 

Expected replies: STS_SUCCESS, STS_ERROR 

CMD_PLAY_DTMF 

'w' (77h) Play a DTMF key tone or dial tone 

[1] Fixed to (-1) 

[2] 
Index of phone tone to play (0-9 for digits, 10 for '*' key, 11 for '#' key and 12-15 for extra keys 
'A' to 'D', -1 for the dial tone) 

[3] Tone duration minus 1 (0-31 in 40ms units for keys, in seconds for the dial tone) 

Expected replies: STS_SUCCESS 

CMD_DUMP_SX 

'h' (68h) Read wave table data 

Expected replies: STS_TABLE_SX, STS_OUT_OF_MEM 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 35 

CMD_DUMP_SI 

'z' (7Ah) Read custom and built-in grammars data 

[1] 
Index of SI grammar to read (0-31) or (-1) to get the total count of SI grammars (including the 
first 4 built-in word sets) 

Expected replies: STS_GRAMMAR, STS_COUNT 

CMD_SEND_SN 

'j' (6Ah) Send a SonicNetTM token 

[1] Length of token (4 or 8 in bits) 

[2-3] 
Two positive values that form an 8-bit token index (index = [2] * 32 + [3], 0-15 for 4-bit tokens 
or 0-255 for 8-bits tokens) 

[4-5] 
Two positive values that form a 10-bit delay for token output since the next sound playback 
(delay = [4] * 32 + [5], 0 = send immediately, 1-1023 = delay in units of 27.46ms) 

Expected replies: STS_SUCCESS 

CMD_RECV_SN 

'f' (66h) Receive a SonicNetTM token 

[1] Length of token (4 or 8 in bits) 

[2] Rejection level (0-2 = higher values mean fewer results, 1 = default) 

[3-4] 
Two positive values that form a 10-bit timeout for token detection (timeout = [3] * 32 + [4], 0 
= wait forever, 1-1023 = timeout in units of 27.46ms) 

Expected replies: STS_TOKEN, STS_TIMEOUT 

CMD_LIPSYNC 

'l' (6Ch) Start real-time lip-sync 

[1] Fixed to (-1) 

[2-3] 
Activation threshold (10-bit value = [2] * 32 + [3]): 
  270 = default setting 

[4-5] 
Timeout option (8-bit value = [4] * 16 + [5]): 
  0 = no timeout (can be interrupted) 
  1-255 = duration in seconds 

Expected replies: STS_LIPSYNC 

CMD_RECORD_RP 

'r' (72h) Record a message 

[1] Fixed to (-1) 

[2] Message index (0-31) 

[3] Data format (8) 

[4] 
Timeout option (0-31): 
  0 = no timeout (can be interrupted) 
  1-31 = duration in seconds 

Expected replies: STS_SUCCESS, STS_ERROR 



www.veear.eu 

36 EasyVR 3 (Plus) User Manual (1.0.17) 

CMD_PLAY_RP 

'p' (70h) Play a message recording 

[1] Fixed to (-1) 

[2] Message index (0-31) 

[3] 
Playback options (bit-mask): 
  Bit 2 (4) = playback speed (0 = normal, 1 = fast) 
  Bit 1-0 (0-3) = volume attenuation (0 = normal, 1 = -2.2dB, 2 = -4.5dB, 3 = -6.7dB) 

Expected replies: STS_SUCCESS, STS_ERROR 

CMD_ERASE_RP 

'e' (65h) Erase a message recording 

[1] Fixed to (-1) 

[2] Message index (0-31) 

Expected replies: STS_SUCCESS, STS_ERROR 

CMD_VERIFY_RP 

'v' (76h) Verify file-system integrity for message recordings 

[1] Fixed to (-1) 

[2] 
Type of operation: 
  0 = check only 
  1 = check and fix errors 

Expected replies: STS_SUCCESS, STS_ERROR 

CMD_SERVICE + SVC_EXPORT_SD 

'~' (7Eh) Service protocol expansion 

'X' (58h) Export command raw data 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

Expected replies: STS_SERVICE + SVC_DUMP_SD 

CMD_SERVICE + SVC_IMPORT_SD 

'~' (7Eh) Service protocol expansion 

'I' (49h) Import command raw data 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

[3-514] Raw command data (encoded as hex nibbles – byte = [n] * 16 + [n+1]) 

[515-
518] 

Data checksum (16-bit sum of all 256 bytes, starting at 1234h) 

Expected replies: STS_SUCCESS, STS_INTERR (if checksum fails) 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 37 

CMD_SERVICE + SVC_VERIFY_SD 

'~' (7Eh) Service protocol expansion 

'V' (56h) Verify command raw data 

[1] Group index (0 = trigger, 1-15 = generic, 16 = password) 

[2] Command position (0-31) 

Expected replies: STS_SUCCESS, STS_RESULT, STS_SIMILAR, STS_ERROR 

 

Status Details 

Replies to commands follow this format. Please note that numeric arguments of status replies are mapped 
to upper-case letters (see the related section). 

STS_MASK 

'k' (6Bh) Mask of non-empty groups 

[1-8] 4-bit values that form 32-bit mask, LSB first 

In reply to: CMD_MASK_SD 

STS_COUNT 

'c' (63h) Count of commands or total number of SI grammars 

[1] Integer (0-31 = command/grammar count, -1 = 32 commands/grammars) 

In reply to: CMD_COUNT_SD, CMD_DUMP_SI 

STS_AWAKEN 

'w' (77h) Wake-up (back from power-down mode) 

In reply to: Any character after power on or sleep mode 

STS_DATA 

'd' (64h) Provide command data 

[1] 

Training information (-1=empty, 1-6 = training count, +8 = SD/SV conflict, +16 = SI conflict) 
Known issues: 
In firmware ID 0, command creation/deletion might cause other empty commands training 
count to change to 7. Treat count values of -1, 0 or 7 as empty training markers. Never train 
commands more than 2 or 3 times. 

[2] Conflicting command position (0-31, only meaningful when trained) 

[3] Length of label (0-31) 

[4-n] 
Text of label (ASCII characters from 'A' to '`') 
EasyVR Commander encodes digits 0-9 as A-J prefixed by '^' 

In reply to: CMD_DUMP_SD 

STS_ERROR 

'e' (65h) Signal recognition error 

[1-2] Two positive values that form an 8-bit error code (error = [1] * 16 + [2], see appendix) 

In reply to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD, CMD_PLAY_SX 



www.veear.eu 

38 EasyVR 3 (Plus) User Manual (1.0.17) 

STS_INVALID 

'v' (76h) Invalid command or argument 

In reply to: Any invalid command or argument 

STS_TIMEOUT 

't' (74h) Timeout expired 

In reply to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD 

STS_LIPSYNC 

'l' (6Ch) Lip-sync streaming data 

[1-N] 

Mouth position (0-31): 
  0 = fully closed 
  31 = fully open 
Note: 
New values are available at request around every 27ms until timeout occurs or command is 
interrupted. A new status is sent at the end (see STS_TIMEOUT, STS_INTERR). 

In reply to: CMD_LIPSYNC 

STS_INTERR 

'i' (69h) Interrupted recognition 

In reply to: CMD_BREAK while in training, recognition or playback 

STS_SUCCESS 

'o' (6Fh) OK or no errors status 

In reply to: CMD_BREAK, CMD_DELAY, CMD_BAUDRATE, CMD_TIMEOUT, CMD_KNOB, CMD_LEVEL, 
CMD_LANGUAGE, CMD_SLEEP, CMD_GROUP_SD, CMD_UNGROUP_SD, CMD_ERASE_SD, 
CMD_NAME_SD, CMD_RESETALL, CMD_QUERY_IO, CMD_PLAY_SX, etc. 

STS_RESULT 

'r' (72h) Recognized SD/SV command or Training similar to SD/SV command 

[1] Command position (0-31) 

In reply to: CMD_RECOG_SD, CMD_TRAIN_SD 

STS_SIMILAR 

's' (73h) Recognized SI word or Training similar to SI word 

[1] Word index (0-31) 

In reply to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD 

STS_OUT_OF_MEM 

'm' (6Dh) Memory error (no more room for commands or sound table not present) 

In reply to: CMD_GROUP_SD, CMD_DUMP_SX 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 39 

STS_ID 

'x' (78h) Provide firmware identification 

[1] Version identifier (0 = VRbot, 1-7 = EasyVR 2, 8-15 = EasyVR 3, 16+ = EasyVR 3 Plus) 

In reply to: CMD_ID 

STS_PIN 

'p' (70h) Provide pin input status 

[1] Logic level (0 = input low, 1 = input high) 

In reply to: CMD_QUERY_IO 

STS_TABLE_SX 

'd' (64h) Provide sound table data 

[1-2] 
Two positive values that form a 10-bit count of entries in the sound table (count = [1] * 32 + 
[2]) 

[3] Length of table name (0-31) 

[4-n] Text of table name (ASCII characters from 'A' to '`') 

In reply to: CMD_DUMP_SX 

STS_GRAMMAR 

'z' (7Ah) Provide custom grammar data 

[1] Some flags for this grammar (currently16 is returned for trigger grammars, 0 for commands) 

[2] Number of commands in this grammar (0-31) 

[3] Length of first command label (0-31) 

[4-n] Text of first command label (ASCII characters from 'A' to '`') 

… Repeat last two fields for all the commands in this grammar 

In reply to: CMD_DUMP_SI 

STS_TOKEN 

'f' (66h) Detected a SonicNetTM token 

[1-2] 
Two positive values that form the index of a received token (index = [1] * 32 + [2], 0-15 for 4-
bit tokens or 0-255 for 8-bits tokens) 

In reply to: CMD_RECV_SN 

STS_SERVICE + SVC_DUMP_SD 

'~' (7Eh) Service protocol expansion 

'D' (44h) Provide command raw data 

[1-512] Raw command data (encoded as hex nibbles – byte = [n] * 16 + [n+1]) 

[513-
516] 

Data checksum (16-bit sum of all 256 bytes, starting at 1234h) 

In reply to: CMD_SERVICE + SVC_EXPORT_SD 

  



www.veear.eu 

40 EasyVR 3 (Plus) User Manual (1.0.17) 

Communication Examples 

These are some examples of actual command and status characters exchanged with the EasyVR module by 
host programs and the expected program flow with pseudo-code sequences. 
The pseudo-instruction SEND transmits the specified character to the module, while RECEIVE waits for a 
reply character (a timeout is not explicitly handled for simple commands, but should be always 
implemented if possible). 
 
Also, the OK and ERROR routines are not explicitly defined, since they are host and programming language 
dependent, but appropriate code should be written to handle both conditions. 
Lines beginning with a # (sharp) character are comments. 
 
Please note that in a real programming language it would be best to define some constants for the 
command and status characters, as well as for mapping numeric arguments, that would be used 
throughout the program, to minimize the chance of repetition errors and clarify the meaning of the code. 
 
See the Protocol header file for sample definitions that can be used in a C language environment. 
 
Here below all the characters sent and received are written explicitly in order to clarify the 
communication protocol detailed in the previous sections. 

Recommended wake up procedure 

# wake up or interrupt recognition or do nothing 
# (uses a timeout or max repetition count) 
 
DO 
 SEND 'b' 
LOOP UNTIL RECEIVE = 'o' 

Recommended setup procedure 

# ask firmware id 

SEND 'x' 
IF NOT RECEIVE = 'x' THEN ERROR 
 
# send ack and read status (expecting id=0) 
SEND ' ' 
id = RECEIVE 
IF id = 'A' THEN 
 # it’s a VRbot 
ELSE IF id = 'B' THEN 
 # it’s an EasyVR 
ELSE 
 # next generation? 
END IF 
 

# set language for SI recognition (Japanese) 
SEND 'l' 
SEND 'C' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 
 

# set timeout (5 seconds) 
SEND 'o' 
SEND 'F' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 41 

Recognition of a built-in or custom SI command 

# start recognition in wordset 1 
SEND 'i' 
SEND 'B' 
# wait for reply: 
# (if 5s timeout has been set, wait for max 6s then abort 
#  otherwise trigger recognition could never end) 
result = RECEIVE 
 
IF result = 's' THEN 
 # successful recognition, ack and read result 
 SEND ' ' 
 command = RECEIVE – 'A' 
 # perform actions according to command 
ELSE IF result = 't' THEN 

 # timed out, no word spoken 
ELSE IF result = 'e' THEN 
 # error code, ack and read which one 
 SEND ' ' 

 error = (RECEIVE – 'A') * 16 
 SEND ' ' 
 error = error + (RECEIVE – 'A') 
 # perform actions according to error 
ELSE 
 # invalid request or reply 
 ERROR 
END IF 

Adding a new SD command 

# insert command 0 in group 3 

SEND 'g' 
SEND 'D' 
SEND 'A' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 
 
# set command label to “ARDUINO_2009” 
SEND 'g' 
SEND 'D' 
SEND 'A' 
SEND 'Q' # name length (16 characters, digits count twice) 
SEND 'A' 
SEND 'R' 
SEND 'D' 
SEND 'U' 
SEND 'I' 
SEND 'N' 

SEND 'O' 
SEND '_' 
# encode each digit with a ^ prefix 
# followed by the digit mapped to upper case letters 
SEND '^' 
SEND 'C' 
SEND '^' 
SEND 'A' 
SEND '^' 

