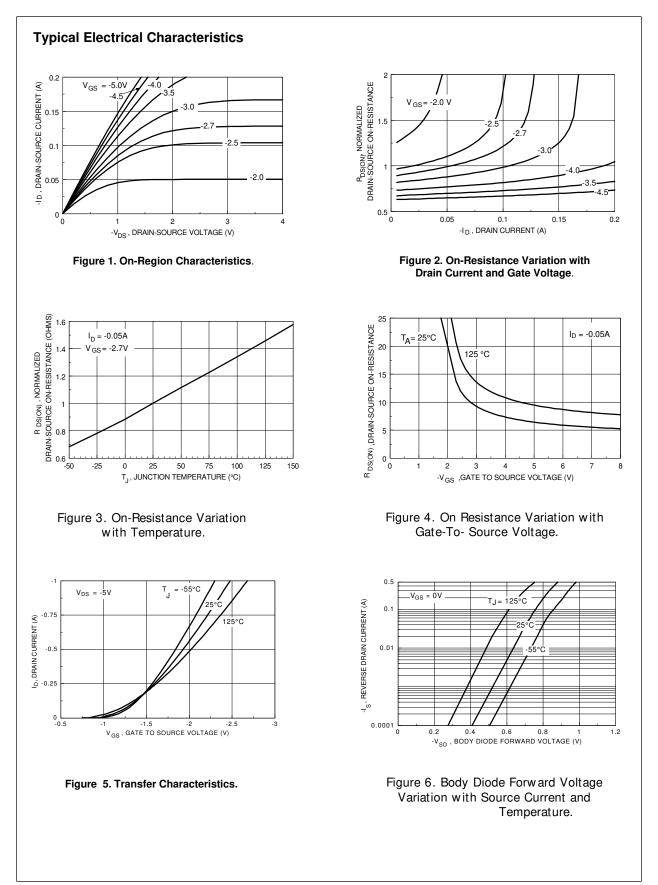
Drain-Source Voltage -25 V 38S Gate-Source Voltage -8 V 38S Gate-Source Voltage -8 V Drain Current - Continuous -0.12 A - Pulsed -0.5 -0.5 V 0 Maximum Power Dissipation (Note 1a) 0.9 W (Note 1b) 0.7 0.7 V							October 1997
These Dual P-Channel logic level enhancement mode field effect transitors are produced using Fairchild's proprietary, high cal density, DMOS technology. This very high density process especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as replacement for digital transistors with different bias resistors like the IMBXA series. Sonce as replacement for digital transistors with different bias resistors like the IMBXA series.			Dual P-Chani	nel			
transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process especially tailored to minimize on-state resistance. This devices a replacement for digital transistors with different bias resistors like the MBXA series. Since bias resistors are not required this one PC-hannel PE can replace several digital transistors with different bias resistors like the MBXA series. Sort-23 SuperSOT TM -6 SuperSOT TM -8 SO-8 SOT-223 SOIC-16	Gene	eral Descriptio	n		Features		
SOT-23 SuperSOT ^{TM-6} SuperSOT ^{TM-8} SO-8 SOT-23 SOIC-16 I = I = I = I = I = I = I = I = I = I =	These transis densit espec has b replac Since can re	e Dual P-Chann stors are produ ty, DMOS tech cially tailored to been designed e cement for digita bias resistors eplace several d	el logic level enhance iced using Fairchild' nology. This very h minimize on-state re especially for low vo al transistors in load are not required thi digital transistors with	s proprietary, high cell igh density process is esistance. This device ltage applications as a switchimg applications. is one P-Channel FET	 Very low lev operation ir Gate-Sourc >6kV Huma Replace mu 	$\begin{array}{l} R_{DS(ON)} = 13 \ \Omega \ @ \ V_{GS} = -\\ R_{DS(ON)} = 10 \ \Omega \ @ \ V_{GS} = -\\ vel \ gate \ drive \ requirement \\ n \ 3V \ circuits. \ V_{GS(th)} < 1.5\\ xe \ Zener \ for \ ESD \ rugged \\ an \ Body \ Model \\ ultiple \ PNP \ digital \ transis \end{array}$	2.7 V -4.5 V. nts allowing direct V. dness.
SOT-23 SuperSOT"-6 SuperSOT"-8 SO-8 SOT-223 SOIC-16 Image: SuperSOT"-6 SuperSOT"-6 SuperSOT T-23 SOIC-16 Image: SuperSOT T-6 Image: Sole-16 Image: So		adaa					
$\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $							
ymbolParameterFDC6302PUnitsDrain-Source Voltage-25V385Gate-Source Voltage-8VDrain Current- Continuous - Pulsed-0.12A-Pulsed-0.5V0Maximum Power Dissipation(Note 1a) (Note 1b)0.9W0,170.70.7CSDElectrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm)6.0kV						4	3
Gate-Source Voltage -8 V Drain Current - Continuous -0.12 A - Pulsed -0.5 -0.5 Maximum Power Dissipation (Note 1a) 0.9 (Note 1b) 0.7 W , T_STG Operating and Storage Temperature Range -55 to 150 °C SD Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm) 6.0 kV			S1 302	S2			2
Drain Current - Continuous -0.12 A - Pulsed -0.5 -0.5 Maximum Power Dissipation (Note 1a) 0.9 (Note 1b) 0.7	ymbol	SuperSO Diute Maximu	S1 30^{2} $T^{TM}-6$ pin 1 G1 m Ratings $T_A =$	S2	d	5 6 FDC6302P	2 1 Units
- Pulsed -0.5 Maximum Power Dissipation (Note 1a) 0.9 (Note 1b) 0.7 0.7 (Note 1b) 0.7 °C SD Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm) 6.0 kV	ymbol _{DSS}	SuperSO	S1 DT^{TM}_{-6} pin 1 G1 Im Ratings $T_{A} =$ P = Voltage	S2	d	5 6 FDC6302P -25	2 1 1 V
Maximum Power Dissipation (Note 1a) 0.9 (Note 1b) 0.7 ,, T _{STG} Operating and Storage Temperature Range -55 to 150 SD Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm) 6.0	ymbol DSS GSS	SuperSC SuperSC	S1 $T^{TM}-6$ pin 1 G1 m Ratings $T_A =$ e Voltage	S2	d	5 6 FDC6302P -25 -8	2 1 1 V V V
,T _{STG} Operating and Storage Temperature Range -55 to 150 °C SD Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm) 6.0 kV	ymbol	SuperSC SuperSC	$S_{pin}^{T} = G_{pin}^{T}$	S2	:d	5 6 FDC6302P -25 -8 -0.12	2 1 1 V V V
SD Electrostatic Discharge Rating MIL-STD-883D 6.0 kV Human Body Model (100pf / 1500 Ohm) 6.0 kV	ymbol DSS GSS	SuperSO Dute Maximu Parameter Drain-Source Gate-Source Drain Curren	S1 $T^{TM}-6$ P^{in1} G1 $T_A =$ $P^{TM}-6$ $T_A =$ P^{in1} P^{in1} P^{in1	S2	:d	5 6 FDC6302P -25 -8 -0.12 -0.5 0.9	2 1 1 V V V A
HERMAL CHARACTERISTICS	ymbol DSS GSS D	SuperSO	S1 $T_{A} = 0$ Triange $T_{A} = 0$ $T_{A} = 0$ $T_{$	S2 25°C unless other wise note uous i (Note 1a) (Note 1b)	id	FDC6302P -25 -8 -0.12 -0.5 0.9 0.7	2 1 1 V V V A A W
	ymbol DSS GSS	SuperSO SuperSO Dute Maximu Parameter Drain-Source Gate-Source Drain Curren Maximum Po Operating an Electrostatic	S1 $T^{TM}-6$ P^{in1} G1 $P^{TM}-6$ $T_A =$ P^{in1} P^{in1} P^{in	S2 25°C unless other wise note uous (Note 1a) (Note 1b) re Range L-STD-883D	:d	5 6 FDC6302P -25 -8 -0.12 -0.5 0.9 0.7 -55 to 150	2 1 1 V V V A M W C

