

Q56-200G-PDAC0-5M-C

MSA and TAA Compliant 200GBase-CU QSFP56 to QSFP56 Direct Attach Cable (Passive Twinax, 0.5m)

Features

- Compliant with SFF-8636
- Compliant with IEEE802.3bj & IEEE802.3cd
- Compliant with IEEE802.3bj & IEEE802.3cd
- Support I2C two line strong interface, easy to control
- Support for hot plugging
- Low Crosstalk
- Low power

Applications

- 10G/40G/100G/200G Ethernet
- Infiniband SDR, DDR, QDR, FDR, EDR, HDR
- Router
- Concentrator
- Data center, cloud server

Product Description

This is an MSA compliant 200GBase-CU HDR QSFP56 to QSFP56 direct attach cable that operates over passive copper with a maximum reach of 50cm (1.6ft). It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This direct attach cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' direct attach cables are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compliant with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Electrical Characteristics

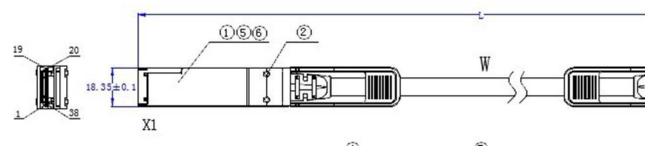
Parameter Requirement Test Condition					
Differential Impedance					
Cable Impedance $105+5/-10\Omega$ Rise time of 25ps	Rise time of 25ps				
Paddle Card Impedance $100\pm10\Omega$ $(20\% \sim 80\%)$.	(20% ~ 80%).				
Cable Termination Impedance 100±15Ω					
Differential (Input/Output) Return_loss (f) $\geq \{ 16.5-2 \forall f \ 0.05 \leq f < 4.1 \}$ 10MHz \leq f \leq 19GHz					
Return Loss SDD11/SDD22 $10.66-14log10(f/5.5) 4.1 \le f \le 19$					
Where f is the frequency in GHz					
Return loss (f) is the return loss at frequency f					
Differential to common mode Return loss (f) $\geq \{22-(20/25.78)f 0.01 \leq f < 12.89\}$ 10MHz \leq f \leq 19GHz	10MHz≤f ≤19GHz				
(Input/Output) Return loss					
SCD11/SCD22 15-(6/25.78)] 12.895 /5 19 } Where f is the frequency in GHz					
Return loss(f) is the Differential to common-mode return					
loss at frequency f					
Common mode to common Return loss (f) \geq 2dB 0.2 \leq f \leq 19 10MHz \leq f \leq 19GHz	10MHz≤f ≤19GHz				
mode (Input/Output) Return Where f is the frequency in GHz Return loss (f) is the					
loss SCC11/ SCD22 common-mode to common-mode return loss at frequency f					
Low Level Contact Resistance 70 milliohms Max. From initial. EIA-634-23: Apply a maximum voltage of 20mV and surrors	voltage of 20mV and current of				
100 mA.					
255	EIA364-21:AC 300V 1minute				
Dielectric Withstanding Voltage NO disruptive discharge EIA-364-20: Apply a voltage of	EIA-364-20: Apply a voltage o f				
	300 VDC for 1 minute between				
adjacent terminals and betw	adjacent terminals and between				
	adjacent terminals and ground				
Differential Insertion Loss Max. For TPa to TPb Excluding Test fixture					
Differential F AWG 1.25GHz 2.5GHz 5.0GHz 7.0GHz 10Ghz 12.89Ghz 10MHz≤f ≤19GHz	łz]				
Insertion Loss 30(1m) Max. 4.5dB 5.4dB 6.3dB 7.5dB 8.5dB 10.5dB					
(SDD21 Max) 30/28(3m)Max. 7.5dB 9.5dB 12.2dB 14.8dB 18.0dB 21.5dB					
26(3m) Max. 5.7dB 7.2dB 9.9 dB 11.9dB 14.1dB 16.5dB					
26/25(5m)Max. 7.8dB 10.0dB 13.5dB 16.0dB 19.0dB 22.0dB					