SEND 'A' 
SEND '^' 
SEND 'J' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 

  



www.veear.eu 

42 EasyVR 3 (Plus) User Manual (1.0.17) 

Training an SD command 

# repeat the whole training procedure twice for best results 
# train command 0 in group 3 
SEND 't' 
SEND 'D' 
SEND 'A' 
# wait for reply: 
#  (default timeout is 3s, wait for max 1s more then abort) 
result = RECEIVE 
 
IF RECEIVE = 'o' THEN 
 # training successful 
 OK 
ELSE IF result = 'r' THEN 
 # training saved, but spoken command is similar to 

 # another SD command, read which one 
 SEND ' ' 
 command = RECEIVE – 'A' 
 # may notify user and erase training or keep it 

ELSE IF result = 's' THEN 
 # training saved, but spoken command is similar to 
 # another SI command (always trigger, may skip reading) 
 SEND ' ' 
 command = RECEIVE – 'A' 
 # may notify user and erase training or keep it 
ELSE IF result = 't' THEN 
 # timed out, no word spoken or heard 
ELSE IF result = 'e' THEN 
 # error code, ack and read which one 
 SEND ' ' 
 error = (RECEIVE – 'A') * 16 
 SEND ' ' 

 error = error + (RECEIVE – 'A') 
 # perform actions according to error 
ELSE 
 # invalid request or reply 
 ERROR 
END IF 

Recognition of an SD command 

# start recognition in group 1 
SEND 'd' 
SEND 'B' 
# wait for reply: 
result = RECEIVE 
 

IF result = 'r' THEN 
 # successful recognition, ack and read result 
 SEND ' ' 
 command = RECEIVE – 'A' 
 # perform actions according to command 
ELSE IF result = 't' THEN 
 # timed out, no word spoken 
ELSE IF result = 'e' THEN 
 # error code, ack and read which one 

 SEND ' ' 
 error = (RECEIVE – 'A') * 16 
 SEND ' ' 
 error = error + (RECEIVE – 'A') 
 # perform actions according to error 
ELSE 
 # invalid request or reply 
 ERROR 

END IF 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 43 

Read used command groups 

# request mask of groups in use 
SEND 'm' 
IF NOT RECEIVE = 'k' THEN ERROR 
# read mask to 32 bits variable 
# in 8 chunks of 4 bits each 
SEND ' ' 
mask = (RECEIVE – 'A') 
SEND ' ' 
mask = mask + (RECEIVE – 'A') * 24 
SEND ' ' 
mask = mask + (RECEIVE – 'A') * 28 
... 
SEND ' ' 
mask = mask + (RECEIVE – 'A') * 224 

Read how many commands in a group 

# request command count of group 3 
SEND 'c' 
SEND 'D' 
IF NOT RECEIVE = 'c' THEN ERROR 
# ack and read count 
SEND ' ' 
count = RECEIVE - 'A' 
IF count = -1 THEN count = 32 

Read a user defined command group 

# dump command 0 in group 3 

SEND 'p' 
SEND 'D' 
SEND 'A' 
IF NOT RECEIVE = 'd' THEN ERROR 
# read command data 
SEND ' ' 

training = RECEIVE – 'A' 
# extract training count (2 for a completely trained command) 
tr_count = training AND 7 
# extract flags for conflicts (SD or SI) 
tr_flags = training AND 24 
# read index of conflicting command (same group) if any 
SEND ' ' 
conflict = RECEIVE – 'A' 
# read label length 
SEND ' ' 

length =  RECEIVE – 'A' 
# read label text 
FOR i = 0 TO length - 1 
 SEND ' ' 
 label[i] = RECEIVE 
 # decode digits 
 IF label[i] = '^' THEN 
 SEND ' ' 
 label[i] = RECEIVE – 'A' + '0' 
 END IF 
NEXT 

  



www.veear.eu 

44 EasyVR 3 (Plus) User Manual (1.0.17) 

Use general purpose I/O pins 

# set IO1 pin to logic low level 
SEND 'q' 
SEND 'B' 
SEND 'A' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 
 
# set IO2 pin to logic high level 
SEND 'q' 
SEND 'C' 
SEND 'B' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 
 
# set IO2 pin as input with strong pull-up and read state 
SEND 'q' 

SEND 'C' 
SEND 'D' 
IF NOT RECEIVE = 'p' THEN ERROR 
# ack and read logic level 

SEND ' ' 
pin_level = RECEIVE – 'A' 
 
# set IO3 pin as high impedance input (reading state is optional) 
SEND 'q' 
SEND 'D' 
SEND 'C' 
IF NOT RECEIVE = 'p' THEN ERROR 

Use custom sound playback 

# play a beep at full volume (works with any or no table) 

SEND 'w' 
SEND 'A' 
SEND 'A' 
SEND 'P' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 
 

# play entry 13 at half volume 
SEND 'w' 
SEND 'A' 
SEND 'N' 
SEND 'H' 
IF RECEIVE = 'o' THEN OK ELSE ERROR 
 
# play entry 123 (=3*32+26) at max volume 
SEND 'w' 
SEND 'A' + 3 

SEND 'A' + 26 
SEND 'A' + 31 
IF RECEIVE = 'o' THEN OK ELSE ERROR 

Read sound table 

# dump sound table 
SEND 'h' 

IF NOT RECEIVE = 'h' THEN ERROR 
# read count of entries and name length 
SEND ' ' 
count = (RECEIVE – 'A') * 32 
SEND ' ' 
count = count + (RECEIVE – 'A') 
SEND ' ' 
length = RECEIVE – 'A' 
# read name text 
FOR i = 0 TO length - 1 
 SEND ' ' 
 label[i] = RECEIVE 
NEXT 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 45 

Built-in Command Sets 

In the tables below a list of all built-in commands for each supported language, along with group index 
(trigger or word set), command index and language identifier to use with the communication protocol. 
 

  Language 

  0 1 2 3 4 5 

Trigger 
Word set 

Command 
Index 

English 
(US) 

Italian Japanese (Rōmaji) German Spanish French 

0 0 robot robot ロボット robotto roboter robot robot 

1 

0 action azione アクション acution aktion acción action 

1 move vai 進め susu-me gehe muévete bouge 

2 turn gira 曲がれ magare wende gira tourne 

3 run corri 走れ hashire lauf corre cours 

4 look guarda 見ろ miro schau mira regarde 

5 attack attacca 攻撃 kougeki attacke ataca attaque 

6 stop fermo 止まれ tomare halt para arrête 

7 hello ciao こんにちは konnichiwa hallo hola salut 

2 

0 left a sinistra 左 hidari nach links a la izquierda à gauche 

1 right a destra 右 migi nach rechts a la derecha à droite 

2 up in alto 上 ue hinauf arriba vers le haut 

3 down in basso 下 shita hinunter abajo vers le bas 

4 forward avanti 前 mae vorwärts adelante en avant 

5 backward indietro 後ろ ushiro rückwärts atrás en arrière 

3 

0 zero zero ゼロ zero null cero zéro 

1 one uno 一 ichi eins uno un 

2 two due 二 ni zwei dos deux 

3 three tre 三 san drei tres trois 

4 four quattro 四 yon vier cuatro quatre 

5 five cinque 五 go fünf cinco cinq 

6 six sei 六 roku sechs seis six 

7 seven sette 七 nana sieben siete sept 

8 eight otto 八 hachi acht ocho huit 

9 nine nove 九 kyu neun nueve neuf 

10 ten dieci 十 jyuu zehn diez dix 

  



www.veear.eu 

46 EasyVR 3 (Plus) User Manual (1.0.17) 

Error codes 

Below the list of the most useful error codes that may be returned by training or recognizing commands. 
 

03h ERR_DATACOL_TOO_NOISY too noisy 

04h ERR_DATACOL_TOO_SOFT spoke too soft 

05h ERR_DATACOL_TOO_LOUD spoke too loud 

06h ERR_DATACOL_TOO_SOON spoke too soon 

07h ERR_DATACOL_TOO_CHOPPY too many segments/too complex 

11h ERR_RECOG_FAIL recognition failed 

12h ERR_RECOG_LOW_CONF recognition result doubtful 

13h ERR_RECOG_MID_CONF recognition result maybe 

14h ERR_RECOG_BAD_TEMPLATE invalid SD/SV command stored in memory 

17h ERR_RECOG_DURATION bad pattern durations 

31h ERR_RP_BAD_LEVEL play - illegal compression level 

38h ERR_RP_NO_MSG play, erase, copy - msg doesn't exist 

39h ERR_RP_MSG_EXISTS rec, copy - msg already exists 

4Ah ERR_SYNTH_BAD_VERSION bad release number in speech file 

4Eh ERR_SYNTH_BAD_MSG bad data in speech file or invalid compression 

80h ERR_CUSTOM_NOTA recognized SI word is not in vocabulary 

81h ERR_CUSTOM_INVALID invalid data (for memory check) 

 
The first group of codes (03h – 07h) is due to errors in the way of speaking to the EasyVR or disturbances in 
the acquired audio signal that may depend on the surrounding environment. 
 
The second group (11h – 13h) indicates an insufficient score of the recognized word (from lowest to 
highest). Acceptance of lower score results may be allowed by lowering the “knob” or “level” settings, 
respectively for built-in and custom commands (see CMD_KNOB and CMD_LEVEL). 
 
A third group of codes (14h – 17h) reports errors in the stored commands that may be due to memory 
corruption. We suggest you check power level and connections, then erase all the commands in the faulty 
group and train them again. 
 
The fourth group of codes (31h – 39h) deals with errors in message recording, playback or erase. 
 
The fifth group (4Ah – 4Eh) deals with errors in the compressed sound data, either because the wrong 
version of the QuickSynthesisTM tool has been used to generate the sound table or because a not supported 
compression scheme has been selected (or data is generically invalid). 
 
The last group (80h – 81h) contains error codes of the EasyVR module itself. Error code (80h = NOTA) 
means that a word has been recognized that is not in the specified built-in sets. This is due to how 
Speaker Independent recognition works and can be ignored. Error code (81h = INVALID) is a generic error 
reported after data validation and currently used for file-system check-up (message recordings). 
 
  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 47 

Protocol header file 

This file “protocol.h” can be used with applications written in the C language. You can download a recent 
copy from the VeeaR website. 
 

#ifndef PROTOCOL_H 
#define PROTOCOL_H 
 
#define CMD_BREAK       'b' // abort recog or ping 

#define CMD_SLEEP       's' // go to power down 
#define CMD_KNOB        'k' // set si knob <1> 
#define CMD_MIC_DIST    'k' // set microphone (<1>=-1) distance <2> 
#define CMD_LEVEL       'v' // set sd level <1> 
#define CMD_VERIFY_RP   'v' // verify filesystem (<1>=-1) with flags <2> (0=check only, 1=fix) 
#define CMD_LANGUAGE    'l' // set si language <1> 
#define CMD_LIPSYNC     'l' // start real-time lipsync (<1>=-1) with threshold <2-3>, timeout <4-5> 
#define CMD_TIMEOUT     'o' // set timeout <1> 
#define CMD_RECOG_SI    'i' // do si recog from ws <1> 

#define CMD_TRAIN_SD    't' // train sd command at group <1> pos <2> 
#define CMD_TRAILING    't' // set trailing (<1>=-1) silence <2> (0-31 = 100-875 milliseconds) 
#define CMD_GROUP_SD    'g' // insert new command at group <1> pos <2> 
#define CMD_UNGROUP_SD  'u' // remove command at group <1> pos <2> 
#define CMD_RECOG_SD    'd' // do sd recog at group <1> (0 = trigger mixed si/sd) 
#define CMD_DUMP_RP     'd' // dump message (<1>=-1) at pos <2> 
#define CMD_ERASE_SD    'e' // reset command at group <1> pos <2> 

#define CMD_ERASE_RP    'e' // erase recording (<1>=-1) at pos <2> 
#define CMD_NAME_SD     'n' // label command at group <1> pos <2> with length <3> name <4-n> 
#define CMD_COUNT_SD    'c' // get command count for group <1> 
#define CMD_DUMP_SD     'p' // read command data at group <1> pos <2> 
#define CMD_PLAY_RP     'p' // play recording (<1>=-1) at pos <2> with flags <3> 
#define CMD_MASK_SD     'm' // get active group mask 
#define CMD_RESETALL    'r' // reset all memory (commands/groups and messages), with <1>='R' 
#define CMD_RESET_SD    'r' // reset only commands/groups, with <1>='D' 
#define CMD_RESET_RP    'r' // reset only messages, with <1>='M' 
#define CMD_RECORD_RP   'r' // record message (<1>=-1) at pos <2> with bits <3> and timeout <4> 
#define CMD_ID          'x' // get version id 
#define CMD_DELAY       'y' // set transmit delay <1> (log scale) 

#define CMD_BAUDRATE    'a' // set baudrate <1> (bit time, 1=>115200) 
#define CMD_QUERY_IO    'q' // configure, read or write I/O pin <1> of type <2> 
#define CMD_PLAY_SX     'w' // wave table entry <1-2> (10-bit) playback at volume <3> 
#define CMD_PLAY_DTMF   'w' // play (<1>=-1) dial tone <2> for duration <3> 
#define CMD_DUMP_SX     'h' // dump wave table entries 