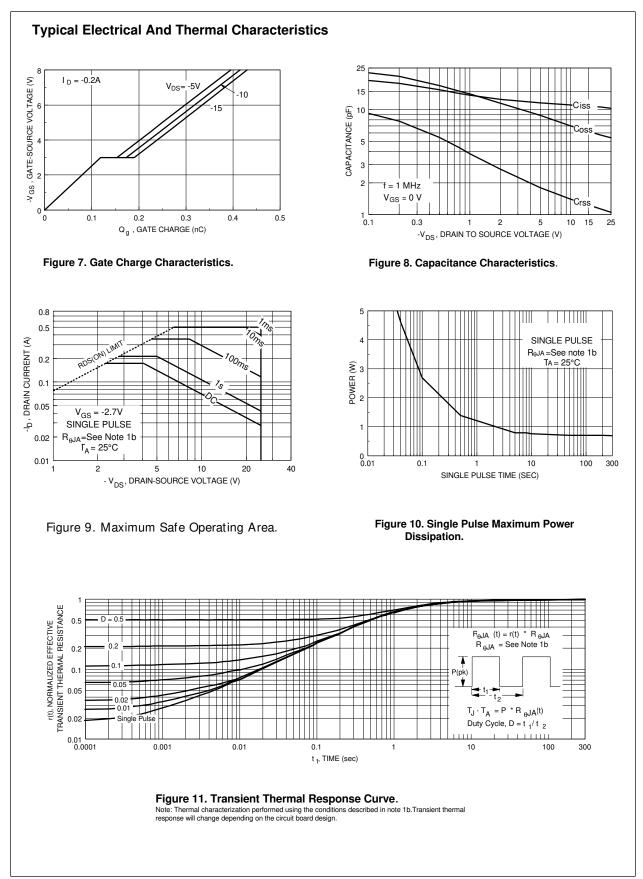
©1997 Fairchild Semiconductor Corporation