Insertion Loss Deviation	-0.176*f - 0.7 ≤ ILD ≤ 0.176* f + 0.7	50MHz≤f ≤19GHz	
Differential to common mode conversion Loss-Differential Insertion Loss (SCD21-SDD21)	10 0.01 \leq f < 12.89 Conversion loss(f) – IL (f) \geq $\{27-(29/22)f$ 12.89 \leq f < 15.7 $\}$	10MHz≤f ≤19GHz	
	6.3 $15.7 \le f \le 19$ Where f is the frequency in GHz Conversion_loss (f) is the cable assembly differential to common-mode conversion loss IL (f) is the cable assembly insertion loss		
MDNEXT (multiple disturber near-end crosswalk)	≥26dB @12.89GHz	10MHz≤f ≤19GHz	
Intra Skew	15ps/m	10MHz≤f ≤19GHz	

Environment Performance

Parameter	Requirement	Test Condition	
Operating Temperature Range	-20°C to +76°C	Cable operating temperature range	
Storage Temperature Range	-40°C to +80°C	Cable storage temperature range in packed condition	
Thermal Cycling Non-Powered	No evidence of physical damage	EIA-364-32D, Method A, -25 to 90C, 100 cycles, 15 min, dwells	
Salt Spraying	48 hours salt spraying after shell corrosive area less than 5%	EIA-364-26	
Mixed Flowing Gas	Pass electrical tests per 3.1 after stressing (Fpr connector only)	EIA-364-35 Class II, 14 days.	
Temp. Life	No evidence of physical damage	EIA-364-17C w/RH, Damp heat 90°C at 85% RH for 500 hours then return to ambient	
Cable Cold Bend	4H No evidence of physical damage	Condition: -20°C ±2°C, mandrel diameter is 6 times the cable diameter.	

Mechanical and Physical Characteristics


Parameter	Requirement	Test Condition
Vibration	Pass electrical tests per 3.1 after	Clamp & vibrate per EIA-364-28E,
	stressing	TC-VII, test condition letter – D, 15 minutes in X, Y & Z axis
Cable Flex	No evidence of physical damage	Flex cable 180° for 20 cycles (±90° from nominal position) at
		12 cycles per minute with a 1.0kg load applied to the cable
		jacket. Flex in the boot area 90º in each direction from
		vertical. Per EIA-364-41C
Cable Plug Retention in Cage	90N Min. No evidence of	Force to be applied axially with no damage to cage. Per SFF
	physical damage	8661 Rev 2.1
		Pull on cable jacket approximately 1 ft behind cable plug.
		No functional damage to cable plug below 90N.

		Per SFF-8432 Rev 5.0
Cable Retention in Plug	90N Min. No evidence of	Cable plug is fixtured with the bulk cable hanging vertically.
	physical damage	A 90N axial load is applied (gradually) to the cable jacket
		and held for 1 minute. Per EIA-364-38B
Mechanical Shock	Pass electrical tests Per 3.1 after	Clamp and shock per EIA-364-27B, TC- G,3 times in 6
	stressing	directions, 100g, 6ms.
Cable Plug Insertion	40N Max (QSFP28)	Per SFF8661 Rev 2.1
Cable plug Extraction	30N Max (QSFP28)	Place axial load on de-latch to de-latch plug.Per SFF8661
		Rev 2.1
Durability	50 cycles, No evidence of	EIA-364-09, perform plug &unplug cycles:Plug and
	physical damage	receptacle mate rate: 250times/hour. 50times for
		QSFP28/SFP28 module (CONNECTOR TO PCB)

Wiring Diagram

X1	X2	Remarks	X1	X2	Remarks
18 (RX1-)	37(TX1-)	Pair	37(TX1-)	18 (RX1-)	Pair
17 (RX1+)	36 (TX1+)		36 (TX1+)	17 (RX1+)	-
15 (RX3-)	34 (TX3-)	Pair	34 (TX3-)	15 (RX3-)	Pair
14 (RX3+)	33 (TX3+)	_	33 (TX3+)	14 (RX3+)	-
6 (TX4+)	25 (RX4+)	Pair	25 (RX4+)	6 (TX4+)	Pair
5 (TX4-)	24 (RX4-)		24 (RX4-)	5 (TX4-)	
3 (TX2+)	22 (RX2+)	Pair	22 (RX2+)	3 (TX2+)	Pair
2 (TX2-)	21 (RX2-)		21 (RX2-)	2 (TX2-)	
1, 4, 7, 13, 16, 19,	1, 4, 7, 13, 16,	GND	8, 9, 10, 11, 12, 27,	8, 9, 10, 11, 12, 27,	EEPROM
20, 23, 26,	19,20, 23, 26, 32,		28, 29, 30, 31	28, 29, 30, 31	point at both ends
32,35,38	35, 38				

Mechanical Specifications

UNIT: mm

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com
Telephone: +44 1285 719 600