#define CMD_DUMP_SI     'z' // dump si settings for ws <1> (or total ws count if -1) 
#define CMD_SEND_SN     'j' // send sonicnet token with bits <1> index <2-3> at time <4-5> 
#define CMD_RECV_SN     'f' // receive sonicnet token with bits <1> rejection <2> timeout <3-4> 
#define CMD_FAST_SD     'f' // set sd/sv (<1>=-1) to use fast recognition <2> (0=normal/default, 1=fast) 
 
#define CMD_SERVICE     '~' // send service request 
#define SVC_EXPORT_SD   'X' // request export of command <2> in group <1> as raw dump 
#define SVC_IMPORT_SD   'I' // request import of command <2> in group <1> as raw dump 
#define SVC_VERIFY_SD   'V' // verify training of imported raw command <2> in group <1> 
 
#define STS_SERVICE     '~' // get service reply 
#define SVC_DUMP_SD     'D' // provide raw command data <1-512> followed by checksum <513-516> 
 
#define STS_MASK        'k' // mask of active groups <1-8> 

#define STS_COUNT       'c' // count of commands <1> (or number of ws <1>) 
#define STS_AWAKEN      'w' // back from power down mode 
#define STS_DATA        'd' // provide training <1>, conflict <2>, command label <3-35> (counted string) 

#define STS_ERROR       'e' // signal error code <1-2> 
#define STS_INVALID     'v' // invalid command or argument 
#define STS_TIMEOUT     't' // timeout expired 
#define STS_LIPSYNC     'l' // lipsync stream follows 
#define STS_INTERR      'i' // back from aborted recognition (see 'break') 
#define STS_SUCCESS     'o' // no errors status 
#define STS_RESULT      'r' // recognised sd command <1> - training similar to sd <1> 
#define STS_SIMILAR     's' // recognised si <1> (in mixed si/sd) - training similar to si <1> 
#define STS_OUT_OF_MEM  'm' // no more available commands (see 'group') 
#define STS_ID          'x' // provide version id <1> 
#define STS_PIN         'p' // return pin state <1> 
#define STS_TABLE_SX    'h' // table entries count <1-2> (10-bit), table name <3-35> (counted string) 
#define STS_GRAMMAR     'z' // si grammar: flags <1>, word count <2>, labels... <3-35> (n counted strings) 
#define STS_TOKEN       'f' // received sonicnet token <1-2> 

http://www.veear.eu/downloads


www.veear.eu 

48 EasyVR 3 (Plus) User Manual (1.0.17) 

#define STS_MESSAGE     'g' // message status <1> (0=empty, 4/8=bits format), length <2-7> 

 
// protocol arguments are in the range 0x40 (-1) to 0x60 (+31) inclusive 
#define ARG_MIN     0x40 
#define ARG_MAX     0x60 
#define ARG_ZERO    0x41 
 
#define ARG_ACK     0x20    // to read more status arguments 
 
#endif //PROTOCOL_H 

 
A better source of information and a reference protocol implementation for the C/C++ language can be 

found in the Arduino Library source. 

  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 49 

EasyVR Arduino Library 

The EasyVR library implements the serial communication protocol to manage the EasyVR module and the 
EasyVR Shield from Arduino boards and compatible controllers and it enables a quick access to all the 
EasyVR features. 

Installation 

To install the EasyVR library on your Arduino IDE use the menu Sketch > Include Library > Add .ZIP 
Library  and open the release archive. 
You can also use Sketch > Include Library > Manage Libraries...  and look for "EasyVR" to 
download and install the latest release. 

Examples 

You can easily open the example sketches included with the EasyVR library from inside the Arduino IDE, 

using the menu File > Examples > EasyVR  and choosing one of the available sketches.  

EasyVR library settings 

Macros 

 #define EASYVR_RX_TIMEOUT 
 #define EASYVR_STORAGE_TIMEOUT 
 #define EASYVR_WAKE_TIMEOUT 
 #define EASYVR_PLAY_TIMEOUT 
 #define EASYVR_TOKEN_TIMEOUT 

Detailed Description 

By assigning new values to these symbols you can alter the default settings used by the library 
implementation. 
These settings are available for completeness. The default values should be appropriate for normal use 
cases.  

Macro Definition Documentation 

#define EASYVR_RX_TIMEOUT 

Receive timeout (in ms). The maximum time that is spent waiting for a reply from the EasyVR module.  

#define EASYVR_STORAGE_TIMEOUT 

Reply timeout for storage operations (in ms). The maximum time that is spent waiting for a reply after 
a command that involves write access to the EasyVR internal storage.  

#define EASYVR_WAKE_TIMEOUT 

Wakeup maximum delay (in ms). The maximum time that the EasyVR module can spend for waking up 
from idle states.  

#define EASYVR_PLAY_TIMEOUT 

Playback maximum duration (in ms). The maximum time that is spent waiting for a synchronous 
playback operation to complete. Asynchronous playback is not affected.  

#define EASYVR_TOKEN_TIMEOUT 

Token maximum duration (in ms). The maximum time that is spent by the EasyVR module for sending 
a SonicNet token and reply.  



www.veear.eu 

50 EasyVR 3 (Plus) User Manual (1.0.17) 

EasyVR Class Reference 

Public Types 

 enum ModuleId { VRBOT, EASYVR, EASYVR2, EASYVR2_3, EASYVR3, EASYVR3_1, EASYVR3_2, 
EASYVR3_3, EASYVR3_4, EASYVR3_5, EASYVR3PLUS } 

 enum Language { ENGLISH, ITALIAN, JAPANESE, GERMAN, SPANISH, FRENCH } 
 enum Group { TRIGGER, PASSWORD } 
 enum Wordset { TRIGGER_SET, ACTION_SET, DIRECTION_SET, NUMBER_SET } 
 enum Distance { HEADSET, ARMS_LENGTH, FAR_MIC } 
 enum Knob { LOOSER, LOOSE, TYPICAL, STRICT, STRICTER } 
 enum Level { EASY, NORMAL, HARD, HARDER, HARDEST } 
 enum TrailingSilence { TRAILING_MIN, TRAILING_DEF, TRAILING_MAX, TRAILING_100MS, 

TRAILING_200MS, TRAILING_300MS, TRAILING_400MS, TRAILING_500MS, TRAILING_600MS, 
TRAILING_700MS, TRAILING_800MS } 

 enum CommandLatency { MODE_NORMAL, MODE_FAST } 
 enum Baudrate { B115200, B57600, B38400, B19200, B9600 } 
 enum WakeMode { WAKE_ON_CHAR, WAKE_ON_WHISTLE, WAKE_ON_LOUDSOUND, WAKE_ON_2CLAPS, 

WAKE_ON_3CLAPS } 
 enum ClapSense { CLAP_SENSE_LOW, CLAP_SENSE_MID, CLAP_SENSE_HIGH } 
 enum PinConfig { OUTPUT_LOW, OUTPUT_HIGH, INPUT_HIZ, INPUT_STRONG, INPUT_WEAK } 
 enum PinNumber { IO1, IO2, IO3, IO4, IO5, IO6 } 
 enum SoundVolume { VOL_MIN, VOL_HALF, VOL_FULL, VOL_DOUBLE } 
 enum SoundIndex { BEEP } 
 enum GrammarFlag { GF_TRIGGER } 
 enum RejectionLevel { REJECTION_MIN, REJECTION_AVG, REJECTION_MAX } 
 enum MessageSpeed { SPEED_NORMAL, SPEED_FASTER } 
 enum MessageAttenuation { ATTEN_NONE, ATTEN_2DB2, ATTEN_4DB5, ATTEN_6DB7 } 
 enum MessageType { MSG_EMPTY, MSG_8BIT } 
 enum LipsyncThreshold { RTLS_THRESHOLD_DEF, RTLS_THRESHOLD_MAX } 
 enum ErrorCode { ERR_DATACOL_TOO_LONG, ERR_DATACOL_TOO_NOISY, ERR_DATACOL_TOO_SOFT, 

ERR_DATACOL_TOO_LOUD, ERR_DATACOL_TOO_SOON, ERR_DATACOL_TOO_CHOPPY, 
ERR_DATACOL_BAD_WEIGHTS, ERR_DATACOL_BAD_SETUP, ERR_RECOG_FAIL, ERR_RECOG_LOW_CONF, 
ERR_RECOG_MID_CONF, ERR_RECOG_BAD_TEMPLATE, ERR_RECOG_BAD_WEIGHTS, 
ERR_RECOG_DURATION, ERR_T2SI_EXCESS_STATES, ERR_T2SI_BAD_VERSION, ERR_T2SI_OUT_OF_RAM, 
ERR_T2SI_UNEXPECTED, ERR_T2SI_OVERFLOW, ERR_T2SI_PARAMETER, ERR_T2SI_NN_TOO_BIG, 
ERR_T2SI_NN_BAD_VERSION, ERR_T2SI_NN_NOT_READY, ERR_T2SI_NN_BAD_LAYERS, 
ERR_T2SI_TRIG_OOV, ERR_T2SI_TOO_SHORT, ERR_RP_BAD_LEVEL, ERR_RP_NO_MSG, 
ERR_RP_MSG_EXISTS, ERR_SYNTH_BAD_VERSION, ERR_SYNTH_ID_NOT_SET, 
ERR_SYNTH_TOO_MANY_TABLES, ERR_SYNTH_BAD_SEN, ERR_SYNTH_BAD_MSG, ERR_CUSTOM_NOTA, 
ERR_CUSTOM_INVALID, ERR_SW_STACK_OVERFLOW, ERR_INTERNAL_T2SI_BAD_SETUP } 

 enum BridgeMode { BRIDGE_NONE, BRIDGE_NORMAL, BRIDGE_BOOT, BRIDGE_ESCAPE_CHAR } 

Public Member Functions 

 EasyVR (Stream &s) 
 bool detect () 
 bool stop () 
 int8_t getID () 
 bool setLanguage (int8_t lang) 
 bool setTimeout (int8_t seconds) 
 bool setMicDistance (int8_t dist) 
 bool setKnob (int8_t knob) 
 bool setTrailingSilence (int8_t dur) 
 bool setLevel (int8_t level) 
 bool setCommandLatency (int8_t mode) 
 bool setDelay (uint16_t millis) 
 bool changeBaudrate (int8_t baud) 
 bool sleep (int8_t mode) 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 51 

 bool addCommand (int8_t group, int8_t index) 
 bool removeCommand (int8_t group, int8_t index) 
 bool setCommandLabel (int8_t group, int8_t index, const char *name) 
 bool eraseCommand (int8_t group, int8_t index) 
 bool getGroupMask (uint32_t &mask) 
 int8_t getCommandCount (int8_t group) 
 bool dumpCommand (int8_t group, int8_t index, char *name, uint8_t &training) 
 int8_t getGrammarsCount (void) 
 bool dumpGrammar (int8_t grammar, uint8_t &flags, uint8_t &count) 
 bool getNextWordLabel (char *name) 
 void trainCommand (int8_t group, int8_t index) 
 void recognizeCommand (int8_t group) 
 void recognizeWord (int8_t wordset) 
 bool hasFinished () 
 int8_t getCommand () 
 int8_t getWord () 
 int16_t getToken () 
 int16_t getError () 
 bool isTimeout () 
 bool isAwakened () 
 bool isConflict () 
 bool isMemoryFull () 
 bool isInvalid () 
 bool setPinOutput (int8_t pin, int8_t config) 
 int8_t getPinInput (int8_t pin, int8_t config) 
 void detectToken (int8_t bits, int8_t rejection, uint16_t timeout) 
 void sendTokenAsync (int8_t bits, uint8_t token) 
 bool sendToken (int8_t bits, uint8_t token) 
 bool embedToken (int8_t bits, uint8_t token, uint16_t delay) 
 void playSoundAsync (int16_t index, int8_t volume) 
 bool playSound (int16_t index, int8_t volume) 
 bool dumpSoundTable (char *name, int16_t &count) 
 bool playPhoneTone (int8_t tone, uint8_t duration) 
 bool resetAll (bool wait=true) 
 bool resetCommands (bool wait=true) 
 bool resetMessages (bool wait=true) 
 bool checkMessages () 
 bool fixMessages (bool wait=true) 
 void recordMessageAsync (int8_t index, int8_t bits, int8_t timeout) 
 void playMessageAsync (int8_t index, int8_t speed, int8_t atten) 
 void eraseMessageAsync (int8_t index) 
 bool dumpMessage (int8_t index, int8_t &type, int32_t &length) 
 bool realtimeLipsync (int16_t threshold, uint8_t timeout) 
 bool fetchMouthPosition (int8_t &value) 
 bool exportCommand (int8_t group, int8_t index, uint8_t *data) 
 bool importCommand (int8_t group, int8_t index, const uint8_t *data) 
 void verifyCommand (int8_t group, int8_t index) 
 int bridgeRequested (Stream &port) 
 void bridgeLoop (Stream &port) 

Detailed Description 

An implementation of the EasyVR communication protocol.  