Thermal Resistance, Junction-to-Case

(Note 1)


FDC6302P Rev.C

°C/W


60

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS			1		
3V _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = -250 \mu A$	-25			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_{D} = -250 μ A, Referenced to 25 °C		-20		mV /° C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -20 V, V_{GS} = 0 V$			-1	μA
		$T_{J} = 55^{\circ}C$			-10	μA
GSS	Gate - Body Leakage Current	$V_{GS} = -8 V, V_{DS} = 0 V$			-100	nA
ON CHARA	CTERISTICS (Note 2)					
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I_{D} = -250 μ A, Referenced to 25 °C		1.9		mV /° C
V _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = -250 \ \mu {\rm A}$	-0.65	-1	-1.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -2.7 \text{ V}, I_{D} = -0.05 \text{ A}$		10.6	13	Ω
		$V_{GS} = -4.5 \text{ V}, \ I_{D} = -0.2 \text{ A}$		7.9	10	
		T _J =125°C		12	18	
D(ON)	On-State Drain Current	$V_{\rm GS} = -2.7 \ V, \ V_{\rm DS} = -5 \ V$	-0.05			А
) _{FS}	Forward Transconductance	$V_{\rm DS} = -5 \text{ V}, \ \text{I}_{\rm D} = -0.2 \text{ A}$		0.135		S
OYNAMIC (CHARACTERISTICS		1	1	1	1
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		11		pF
C _{oss}	Output Capacitance			7		pF
C _{rss}	Reverse Transfer Capacitance			1.4		pF
SWITCHING	CHARACTERISTICS (Note 2)		1	1		r
D(on)	Turn - On Delay Time	$V_{DD} = -6 V, I_D = -0.2 A,$		5	12	ns
r	Turn - On Rise Time	V_{GS} = -4.5 V, R_{GEN} = 50 Ω		8	16	ns
D(off)	Turn - Off Delay Time			9	18	ns
f	Turn - Off Fall Time			5	10	ns
С ^ª	Total Gate Charge	$V_{DS} = -5 V, I_{D} = -0.2 A,$ $V_{GS} = -4.5 V$		0.22	0.31	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		0.12		nC
Q _{gd}	Gate-Drain Charge			0.05		nC
	JRCE DIODE CHARACTERISTICS AND MAXI		1		_	
s	Maximum Continuous Drain-Source Diode For				-0.7	A
V _{SD} lotes:	Drain-Source Diode Forward Voltage	$V_{\rm GS} = 0 \ V, \ I_{\rm S} = -0.7 \ A \ ({\rm Note} \ 2)$		-1	-1.3	V
a.	R_{ecA} is determined by the user's board design. 140°C/W on a 0.125 in ² pad of b. 180°C/Λ 2oz copper. J b. 180°C/Λ vulse Width ≤ 300µs, Duty Cycle ≤ 2.0%.	W on a 0.005 in ² of pad copper.				

FDC6302P Rev.C

FDC6302P Rev.C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ *CROSSVOLT*™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ OS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition			
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only			
	Formative or In Design First Production Full Production			

Rev. H4