Member Enumeration Documentation 

enum ModuleId 

Module identification number (firmware version)  



www.veear.eu 

52 EasyVR 3 (Plus) User Manual (1.0.17) 

Enumerator 

VRBOT  Identifies a VRbot module  
EASYVR  Identifies an EasyVR module  
EASYVR2  Identifies an EasyVR module version 2  
EASYVR2_3  Identifies an EasyVR module version 2, firmware revision 3  
EASYVR3  Identifies an EasyVR module version 3, firmware revision 0  
EASYVR3_1  Identifies an EasyVR module version 3, firmware revision 1  
EASYVR3_2  Identifies an EasyVR module version 3, firmware revision 2  
EASYVR3_3  Identifies an EasyVR module version 3, firmware revision 3  
EASYVR3_4  Identifies an EasyVR module version 3, firmware revision 4  
EASYVR3_5  Identifies an EasyVR module version 3, firmware revision 5  
EASYVR3PLUS  Identifies an EasyVR module version 3+, firmware revision 0  

enum Language 

Language to use for recognition of built-in words  

Enumerator 

ENGLISH  Uses the US English word sets  
ITALIAN  Uses the Italian word sets  
JAPANESE  Uses the Japanese word sets  
GERMAN  Uses the German word sets  
SPANISH  Uses the Spanish word sets  
FRENCH  Uses the French word sets  

enum Group 

Special group numbers for recognition of custom commands  

Enumerator 

TRIGGER  The trigger group (shared with built-in trigger word)  
PASSWORD  The password group (uses speaker verification technology)  

enum Wordset 

Index of built-in word sets  

Enumerator 

TRIGGER_SET  The built-in trigger word set  
ACTION_SET  The built-in action word set  
DIRECTION_SET  The built-in direction word set  
NUMBER_SET  The built-in number word set  

enum Distance 

Microphone distance from the user's mouth, used by all recognition technologies  

Enumerator 

HEADSET  Nearest range (around 5cm)  
ARMS_LENGTH  Medium range (from about 50cm to 1m)  
FAR_MIC  Farthest range (up to 3m)  

enum Knob 

Confidence thresholds for the knob settings, used for recognition of built-in words or custom 
grammars (not used for the mixed trigger group)  

Enumerator 

LOOSER  Lowest threshold, most results reported  
LOOSE  Lower threshold, more results reported  
TYPICAL  Typical threshold (default)  
STRICT  Higher threshold, fewer results reported  
STRICTER  Highest threshold, fewest results reported  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 53 

enum Level 

Strictness values for the level settings, used for recognition of custom commands (not used for the 
mixed trigger group)  

Enumerator 

EASY  Lowest value, most results reported  
NORMAL  Typical value (default)  
HARD  Slightly higher value, fewer results reported  
HARDER  Higher value, fewer results reported  
HARDEST  Highest value, fewest results reported  

enum TrailingSilence 

Trailing silence settings used for recognition of built-in words or custom grammars (including the 
mixed trigger group), in a range from 100ms to 875ms in steps of 25ms.  

Enumerator 

TRAILING_MIN  Lowest value (100ms), minimum latency  
TRAILING_DEF  Default value (400ms) after power on or reset  
TRAILING_MAX  Highest value (875ms), maximum latency  
TRAILING_100MS  Silence duration is 100ms  
TRAILING_200MS  Silence duration is 200ms  
TRAILING_300MS  Silence duration is 300ms  
TRAILING_400MS  Silence duration is 400ms  
TRAILING_500MS  Silence duration is 500ms  
TRAILING_600MS  Silence duration is 600ms  
TRAILING_700MS  Silence duration is 700ms  
TRAILING_800MS  Silence duration is 800ms  

enum CommandLatency 

Latency settings used for recognition of custom commands or passwords (excluding the mixed trigger 
group)  

Enumerator 

MODE_NORMAL  Normal settings (default), higher latency  
MODE_FAST  Fast settings, better response time  

enum Baudrate 

Constants to use for baudrate settings  

Enumerator 

B115200  115200 bps  
B57600  57600 bps  
B38400  38400 bps  
B19200  19200 bps  
B9600  9600 bps (default)  

enum WakeMode 

Constants for choosing wake-up method in sleep mode  

Enumerator 

WAKE_ON_CHAR  Wake up on any character received  
WAKE_ON_WHISTLE  Wake up on whistle or any character received  
WAKE_ON_LOUDSOUND  Wake up on a loud sound or any character received  
WAKE_ON_2CLAPS  Wake up on double hands-clap or any character received  
WAKE_ON_3CLAPS  Wake up on triple hands-clap or any character received  

enum ClapSense 

Hands-clap sensitivity for wakeup from sleep mode. Use in combination with WAKE_ON_2CLAPS or 
WAKE_ON_3CLAPS  

Enumerator 



www.veear.eu 

54 EasyVR 3 (Plus) User Manual (1.0.17) 

CLAP_SENSE_LOW  Lowest threshold  
CLAP_SENSE_MID  Typical threshold  
CLAP_SENSE_HIGH  Highest threshold  

enum PinConfig 

Pin configuration options for the extra I/O connector  

Enumerator 

OUTPUT_LOW  Pin is an output at low level (0V)  
OUTPUT_HIGH  Pin is an output at high level (3V)  
INPUT_HIZ  Pin is an high impedance input  
INPUT_STRONG  Pin is an input with strong pull-up (~10K)  
INPUT_WEAK  Pin is an input with weak pull-up (~200K)  

enum PinNumber 

Available pin numbers on the extra I/O connector  

Enumerator 

IO1  Identifier of pin IO1  
IO2  Identifier of pin IO2  
IO3  Identifier of pin IO3  
IO4  Identifier of pin IO4 [only EasyVR3]  
IO5  Identifier of pin IO5 [only EasyVR3]  
IO6  Identifier of pin IO6 [only EasyVR3]  

enum SoundVolume 

Some quick volume settings for the sound playback functions (any value in the range 0-31 can be used)  

Enumerator 

VOL_MIN  Lowest volume (almost mute)  
VOL_HALF  Half scale volume (softer)  
VOL_FULL  Full scale volume (normal)  
VOL_DOUBLE  Double gain volume (louder)  

enum SoundIndex 

Special sound index values, always available even when no soundtable is present  

Enumerator 

BEEP  Beep sound  

enum GrammarFlag 

Flags used by custom grammars  

Enumerator 

GF_TRIGGER  A bit mask that indicate grammar is a trigger (opposed to commands)  

enum RejectionLevel 

Noise rejection level for SonicNet token detection (higher value, fewer results)  

Enumerator 

REJECTION_MIN  Lowest noise rejection, highest sensitivity  
REJECTION_AVG  Medium noise rejection, medium sensitivity  
REJECTION_MAX  Highest noise rejection, lowest sensitivity  

enum MessageSpeed 

Playback speed for recorded messages  

Enumerator 

SPEED_NORMAL  Normal playback speed  
SPEED_FASTER  Faster playback speed  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 55 

enum MessageAttenuation 

Playback attenuation for recorded messages  

Enumerator 

ATTEN_NONE  No attenuation (normalized volume)  
ATTEN_2DB2  Attenuation of -2.2dB  
ATTEN_4DB5  Attenuation of -4.5dB  
ATTEN_6DB7  Attenuation of -6.7dB  

enum MessageType 

Type of recorded message  

Enumerator 

MSG_EMPTY  Empty message slot  
MSG_8BIT  Message recorded with 8-bits PCM  

enum LipsyncThreshold 

Threshold for real-time lip-sync  

Enumerator 

RTLS_THRESHOLD_DEF  Default threshold  
RTLS_THRESHOLD_MAX  Maximum threshold  

enum ErrorCode 

Error codes used by various functions  

Enumerator 

ERR_DATACOL_TOO_LONG  too long (memory overflow)  
ERR_DATACOL_TOO_NOISY  too noisy  
ERR_DATACOL_TOO_SOFT  spoke too soft  
ERR_DATACOL_TOO_LOUD  spoke too loud  
ERR_DATACOL_TOO_SOON  spoke too soon  
ERR_DATACOL_TOO_CHOPPY  too many segments/too complex  
ERR_DATACOL_BAD_WEIGHTS  invalid SI weights  
ERR_DATACOL_BAD_SETUP  invalid setup  
ERR_RECOG_FAIL  recognition failed  
ERR_RECOG_LOW_CONF  recognition result doubtful  
ERR_RECOG_MID_CONF  recognition result maybe  
ERR_RECOG_BAD_TEMPLATE  invalid SD/SV template  
ERR_RECOG_BAD_WEIGHTS  invalid SI weights  
ERR_RECOG_DURATION  incompatible pattern durations  
ERR_T2SI_EXCESS_STATES  state structure is too big  
ERR_T2SI_BAD_VERSION  RSC code version/Grammar ROM dont match  
ERR_T2SI_OUT_OF_RAM  reached limit of available RAM  
ERR_T2SI_UNEXPECTED  an unexpected error occurred  
ERR_T2SI_OVERFLOW  ran out of time to process  
ERR_T2SI_PARAMETER  bad macro or grammar parameter  
ERR_T2SI_NN_TOO_BIG  layer size out of limits  
ERR_T2SI_NN_BAD_VERSION  net structure incompatibility  
ERR_T2SI_NN_NOT_READY  initialization not complete  
ERR_T2SI_NN_BAD_LAYERS  not correct number of layers  
ERR_T2SI_TRIG_OOV  trigger recognized Out Of Vocabulary  
ERR_T2SI_TOO_SHORT  utterance was too short  
ERR_RP_BAD_LEVEL  play - illegal compression level  
ERR_RP_NO_MSG  play, erase, copy - msg doesn't exist  
ERR_RP_MSG_EXISTS  rec, copy - msg already exists  
ERR_SYNTH_BAD_VERSION  bad release number in speech file  
ERR_SYNTH_ID_NOT_SET  (obsolete) bad sentence structure  
ERR_SYNTH_TOO_MANY_TABLES  (obsolete) too many talk tables  
ERR_SYNTH_BAD_SEN  (obsolete) bad sentence number  
ERR_SYNTH_BAD_MSG  bad message data or SX technology files missing  



www.veear.eu 

56 EasyVR 3 (Plus) User Manual (1.0.17) 

ERR_CUSTOM_NOTA  none of the above (out of grammar)  
ERR_CUSTOM_INVALID  invalid data (for memory check)  
ERR_SW_STACK_OVERFLOW  no room left in software stack  
ERR_INTERNAL_T2SI_BAD_SETUP  T2SI test mode error  

enum BridgeMode 

Type of Bridge mode requested  

Enumerator 

BRIDGE_NONE  Bridge mode has not been requested  
BRIDGE_NORMAL  Normal bridge mode (EasyVR baudrate 9600)  
BRIDGE_BOOT  Bridge mode for EasyVR bootloader (baudrate 115200)  
BRIDGE_ESCAPE_CHAR  Special character to enter/exit Bridge mode  

 

Constructor & Destructor Documentation 

EasyVR (Stream &  s) 

Creates an EasyVR object, using a communication object implementing the #Stream interface (such as 
#HardwareSerial, or the modified #SoftwareSerial and #NewSoftSerial).  

Parameters: 

s  the Stream object to use for communication with the EasyVR module  

 

Member Function Documentation 

bool detect () 

Detects an EasyVR module, waking it from sleep mode and checking it responds correctly.  

Return values: 

true  if a compatible module has been found  

bool stop () 

Interrupts pending recognition or playback operations.  

Return values: 

true  if the request is satisfied and the module is back to ready  

int8_t getID () 

Gets the module identification number (firmware version).  

Return values: 

integer  is one of the values in ModuleId  

bool setLanguage (int8_t  lang) 

Sets the language to use for recognition of built-in words.  

Parameters: 

lang  (0-5) is one of values in Language  

Return values: 

true  if the operation is successful  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 57 

bool setTimeout (int8_t  seconds) 

Sets the timeout to use for any recognition task.  

Parameters: 

seconds  (0-31) is the maximum time the module keep listening for a word or a 
command  

Return values: 

true  if the operation is successful  

bool setMicDistance (int8_t  dist) 

Sets the operating distance of the microphone. This setting represents the distance between the 
microphone and the user's mouth, in one of three possible configurations.  

Parameters: 

dist  (1-3) is one of values in Distance  

Return values: 

true  if the operation is successful  

bool setKnob (int8_t  knob) 

Sets the confidence threshold to use for recognition of built-in words or custom grammars.  

Parameters: 

knob  (0-4) is one of values in Knob  

Return values: 

true  if the operation is successful  

bool setTrailingSilence (int8_t  dur) 

Sets the trailing silence duration for recognition of built-in words or custom grammars.  

Parameters: 

dur  (0-31) is the silence duration as defined in TrailingSilence  

Return values: 

true  if the operation is successful  

bool setLevel (int8_t  level) 

Sets the strictness level to use for recognition of custom commands.  

Parameters: 

level  (1-5) is one of values in Level  

Return values: 

true  if the operation is successful  

bool setCommandLatency (int8_t  mode) 

Enables or disables fast recognition for custom commands and passwords. Fast SD/SV recognition can 
improve response time.  

Parameters: 

mode  (0-1) is one of the values in CommandLatency  



www.veear.eu 

58 EasyVR 3 (Plus) User Manual (1.0.17) 

Return values: 

true  if the operation is successful  

bool setDelay (uint16_t  millis) 

Sets the delay before any reply of the module.  

Parameters: 

millis  (0-1000) is the delay duration in milliseconds, rounded to 10 units in 
range 10-100 and to 100 units in range 100-1000.  

Return values: 

true  if the operation is successful  

bool changeBaudrate (int8_t  baud) 

Sets the new communication speed. You need to modify the baudrate of the underlying Stream object 
accordingly, after the function returns successfully.  

Parameters: 

baud  is one of values in Baudrate  

Return values: 

true  if the operation is successful  

bool sleep (int8_t  mode) 

Puts the module in sleep mode.  

Parameters: 

mode  is one of values in WakeMode, optionally combined with one of the 
values in ClapSense  

Return values: 

true  if the operation is successful  

bool addCommand (int8_t  group, int8_t  index) 

Adds a new custom command to a group.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  

Return values: 

true  if the operation is successful  

bool removeCommand (int8_t  group, int8_t  index) 

Removes a custom command from a group.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  

Return values: 

true  if the operation is successful  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 59 

bool setCommandLabel (int8_t  group, int8_t  index, const char *  name) 

Sets the name of a custom command.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  
name  is a string containing the label to be assigned to the specified 

command  

Return values: 

true  if the operation is successful  

bool eraseCommand (int8_t  group, int8_t  index) 

Erases the training data of a custom command.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  

Return values: 

true  if the operation is successful  

bool getGroupMask (uint32_t &  mask) 

Gets a bit mask of groups that contain at least one command.  

Parameters: 

mask  is a variable to hold the group mask when the function returns  

Return values: 

true  if the operation is successful  

int8_t getCommandCount (int8_t  group) 

Gets the number of commands in the specified group.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  

Return values: 

integer  is the count of commands (negative in case of errors)  

bool dumpCommand (int8_t  group, int8_t  index, char *  name, uint8_t &  training) 

Retrieves the name and training data of a custom command.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  
name  points to an array of at least 32 characters that holds the command 

label when the function returns  
training  is a variable that holds the training count when the function returns. 

Additional information about training is available through the 
functions isConflict() and getWord() or getCommand()  

Return values: 

true  if the operation is successful  



www.veear.eu 

60 EasyVR 3 (Plus) User Manual (1.0.17) 

int8_t getGrammarsCount (void ) 

Gets the total number of grammars available, including built-in and custom.  

Return values: 

integer  is the count of grammars (negative in case of errors)  

bool dumpGrammar (int8_t  grammar, uint8_t &  flags, uint8_t &  count) 

Retrieves the contents of a built-in or a custom grammar. Command labels contained in the grammar 
can be obtained by calling getNextWordLabel()  

Parameters: 

grammar  (0-31) is the target grammar, or one of the values in Wordset  
flags  is a variable that holds some grammar flags when the function 

returns. See GrammarFlag  
count  is a variable that holds the number of words in the grammar when the 

function returns.  

Return values: 

true  if the operation is successful  

bool getNextWordLabel (char *  name) 

Retrieves the name of a command contained in a custom grammar. It must be called after 
dumpGrammar()  

Parameters: 

name  points to an array of at least 32 characters that holds the command 
label when the function returns  

Return values: 

true  if the operation is successful  

void trainCommand (int8_t  group, int8_t  index) 

Starts training of a custom command. Results are available after hasFinished() returns true.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  

Note: 

The module is busy until training completes and it cannot accept other commands. You can 
interrupt training with stop().  

void recognizeCommand (int8_t  group) 

Starts recognition of a custom command. Results are available after hasFinished() returns true.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  

Note: 

The module is busy until recognition completes and it cannot accept other commands. You can 
interrupt recognition with stop().  

void recognizeWord (int8_t  wordset) 

Starts recognition of a built-in word. Results are available after hasFinished() returns true.  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 61 

Parameters: 

wordset  (0-3) is the target word set, or one of the values in Wordset, (4-31) is 
the target custom grammar, if present  

Note: 

The module is busy until recognition completes and it cannot accept other commands. You can 
interrupt recognition with stop().  

bool hasFinished () 

Polls the status of on-going recognition, training or asynchronous playback tasks.  

Return values: 

true  if the operation has completed  

int8_t getCommand () 

Gets the recognised command index if any.  

Return values: 

(0-31)  is the command index if recognition is successful, (-1) if no command 
has been recognized or an error occurred  

int8_t getWord () 

Gets the recognised word index if any, from built-in sets or custom grammars.  

Return values: 

(0-31)  is the command index if recognition is successful, (-1) if no built-in 
word has been recognized or an error occurred  

int16_t getToken () 

Gets the index of the received SonicNet token if any.  

Return values: 

integer  is the index of the received SonicNet token (0-255 for 8-bit tokens or 
0-15 for 4-bit tokens) if detection was successful, (-1) if no token has 
been received or an error occurred  

int16_t getError () 

Gets the last error code if any.  

Return values: 

(0-255)  is the error code, (-1) if no error occurred  

bool isTimeout () 

Retrieves the timeout indicator.  

Return values: 

true  if a timeout occurred  

bool isAwakened () 

Retrieves the wake-up indicator (only valid after hasFinished() has been called).  

Return values: 

true  if the module has been awakened from sleep mode  



www.veear.eu 

62 EasyVR 3 (Plus) User Manual (1.0.17) 

bool isConflict () 

Retrieves the conflict indicator.  

Return values: 

true  is a conflict occurred during training. To know what caused the 
conflict, use getCommand() and getWord() (only valid for triggers)  

bool isMemoryFull () 

Retrieves the memory full indicator (only valid after addCommand() returned false).  

Return values: 

true  if a command could not be added because of memory size constaints 
(up to 32 custom commands can be created)  

bool isInvalid () 

Retrieves the invalid protocol indicator.  

Return values: 

true  if an invalid sequence has been detected in the communication 
protocol  

bool setPinOutput (int8_t  pin, int8_t  config) 

Configures an I/O pin as an output and sets its value  

Parameters: 

pin  (1-3) is one of the values in PinNumber  
config  (0-1,5-6) is one of the output values in PinConfig (OUTPUT_LOW, 

OUTPUT_HIGH) or Arduino style HIGH and LOW macros  

Return values: 

true  if the operation is successful  

int8_t getPinInput (int8_t  pin, int8_t  config) 

Configures an I/O pin as an input with optional pull-up and return its value  

Parameters: 

pin  (1-3) is one of the values in PinNumber  
config  (2-4) is one of the input values in PinConfig (INPUT_HIZ, 

INPUT_STRONG, INPUT_WEAK)  

Return values: 

integer  is the logical value of the pin  

void detectToken (int8_t  bits, int8_t  rejection, uint16_t  timeout) 

Starts listening for a SonicNet token. Manually check for completion with hasFinished().  

Parameters: 

bits  (4 or 8) specifies the length of received tokens  
rejection  (0-2) specifies the noise rejection level, it can be one of the values in 

RejectionLevel  
timeout  (1-28090) is the maximum time in milliseconds to keep listening for a 

valid token or (0) to listen without time limits.  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 63 

Note: 

The module is busy until token detection completes and it cannot accept other commands. You 
can interrupt listening with stop().  

void sendTokenAsync (int8_t  bits, uint8_t  token) 

Starts immediate playback of a SonicNet token. Manually check for completion with hasFinished().  

Parameters: 

bits  (4 or 8) specifies the length of trasmitted token  
token  is the index of the SonicNet token to play (0-255 for 8-bit tokens or 0-

15 for 4-bit tokens)  

Note: 

The module is busy until playback completes and it cannot accept other commands. You can 
interrupt playback with stop().  

bool sendToken (int8_t  bits, uint8_t  token) 

Plays a SonicNet token and waits for completion.  

Parameters: 

bits  (4 or 8) specifies the length of trasmitted token  
token  is the index of the SonicNet token to play (0-255 for 8-bit tokens or 0-

15 for 4-bit tokens)  

Return values: 

true  if the operation is successful  

bool embedToken (int8_t  bits, uint8_t  token, uint16_t  delay) 

Schedules playback of a SonicNet token after the next sound starts playing.  

Parameters: 

bits  (4 or 8) specifies the length of trasmitted token  
token  is the index of the SonicNet token to play (0-255 for 8-bit tokens or 0-

15 for 4-bit tokens)  
delay  (1-28090) is the time in milliseconds at which to send the token, since 

the beginning of the next sound playback  

Return values: 

true  if the operation is successful  

Note: 

The scheduled token remains valid for one operation only, so you have to call playSound() or 
playSoundAsync() immediately after this function.  

void playSoundAsync (int16_t  index, int8_t  volume) 

Starts playback of a sound from the sound table. Manually check for completion with hasFinished().  

Parameters: 

index  is the index of the target sound in the sound table  
volume  (0-31) may be one of the values in SoundVolume  

Note: 

The module is busy until playback completes and it cannot accept other commands. You can 
interrupt playback with stop().  



www.veear.eu 

64 EasyVR 3 (Plus) User Manual (1.0.17) 

bool playSound (int16_t  index, int8_t  volume) 

Plays a sound from the sound table and waits for completion  

Parameters: 

index  is the index of the target sound in the sound table  
volume  (0-31) may be one of the values in SoundVolume  

Return values: 

true  if the operation is successful  

Note: 

To alter the maximum time for the wait, define the EASYVR_PLAY_TIMEOUT macro before 
including the EasyVR library.  

bool dumpSoundTable (char *  name, int16_t &  count) 

Retrieves the name of the sound table and the number of sounds it contains  

Parameters: 

name  points to an array of at least 32 characters that holds the sound table 
label when the function returns  

count  is a variable that holds the number of sounds when the function 
returns  

Return values: 

true  if the operation is successful  

bool playPhoneTone (int8_t  tone, uint8_t  duration) 

Plays a phone tone and waits for completion  

Parameters: 

tone  is the index of the tone (0-9 for digits, 10 for '*' key, 11 for '#' key and 
12-15 for extra keys 'A' to 'D', -1 for the dial tone)  

duration  (1-32) is the tone duration in 40 milliseconds units, or in seconds for 
the dial tone  

Return values: 

true  if the operation is successful  

bool resetAll (bool  wait = true) 

Empties internal memory for custom commands/groups and messages.  

Parameters: 

wait  specifies whether to wait until the operation is complete (or times 
out)  

Return values: 

true  if the operation is successful  

Note: 

It will take some time for the whole process to complete (EasyVR3 is faster) and it cannot be 
interrupted. During this time the module cannot accept any other command. The sound table and 
custom grammars data is not affected.  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 65 

bool resetCommands (bool  wait = true) 

Empties internal memory for custom commands/groups only. Messages are not affected.  

Parameters: 

wait  specifies whether to wait until the operation is complete (or times 
out)  

Return values: 

true  if the operation is successful  

Note: 

It will take some time for the whole process to complete (EasyVR3 is faster) and it cannot be 
interrupted. During this time the module cannot accept any other command. The sound table and 
custom grammars data is not affected.  

bool resetMessages (bool  wait = true) 

Empties internal memory used for messages only. Commands/groups are not affected.  

Parameters: 

wait  specifies whether to wait until the operation is complete (or times 
out)  

Return values: 

true  if the operation is successful  

Note: 

It will take some time for the whole process to complete (EasyVR3 is faster) and it cannot be 
interrupted. During this time the module cannot accept any other command. The sound table and 
custom grammars data is not affected.  

bool checkMessages () 

Performs a memory check for consistency.  

Return values: 

true  if the operation is successful  

Note: 

If a memory write or erase operation does not complete due to unexpected conditions, like power 
losses, the memory contents may be corrupted. When the check fails getError() returns 
ERR_CUSTOM_INVALID.  

bool fixMessages (bool  wait = true) 

Performs a memory check and attempt recovery if necessary. Incomplete data will be erased. Custom 
commands/groups are not affected.  

Parameters: 

wait  specifies whether to wait until the operation is complete (or times 
out)  

Return values: 

true  if the operation is successful  

Note: 

It will take some time for the whole process to complete (several seconds) and it cannot be 



www.veear.eu 

66 EasyVR 3 (Plus) User Manual (1.0.17) 

interrupted. During this time the module cannot accept any other command. The sound table and 
custom grammars data is not affected.  

void recordMessageAsync (int8_t  index, int8_t  bits, int8_t  timeout) 

Starts recording a message. Manually check for completion with hasFinished().  

Parameters: 

index  (0-31) is the index of the target message slot  
bits  (8) specifies the audio format (see MessageType)  
timeout  (0-31) is the maximum recording time (0=infinite)  

Note: 

The module is busy until recording times out or the end of memory is reached. You can interrupt 
an ongoing recording with stop().  

void playMessageAsync (int8_t  index, int8_t  speed, int8_t  atten) 

Starts playback of a recorded message. Manually check for completion with hasFinished().  

Parameters: 

index  (0-31) is the index of the target message slot  
speed  (0-1) may be one of the values in MessageSpeed  
atten  (0-3) may be one of the values in MessageAttenuation  

Note: 

The module is busy until playback completes and it cannot accept other commands. You can 
interrupt playback with stop().  

void eraseMessageAsync (int8_t  index) 

Erases a recorded message. Manually check for completion with hasFinished().  

Parameters: 

index  (0-31) is the index of the target message slot  

bool dumpMessage (int8_t  index, int8_t &  type, int32_t &  length) 

Retrieves the type and length of a recorded message  

Parameters: 

index  (0-31) is the index of the target message slot  
type  (0,8) is a variable that holds the message format when the function 

returns (see MessageType)  
length  is a variable that holds the message length in bytes when the function 

returns  

Return values: 

true  if the operation is successful  

Note: 

The specified message may have errors. Use getError() when the function fails, to know the reason 
of the failure.  

bool realtimeLipsync (int16_t  threshold, uint8_t  timeout) 

Starts real-time lip-sync on the input voice signal. Retrieve output values with fetchMouthPosition() or 
abort with stop().  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 67 

Parameters: 

threshold  (0-1023) is a measure of the strength of the input signal below which 
the mouth is considered to be closed (see LipsyncThreshold, adjust 
based on microphone settings, distance and background noise)  

timeout  (0-255) is the maximum duration of the function in seconds, 0 means 
infinite  

Return values: 

true  if the operation is successfully started  

bool fetchMouthPosition (int8_t &  value) 

Retrieves the current mouth position during lip-sync.  

Parameters: 

value  (0-31) is filled in with the current mouth opening position  

Return values: 

true  if the operation is successful, false if lip-sync has finished  

bool exportCommand (int8_t  group, int8_t  index, uint8_t *  data) 

Retrieves all internal data associated to a custom command.  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  
data  points to an array of at least 258 bytes that holds the command raw 

data  

Return values: 

true  if the operation is successful  

bool importCommand (int8_t  group, int8_t  index, const uint8_t *  data) 

Overwrites all internal data associated to a custom command. When commands are imported this way, 
their training should be tested again with verifyCommand()  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  
data  points to an array of at least 258 bytes that holds the command raw 

data  

Return values: 

true  if the operation is successful  

void verifyCommand (int8_t  group, int8_t  index) 

Verifies training of a custom command (useful after import). Similarly to trainCommand(), you should 
check results after hasFinished() returns true  

Parameters: 

group  (0-16) is the target group, or one of the values in #Groups  
index  (0-31) is the index of the command within the selected group  

int bridgeRequested (Stream &  port) 

Tests if bridge mode has been requested on the specified port  



www.veear.eu 

68 EasyVR 3 (Plus) User Manual (1.0.17) 

Parameters: 

port  is the target serial port (usually the PC serial port)  

Return values: 

non  zero if bridge mode should be started  

Note: 

The EasyVR Commander software can request bridge mode when connected to the specified serial 
port, with a special handshake sequence.  

void bridgeLoop (Stream &  port) 

Performs bridge mode between the EasyVR serial port and the specified port in a continuous loop. It 
can be aborted by sending a question mark ('?') on the target port.  

Parameters: 

port  is the target serial port (usually the PC serial port)  
 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 69 

EasyVR Commander 

The EasyVR Commander software can be used to easily configure your EasyVR module connected to your 
PC through a QuickUSB cable, an adapter board, or by using the microcontroller host board with the 
provided “bridge” program (available for ROBONOVA controller board, Arduino, Parallax Basic Stamp). 
 
You can define groups of commands or passwords and generate a basic code template to handle them. It is 
required to edit the generated code to implement the application logic, but the template contains all the 
functions or subroutines to handle the speech recognition tasks. 

Getting Started 

Connect the QuickUSB cable, an adapter board or a microcontroller host board with a running “bridge” 
program6 to your PC, then check that all devices are properly turned on and start the EasyVR Commander. 
Select the serial port to use from the toolbar or the “File” menu, and then go with the “Connect” 
command. 
 

 

Figure 3 – Main application window 

There are five kinds of commands in the software (see Figure 3 and Figure 7): 

 Trigger - special group where you have the built-in SI trigger word "Robot" and you may add one 
user-defined SD trigger word. Trigger words are used to start the recognition process 

 Group - where you may add user-defined SD commands, organized in subsets 
 Password – special group of "voice passwords" (up to 5), using Speaker Verification (SV) technology 
 Wordset - built-in set of SI commands (for instance in Figure 3 above, the Wordset 1 is selected) 
 Grammar – custom set of SI commands (created with QuickT2SITM Lite software). 

There are also two other categories of data shown: 

 SoundTable – list of compressed audio samples (prompts, sounds, etc.) loaded into the module 
 Messages – run-time sound recordings stored on internal memory 

                                                 
6 On some systems the EasyVR Commander can automatically upload the “bridge” program to the host 
board once connected. That applies to Robonova controller board and Parallax Basic Stamp. 



www.veear.eu 

70 EasyVR 3 (Plus) User Manual (1.0.17) 

Remote Connections (Advanced Topic) 

The EasyVR Commander can also connect to remote systems, typically Linux PCs or Linux embedded 
systems (such as BeagleBone, Raspberry Pi, etc.), that expose a remote EasyVR module through the 
network. 
 
To enable this feature (available since v3.12.0) you need to configure the remote system and manually 
edit the EasyVR Commander settings. 
 
On Linux based systems, you can use either “socat” or “ser2net” utilities to map the serial port where the 
EasyVR module is physically connected to a TCP port of your choice. 

Attention! The examples below have been tested with specific versions of the hardware and 
the software; they might not work for your own combination. 
Since modifications to the system configuration are required, this topic is recommended for 
expert users only! 

Configuring the Remote System 

Example 1: BeagleBone Black (Rev C) 

 Connect the EasyVR 3 module to UART1 on the BeagleBone expansion headers: 

EasyVR 3 Module BeagleBone Black 

GND DGND  (P9.1) 

5V or 3V3 (depending on PWR jumper) VDD_3V3  (P9.3) 

TX UART1_RXD  (P9.26) 

RX UART1_TXD  (P9.24) 

In alternative, you may use an adapter board for mikroBUS interface, like the “mikroBUS Cape” by 
MikroElektronika, just make sure you set the PWR jumper to the +3V3 position on the EasyVR 3 
module and that you plug it in socket 2 or 3 (other sockets use a different UART). 

 Install a recent Debian image (e.g. Jessie) on the SD Card or internal e-MMC memory 
 Run the following commands on a shell prompt (comments start with #): 

# install ser2net 
sudo apt-get install ser2net 
 
# permanently map TCP port 6666 to UART1 
echo 6666:raw:0:/dev/ttyO1:9600 8DATABITS NONE 1STOPBIT | sudo tee -a /etc/ser2net.conf 
 
# enable UART1 pin mux 
echo cape_enable=bone_capemgr.enable_partno=BB-UART1 | sudo tee –a /boot/uEnv.txt 
 
# reboot 
sudo reboot 

 

Example 2: Raspberry Pi Model B+ 

 Connect the EasyVR 3 module to the Raspberry Pi expansion header: 

EasyVR 3 Module Raspberry Pi 

GND GND  (Pin 9) 

5V or 3V3 (depending on PWR jumper) 3.3V  (Pin 1) 

TX UART_RX  (Pin 10) 

RX UART_TX  (Pin 8) 

In alternative, you may use an adapter board for mikroBUS interface, like the “PI2 click Shield” by 
MikroElektronika, just make sure you set the PWR jumper to the +3V3 position on the EasyVR 3 
module. 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 71 

 Install a recent Debian image (e.g. Jessie) on the SD Card or internal e-MMC memory 
 Run the following commands on a shell prompt (comments start with #): 

# install ser2net (and samba to broadcast hostname) 
sudo apt-get install ser2net samba 
 
# permanently map TCP port 5555 to UART 
echo 5555:raw:0:/dev/serial0:9600 8DATABITS NONE 1STOPBIT | sudo tee -a /etc/ser2net.conf 
 
# enable serial interface without login shell (menu Interfacing Options > Serial > No > Yes) 
sudo raspi-config 
 
# reboot 
sudo reboot 

 

Configuring the EasyVR Commander 

 Locate the folder where the EasyVR Commander settings are stored. Open any Explorer folder, 
copy-paste this text in the address bar and press Enter: 

%LocalAppData%\VeeaR\EasyVR Commander 

 Open the file “Settings.ini” and append the following section at the end: 

[AddressList] 
Count=2 
Address0=TCP:raspberrypi,5555 
Address1=TCP:beaglebone,6666 

Those lines reflect the above examples of remote systems configuration and expect that your PC 
and the remote systems are on the same local network or anyway that the remote systems can be 
reached via TCP connection to the specified symbolic addresses (numerical IP addresses are also 
supported). 

 Restart the EasyVR Commander for the new settings to become effective. Now you can choose to 
connect to one of the remote systems you just added, as if they were regular serial ports. 

 

Figure 4 - Remote connections now available 



www.veear.eu 

72 EasyVR 3 (Plus) User Manual (1.0.17) 

Speech Recognition 

The recognition function of the EasyVR works on a single group at a time, so that users need to group 
together all the commands that they want to be able to use at the same time. 
 
When EasyVR Commander connects to the module, it reads back all the user-defined commands and 
groups, which are stored into the EasyVR module non-volatile memory. 
 
You can add a new command by first selecting the group in which the command needs to be created and 
then using the toolbar icons or the “Edit” menu. 
 
A command should be given a label and then it should be trained twice with the user's voice: the user will 
be guided throughout this process (see Figure 5) when the "Train Command" action is invoked. 

Note: Only Latin characters and digits can be used for labels, as well as the underscore 
character. 

 
 

 

Figure 5 – Guided training dialog 

 
After clicking on “Phase 1” or “Phase 2” buttons, remember you have to start speaking only when you see 
this little window: 
 

 
 
If any error happens, command training will be cancelled. Errors may happen when the user’s voice is not 
heard correctly, there is too much background noise or when the second word heard is too different from 
the first one. 
 

 

Figure 6 – Alert dialog in case of training conflicts 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 73 

 
The software will also alert if a command is too similar to an existing one by specifying the index of the 
conflicting command in the "Conflict" column. For example, in the following Figure 7 the command 
"TEST_CMD_ONE" sounds too similar to "TEST_CMD_ZERO" (i.e. they have been trained with a similar 
pronunciation). 
 

Note: TEST_CMD_ZERO and TEST_CMD_ONE are just examples of labels, you should use label 
names that reflects the real command that you are going to train. 

 

 

Figure 7 – Showing conflicting commands 

 
The current status is displayed in the EasyVR Commander list-view where groups that already contain 
commands are highlighted in bold. 
 
The selected group of commands can also be tested, by using the icon on the toolbar or the “Tools” menu, 
to make sure the trained commands can be recognized successfully. 
 

Note: If you want to re-train a command you need to erase the previous training first. 

 

Note: "Vocal passwords" (Group 16) are much more sensitive to environmental noise and 
distance from the microphone: be sure to train and to verify the password in similar 
conditions. 

 



www.veear.eu 

74 EasyVR 3 (Plus) User Manual (1.0.17) 

Recognition Settings 

The module comes programmed with some default settings that can affect voice recognition. These 
parameters can be altered in those cases where the default values do not offer the best performance. 
 

 

Figure 8 – Interface for changing recognition settings 

 
The “Level” and “Knob” parameters affect the way recognition results are evaluated and reported, each 
one for a different kind of voice recognition algorithm (Speaker Dependent/Verification and Speaker 
Independent, respectively). 
 
Both these values are used for a sort of acceptance threshold: each word or command recognized is 
assigned a score by the algorithm, which is compared to the threshold. 
 
In some situations the algorithm may flag a correct result as an error or a low confidence result. In those 
cases you may try to lower the threshold and allow more results to be reported as correct. The drawback 
is that even words that were correctly refused before now might also be accepted. 
 
The vice-versa is also true: you can increase the threshold to avoid some incorrect words to be reported as 
good, but then you may also lose a few correct results. So, in the end, you need to find the best 
compromise. 
 
Ticking “Use “Fast” SD/SV Recognition” will use a faster algorithm for SD and SV recognition. 
In a similar way, faster SI recognition can be obtained by lowering the Trailing Silence (default is 400 ms). 
 
The last parameter affects the internal microphone pre-amplifier and AGC (Automatic Gain Control) stages 
and is an indication of the expected operating distance of the microphone from the speaker’s mouth. 
 

Note: The EasyVR module is optimized for the default distance setting “Arms Length”. 
Any other settings may require hardware modifications to the on-board gain resistor. 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 75 

 
To change the recognition settings of the currently connected EasyVR device press the “Apply” button. 
The window is non-modal, so you can test the effects of your changes while leaving it open. 
 
The “Save” button makes the EasyVR Commander remember your settings and automatically apply them 
to every connected device. The module itself does not store any option. 
 

Phone Tones Generation (DTMF) 

The EasyVR module is also capable of generating DTMF sounds. This feature can be tested by using the 
“Dial Tones” command in the “Tools” menu. 
 

 

Figure 6 – Interface for generating phone tones 

 
The tone duration can be specified in increments of 40 ms (milliseconds). The dial tone has a fixed 
duration of 3 seconds (its duration can be modified when programming the EasyVR). 

  



www.veear.eu 

76 EasyVR 3 (Plus) User Manual (1.0.17) 

Testing SonicNetTM  

Another feature available from the “Tools” menu is the “SonicNet”, a wireless communication protocol 
based on transmission and detection of special sequences of tones, called “tokens”. 
Two kinds of tokens can be selected: a short version, with up to 16 different tokens, and a long version 
that provides up to 256 tokens. 
 

 

Figure 7 – Interface for testing SonicNet features 

 
The EasyVR module can listen for incoming tokens continuously, or for as long as about 28 seconds 
(specified with a granularity of around 27.5 ms). Another parameter for token detection is the rejection 
level that specifies the receiver sensitivity: higher rejection means lower sensitivity that is a lower 
detection rate, and vice-versa. 
When the timeout parameter is set to 0, the module will listen continuously and you can use the “Play” 
button to send a token from your PC soundcard and the “Stop” button to stop listening. 
 

 

Figure 9 - Modified interface during continuous listening 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 77 

 
A pop-up window will display the current state of token detection: 
 

   
 
Tokens may also be transmitted from the module with the “Send” button. An optional delay parameter 
can be used to indicate that the token will be mixed with the next sound played from the Soundtable, 
after the specified amount of time since the playback begins. In this case the SonicNet dialog will close to 
let you choose a sound to play back. 
 

Note: If you want to mix tokens with a compressed audio sample, you must use a compression 
scheme with a sample rate of 9.3 kHz when building the Soundtable in the QuickSynthesisTM 
tool. 

 
If the delay is 0, the token is sent out immediately. Other values can be specified up to around 28 seconds 
of delay (with a granularity of around 27.5 ms). 
 
Finally, you can also export all the tokens of the specified length to some folder on your PC as Wave files 
(.WAV format) by using the “Generate…” button. You can then use those files to embed SonicNetTM tokens 
into other software or external sound sources (such as portable players, CDs or DVDs, etc…) 
 

 

Figure 10 - Export of 4-bit tokens 

  



www.veear.eu 

78 EasyVR 3 (Plus) User Manual (1.0.17) 

Real-Time Lip-Sync 

Another feature available from the “Tools” menu is the “Real-Time Lip-Sync”. In fact, starting from 
Firmware revision 4, you can use this feature to let your “animatronic” characters “speak” moving their 
lips. Clicking on “Real-Time Lip-Sync” will open the following window: 
 

 

Figure 11 - Lip-Sync interface with animated mouth 

 
If you click on “Start” the virtual mouth on the window will start moving in sync with your voice. 
In real animatronic characters you can use a servo to move their lips. 
 
You can specify a maximum duration (timeout) or leave it running until you click on “Stop”. You may also 
specify a threshold for the input signal power, below which the mouth is considered closed (silence). 

Import and Export of Custom Commands 

Starting with firmware revision 4 of the EasyVR 3 module, it is possible to export all the data, including 
training, of the existing commands and passwords into a file. You can then use that file to import all the 
commands at once into another module or just as a backup for your commands. 
 
While the module is connected, click on “Export Commands…” under the “File” menu and write the name 
of the file that will contain the exported commands. In the same way you can select “Import 
Commands…” and then choose the file with the commands you would like to import. 
 

Note: During the Import procedure all the existing commands will be discarded and replaced 
by the ones contained in the specified file! 

 
During the Import/Export process some feedback is provided with pop-up windows and with the progress 
bar on the main window. 
  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 79 

Using Custom Data 

Sound Table 

The EasyVR module can play one of the sounds or sentences saved on its internal flash memory. A 
predefined “beep” sound is also always available, even when no sounds have been downloaded to the 
module. 
 
The custom sounds are organized in a so-called “sound table” that users can prepare and build with the 
special QuickSynthesisTM tool. Please refer to this application’s own manual for details about the creation 
of a sound table. Let’s summarize the basic steps here: 

 Prepare the audio files you want to include in the sound table in WAV format, uncompressed 16-
bit 22050Hz mono. To create the sound files you may use a free software like Audacity for 
example (http://audacity.sf.net) 

 Open Sensory’s QuickSynthesisTM 5 and create a new project, specifying “RSC4 family” 
 Add your WAV files and specify one of the supported compression scheme (see table below) 
 Optionally add sentences, by combining basic WAV sounds. That allows you to save memory when 

you have speech audio files, if they share some pieces (like “You said” + “One”, “You said” + 
“Two”, and so on) 

 Build the project with QuickSynthesisTM and use default settings (“Build linkable module”, “Load 
in CONST space”, “Load above or at: 0”). You will be asked to recompress new or modified sound 
files, just confirm and proceed 

 Now save your project and build it once again, so that the EasyVR Commander will see that your 
build is up to date. 

The audio compression formats supported by the EasyVR module (from highest to lowest compression 
rate): 
 

Compression Scheme Available Time (8kHz 15% silence) Available Time (9.3kHz 15% silence) 

SX-2 20.9 minutes 18.1 minutes 

SX-3 18.4 minutes 15.9 minutes 

SX-4 16.3 minutes 14.1 minutes 

SX-5 14.7 minutes 12.6 minutes 

SX-6 13.4 minutes 11.6 minutes 

4-bit ADPCM 209 seconds N/A 

8-bit PCM 108 seconds 92 seconds 

 
For audio file containing speech, the SX-3 compression is usually a good choice. If you need higher quality 
try lower compression rates. Please note that due to the sampling rate used, the audio files cannot 
contain very high frequencies (less than half the sampling rate). 
 

http://audacity.sf.net/


www.veear.eu 

80 EasyVR 3 (Plus) User Manual (1.0.17) 

 

Figure 12 - External tool for creating a Soundtable 

 

Note: Only one Soundtable can be downloaded to the EasyVR module, so make sure you 
include all the sounds you want to use in a single project. 

 

Speaker Independent Custom Vocabularies 

The set of built-in Speaker Independent recognition vocabularies can be expanded with custom grammars, 
that you can create with the QuickT2SITM tool (a separate license is required to use the software). 
 
When you create a QuickT2SITM project, you are presented with a list of words or short phrases (also called 
“commands”) and an optional trigger word/phrase. The so-called “trigger” is a special set that contains 
only one word or phrase, with an improved recognition performance, that is used as an entry point for any 
vocal interaction with a device that is continuously listening to the user’s voice. 
 
If you need to use a trigger word, it is important to carefully choose it so that it has good performance, 
with very few unintended activations and a high recognition rate. When the user says the trigger word 
followed by a command, the system can discard unintended activations when the trigger is not followed 
by a command within a short amount of time (usually around 3 seconds). Moreover, there is only one 
trigger word to listen to, instead of a list of several commands, so the chance to pick up a random 
command from background noise or talk is also lower, when using a trigger word. 
 
For assistance on using the QuickT2SI™ Software, please refer to the software help file. 
 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 81 

 

Figure 13 - External tool for custom vocabularies 

 
Several projects can also be combined together if they are using the same acoustic model (language data) 
using the Acoustic Model Combiner included with the tool. This is useful if you have many command 
vocabularies, in order to save space in the EasyVR memory. 
 

Updating Custom Data 

Once the sound table and/or custom recognition grammars have been created, they can be processed by 
the EasyVR Commander and downloaded to the module. Note that you must first disconnect from the 
module and do the steps required to start it in “boot-mode” (see the section Flash Update). 
 
Now the command “Update Custom Data” is enabled, either on the toolbar or the “File” menu, and it can 
be used to start the update process. First you are required to list all the QuickSynthesisTM and QuickT2SITM 
projects you want to use. A new file containing the specified custom data will be generated and the 
contents will be displayed, so that you can verify them before updating the module. 

Note: The projects must have been built already with the QuickSynthesisTM or the QuickT2SITM 
tool, before the custom data generation can be completed successfully. If a recent build is 
not available you will receive a warning message, the project files can be opened in their 
respective tools and a fresh build started (make sure the project file has been saved before 
the build). 

Once back in the EasyVR Commander the project can be reloaded by pressing the “Refresh” button. If the 
process completes successfully, the “Download” button will be enabled and the flash update process can 
start. 
 
The default format of generated data is suitable for the EasyVR 3. For previous versions of the module or 
the shield please make sure to check the option “Old Format (EasyVR 2.0)”. 



www.veear.eu 

82 EasyVR 3 (Plus) User Manual (1.0.17) 

 

Figure 14 - Interface to build and download custom data 

 
The download process will connect at a higher speed to the EasyVR module, so the “bridge” program 
running on your host device might not work (in particular Robonova and Basic Stamp cannot be used for 
this purpose) and you might need a true “serial adapter”. 
 
The full speed used is 230400 bps, but the option “Slow transfer” can be used to reduce it to 115200, for 
better compatibility with slower serial adapters7. One adapter that can go to full speed is the QuickUSB 
cable. Otherwise any USB/Serial adapter with TTL/CMOS interface can be used for updating the flash. The 
EasyVR Shield can be used for the download, provided that the mode jumper is in UP or LEO position. 

Note: Every download will overwrite the previously transferred custom data. 

After the download completes, a new connection can be established with the EasyVR module (in “normal-
mode”) and the new sounds will be displayed by the EasyVR Commander, in the special group 
“SoundTable” (the last one in the list with a yellow icon). They can be played back and tested using the 
“Play Sound” command on the toolbar or in the “Tools” menu. See also how to do that in your application 
in the code example Use custom sound playback. 
 
Custom grammars will be displayed just after the built-in word sets and they work exactly the same way. 
Trigger words, when specified, will have their own vocabulary with only one entry. You can test and use 
the custom trigger and command grammars as you do with the built-in ones. 

Note: The built-in trigger word set is handled in a special way, as it is active also when 
recognizing from the first user defined command group. This is the only case where SD and SI 
commands are mixed together and does not apply to custom trigger vocabularies. 

  

                                                 
7 Arduino UNO (and other boards with USB/Serial adapter based on ATMEGA8U2) need the option “Slow 
transfer” enabled 



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 83 

Message Recording 

Starting from firmware Revision 1 of the EasyVR 3 module, it's possible to record up to 32 messages. The 
communication protocol and Arduino library have been updated accordingly (see related chapters). 
 
The first time you update the module with a firmware with message recording capability, the serial flash 
memory of the module has to be formatted. The EasyVR Commander will automatically identify a module 
with the memory to be formatted and will alert you with the following window: 
 

 

Figure 15 - Alert for corrupted message storage 

 
The same window could appear in case the memory is corrupted for any reason (i.e. the module has been 
switched off while recording or erasing a message). 
 
With EasyVR Commander v3.10.0 and above you can also record, play and erase messages by clicking on 
the specific buttons, after selecting the "Messages" group in the Group List. 
In order to record a message you have to press the "record button" to start recording and press it again to 
stop. 
 

 

Figure 16 - User interface for messages  



www.veear.eu 

84 EasyVR 3 (Plus) User Manual (1.0.17) 

Updating Firmware 

The EasyVR firmware can be updated in a similar way to custom data by using the command “Update 
Firmware...” from the “Help” menu. Note that you must first disconnect from the module and do the 
steps required to start it in “boot-mode” (see the section Flash Update). 
 
Firmware files can be found in the EasyVR Commander installation folder (default C:\Program Files 
(x86)\VeeaR\EasyVR Commander), for instance file “EasyVR3_FW_Rev0.EVRFW” is the EasyVR 3 firmware 
Revision 0. 
Please be sure to get the most up-to-date EasyVR Commander in order to have to most up-to-date 
available firmware as well. 
 
The specified file will be verified as an official firmware release and basic version information will be 
displayed. If the firmware passes the verification step, then the “Download” button will be enabled. 
 

 

Figure 17 - Interface for updating EasyVR firmware 

Note: After a new firmware is downloaded to the module, the custom data already present 
(sound table and grammars) is erased and it must be downloaded again if necessary. 

Important Upgrade Notice 

Since EasyVR 3 Firmware Revision 5 the internal memory layout for user data has changed, in order to 
accommodate space for 32 more SD commands, increasing the total maximum number of commands to 64. 
The space previously reserved for live message recordings has therefore been reduced by around 20%. 
 
When upgrading firmware to Revision 5 or later (and also if going back to a previous version) you should 
follow these steps: 

 Use the “Export Commands” function to save a backup of  your SD/SV commands (optional); 
 Erase all data from user memory, with the “Reset All” command (all the recorded messages and 

user commands will be deleted); 

  Perform the firmware upgrade to Revision 5; 

  Use the “Import Commands” feature to restore commands from the previous backup (optional).  



www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 85 

QuickUSB Adapter Cable 

Product Description 

The QuickUSB is an USB-to-UART adapter cable, easy to 
use and supported on all the major operating systems. 
 
It plugs into a standard USB port and brings all the UART 
signals to a convenient 6-pin 2mm pitch female 
connector (Hirose DF11 Series). 

QuickUSB Features 

 USB 2.0 Full Speed interface 
 Full UART (RX/TX and RTS/CTS) at 3.3V 
 Data transfer rates from 300 bps to 3 Mbps 
 Extended operating temperature range: -40°C to 85°C 
 Cable Length: 1.8 m 

Technical Specifications 

Drawings and Schematics 

 
 A SIDE B SIDE  

 USB Type A Plug 
(male connector) 

Hirose DF11-6DS-2C 
(female connector) 

 

 

Pin Description 

Pin Type Name Description 

1 I RXD Asynchronous Data Receive line 

2 O RTS# Request To Send flow control line 

3 GND GND Power and signal ground 

4 Power VCC 5V power output (USB VBUS) 

5 O TXD Asynchronous Data Transmit line 

6 I CTS# Clear To Send flow control line 

 



www.veear.eu 

86 EasyVR 3 (Plus) User Manual (1.0.17) 

Operating Conditions 

Symbol Parameter Min Typ Max Unit 

VCC DC Power Output (VBUS) * 4.5 5.0 5.5 V 

Ta Ambient Operating Temperature Range -40 25 85 °C 

 
(*) Output current might be limited by USB Host and internal adapter settings 

Electrical Characteristics 

These are applicable to pins RXD, CTS. 

Symbol Parameter Min Typ Max Unit 

VIH Input High Voltage 1.5  3.3 V 

VIL Input Low Voltage 0.0  1.0 V 

 
These are applicable to pin TXD, RTS. 

Symbol Parameter Min Typ Max Unit 

VOH Output High Voltage (IOH = -1 mA) 2.2 2.7 3.2 V 

VOL Output Low Voltage (IOL = 2 mA) 0.3  0.5 V 

 

Quick Start Instructions 

Software Setup 

The first time you want to use the QuickUSB you need to install the required software drivers for your 
Operating System. Please follow this procedure (one-time only): 

1. Plug the USB end of the cable to your PC and leave the other end unconnected 
2. If you have a recent OS version please allow the system to search for updated drivers: 

a. If the setup was successful, unplug the cable, the procedure is complete 
b. If the setup failed, unplug the cable and continue to the next step 

3. Download the latest official drivers for your OS version from the FTDI VCP Drivers page 
4. Run the driver setup package, or follow any alternate installation procedure accompanying the 

download 
5. After the software setup is complete go back to step 1 above, the OS should now be able to find 

the required drivers automatically 

Using the Adapter 

Once the required software drivers are correctly installed and configured by the Operating System, you 
should not need to repeat the above procedure anymore. 
 

 
 
Just plug the cable on the target board first, then plug the USB connector to a free port on your PC. 
 
The adapter will be visible as a new USB Serial Port device and a virtual COM port on Windows. This COM 
port number is the one to use with the EasyVR Commander. 
  

http://www.ftdichip.com/Drivers/VCP.htm


www.veear.eu 

User Manual (1.0.17) EasyVR 3 (Plus) 87 

How to get support 

Please feel free to contact us with any questions, queries or suggestions. 
If your question is about technical support or troubleshooting for one of our products, we kindly ask you to 
first check our FAQ for a possible solution: http://www.veear.eu/faq 
 
If you cannot find an existing solution on the FAQ, please contact us using the contact form on our website 
at http://www.veear.eu/support. The more detail you provide, the better support we can give. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VeeaR © RoboTech srl, all rights reserved. 
 

 
 
 
 

All VeeaR branded boards and software are manufactured by RoboTech srl 
 
 

 
 
 
 
 

RoboTech srl assumes no responsibility for any errors, which may appear in this manual. Furthermore, RoboTech srl 
reserves the right to alter the hardware, software, and/or specifications detailed herein at any time without notice, 
and does not make any commitment to update the information contained herein. RoboTech srl products are not 
authorized for use as critical components in life support devices or systems. 

http://www.veear.eu/faq
http://www.veear.eu/support

	EasyVR 3 Module
	Product Description
	EasyVR 3 Features

	Technical specifications
	Pin assignment
	Settings and indicators
	Physical dimensions
	Recommended Operating Conditions
	Power Supply Requirements
	Electrical Characteristics
	Serial Interface
	Microphone
	Modifying gain resistance
	Examples

	Positioning guidelines

	Audio Output
	General Purpose I/O
	Use a pin as an output
	Use a pin as an input

	Flash Update

	Quick start  guide for using the module
	Assembly notes
	EasyVR 3 as a Development Board
	Getting started
	Serial Adapter Interface



	EasyVR Shield 3 for Arduino
	Product description
	EasyVR Shield 3 Features

	Technical specifications
	Board overview
	Pin assignment
	Mode Jumper settings
	Software Serial Pins settings

	Quick start guide for using the Shield
	Assembly notes
	Prepare the software
	Prepare the hardware
	Shield configuration table
	Test the Shield on Arduino
	Test the Shield from the EasyVR Commander
	Download custom data or Firmware update


	EasyVR Programming
	Communication Protocol
	Introduction
	Arguments Mapping
	ARG_MIN
	ARG_MAX
	ARG_ZERO
	ARG_ACK

	Command Details
	CMD_BREAK
	CMD_SLEEP
	CMD_ID
	CMD_DELAY
	CMD_BAUDRATE
	CMD_LEVEL
	CMD_KNOB
	CMD_MIC_DIST
	CMD_TRAILING
	CMD_FAST_SD
	CMD_LANGUAGE
	CMD_TIMEOUT
	CMD_RECOG_SI
	CMD_TRAIN_SD
	CMD_GROUP_SD
	CMD_UNGROUP_SD
	CMD_RECOG_SD
	CMD_ERASE_SD
	CMD_NAME_SD
	CMD_COUNT_SD
	CMD_DUMP_SD
	CMD_MASK_SD
	CMD_RESETALL
	CMD_RESET_SD
	CMD_RESET_RP
	CMD_QUERY_IO
	CMD_PLAY_SX
	CMD_PLAY_DTMF
	CMD_DUMP_SX
	CMD_DUMP_SI
	CMD_SEND_SN
	CMD_RECV_SN
	CMD_LIPSYNC
	CMD_RECORD_RP
	CMD_PLAY_RP
	CMD_ERASE_RP
	CMD_VERIFY_RP
	CMD_SERVICE + SVC_EXPORT_SD
	CMD_SERVICE + SVC_IMPORT_SD
	CMD_SERVICE + SVC_VERIFY_SD

	Status Details
	STS_MASK
	STS_COUNT
	STS_AWAKEN
	STS_DATA
	STS_ERROR
	STS_INVALID
	STS_TIMEOUT
	STS_LIPSYNC
	STS_INTERR
	STS_SUCCESS
	STS_RESULT
	STS_SIMILAR
	STS_OUT_OF_MEM
	STS_ID
	STS_PIN
	STS_TABLE_SX
	STS_GRAMMAR
	STS_TOKEN
	STS_SERVICE + SVC_DUMP_SD


	Communication Examples
	Recommended wake up procedure
	Recommended setup procedure
	Recognition of a built-in or custom SI command
	Adding a new SD command
	Training an SD command
	Recognition of an SD command
	Read used command groups
	Read how many commands in a group
	Read a user defined command group
	Use general purpose I/O pins
	Use custom sound playback
	Read sound table

	Built-in Command Sets
	Error codes
	Protocol header file

	EasyVR Arduino Library
	Installation
	Examples
	EasyVR library settings
	Macros
	Detailed Description
	Macro Definition Documentation
	#define EASYVR_RX_TIMEOUT
	#define EASYVR_STORAGE_TIMEOUT
	#define EASYVR_WAKE_TIMEOUT
	#define EASYVR_PLAY_TIMEOUT
	#define EASYVR_TOKEN_TIMEOUT


	EasyVR Class Reference
	Public Types
	Public Member Functions
	Detailed Description
	Member Enumeration Documentation
	enum ModuleId
	enum Language
	enum Group
	enum Wordset
	enum Distance
	enum Knob
	enum Level
	enum TrailingSilence
	enum CommandLatency
	enum Baudrate
	enum WakeMode
	enum ClapSense
	enum PinConfig
	enum PinNumber
	enum SoundVolume
	enum SoundIndex
	enum GrammarFlag
	enum RejectionLevel
	enum MessageSpeed
	enum MessageAttenuation
	enum MessageType
	enum LipsyncThreshold
	enum ErrorCode
	enum BridgeMode

	Constructor & Destructor Documentation
	EasyVR (Stream &  s)
	Parameters:


	Member Function Documentation
	bool detect ()
	Return values:

	bool stop ()
	Return values:

	int8_t getID ()
	Return values:

	bool setLanguage (int8_t  lang)
	Parameters:
	Return values:

	bool setTimeout (int8_t  seconds)
	Parameters:
	Return values:

	bool setMicDistance (int8_t  dist)
	Parameters:
	Return values:

	bool setKnob (int8_t  knob)
	Parameters:
	Return values:

	bool setTrailingSilence (int8_t  dur)
	Parameters:
	Return values:

	bool setLevel (int8_t  level)
	Parameters:
	Return values:

	bool setCommandLatency (int8_t  mode)
	Parameters:
	Return values:

	bool setDelay (uint16_t  millis)
	Parameters:
	Return values:

	bool changeBaudrate (int8_t  baud)
	Parameters:
	Return values:

	bool sleep (int8_t  mode)
	Parameters:
	Return values:

	bool addCommand (int8_t  group, int8_t  index)
	Parameters:
	Return values:

	bool removeCommand (int8_t  group, int8_t  index)
	Parameters:
	Return values:

	bool setCommandLabel (int8_t  group, int8_t  index, const char *  name)
	Parameters:
	Return values:

	bool eraseCommand (int8_t  group, int8_t  index)
	Parameters:
	Return values:

	bool getGroupMask (uint32_t &  mask)
	Parameters:
	Return values:

	int8_t getCommandCount (int8_t  group)
	Parameters:
	Return values:

	bool dumpCommand (int8_t  group, int8_t  index, char *  name, uint8_t &  training)
	Parameters:
	Return values:

	int8_t getGrammarsCount (void )
	Return values:

	bool dumpGrammar (int8_t  grammar, uint8_t &  flags, uint8_t &  count)
	Parameters:
	Return values:

	bool getNextWordLabel (char *  name)
	Parameters:
	Return values:

	void trainCommand (int8_t  group, int8_t  index)
	Parameters:
	Note:

	void recognizeCommand (int8_t  group)
	Parameters:
	Note:

	void recognizeWord (int8_t  wordset)
	Parameters:
	Note:

	bool hasFinished ()
	Return values:

	int8_t getCommand ()
	Return values:

	int8_t getWord ()
	Return values:

	int16_t getToken ()
	Return values:

	int16_t getError ()
	Return values:

	bool isTimeout ()
	Return values:

	bool isAwakened ()
	Return values:

	bool isConflict ()
	Return values:

	bool isMemoryFull ()
	Return values:

	bool isInvalid ()
	Return values:

	bool setPinOutput (int8_t  pin, int8_t  config)
	Parameters:
	Return values:

	int8_t getPinInput (int8_t  pin, int8_t  config)
	Parameters:
	Return values:

	void detectToken (int8_t  bits, int8_t  rejection, uint16_t  timeout)
	Parameters:
	Note:

	void sendTokenAsync (int8_t  bits, uint8_t  token)
	Parameters:
	Note:

	bool sendToken (int8_t  bits, uint8_t  token)
	Parameters:
	Return values:

	bool embedToken (int8_t  bits, uint8_t  token, uint16_t  delay)
	Parameters:
	Return values:
	Note:

	void playSoundAsync (int16_t  index, int8_t  volume)
	Parameters:
	Note:

	bool playSound (int16_t  index, int8_t  volume)
	Parameters:
	Return values:
	Note:

	bool dumpSoundTable (char *  name, int16_t &  count)
	Parameters:
	Return values:

	bool playPhoneTone (int8_t  tone, uint8_t  duration)
	Parameters:
	Return values:

	bool resetAll (bool  wait = true)
	Parameters:
	Return values:
	Note:

	bool resetCommands (bool  wait = true)
	Parameters:
	Return values:
	Note:

	bool resetMessages (bool  wait = true)
	Parameters:
	Return values:
	Note:

	bool checkMessages ()
	Return values:
	Note:

	bool fixMessages (bool  wait = true)
	Parameters:
	Return values:
	Note:

	void recordMessageAsync (int8_t  index, int8_t  bits, int8_t  timeout)
	Parameters:
	Note:

	void playMessageAsync (int8_t  index, int8_t  speed, int8_t  atten)
	Parameters:
	Note:

	void eraseMessageAsync (int8_t  index)
	Parameters:

	bool dumpMessage (int8_t  index, int8_t &  type, int32_t &  length)
	Parameters:
	Return values:
	Note:

	bool realtimeLipsync (int16_t  threshold, uint8_t  timeout)
	Parameters:
	Return values:

	bool fetchMouthPosition (int8_t &  value)
	Parameters:
	Return values:

	bool exportCommand (int8_t  group, int8_t  index, uint8_t *  data)
	Parameters:
	Return values:

	bool importCommand (int8_t  group, int8_t  index, const uint8_t *  data)
	Parameters:
	Return values:

	void verifyCommand (int8_t  group, int8_t  index)
	Parameters:

	int bridgeRequested (Stream &  port)
	Parameters:
	Return values:
	Note:

	void bridgeLoop (Stream &  port)
	Parameters:




	EasyVR Commander
	Getting Started
	Remote Connections (Advanced Topic)
	Configuring the Remote System
	Example 1: BeagleBone Black (Rev C)
	Example 2: Raspberry Pi Model B+

	Configuring the EasyVR Commander

	Speech Recognition
	Recognition Settings
	Phone Tones Generation (DTMF)
	Testing SonicNetTM
	Real-Time Lip-Sync
	Import and Export of Custom Commands
	Using Custom Data
	Sound Table
	Speaker Independent Custom Vocabularies
	Updating Custom Data

	Message Recording
	Updating Firmware
	Important Upgrade Notice


	QuickUSB Adapter Cable
	Product Description
	QuickUSB Features

	Technical Specifications
	Drawings and Schematics
	Pin Description
	Operating Conditions
	Electrical Characteristics

	Quick Start Instructions
	Software Setup
	Using the Adapter


	How to get support

