CMKT5089M10

SURFACE MOUNT DUAL NPN SILICON MATCHED $h_{\mbox{\scriptsize FE}}$ TRANSISTORS

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR CMKT5089M10 consists of two (2) individually isolated 5089 NPN silicon transistors with matched hFE. This ULTRAmini™ device is manufactured by the epitaxial planar process and epoxy molded in an SOT-363 surface mount package. The CMKT5089M10 has been designed for applications requiring high gain and low noise.

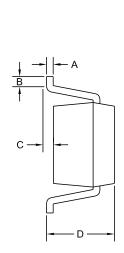
MARKING CODE: C9M0

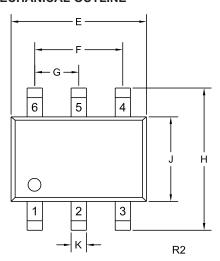
		_		
MAXIMUM RA	TINGS: (T _A =25°C)	SYMBOL		UNITS
Collector-Base	Voltage	V_{CBO}	30	V
Collector-Emitte	er Voltage	V_{CEO}	25	V
Emitter-Base V	oltage	V_{EBO}	4.5	V
Continuous Co	llector Current	$I_{\mathbb{C}}$	50	mA
Power Dissipat	ion	P_{D}	350	mW
Operating and	Storage Junction Temperature	T _J , T _{stg}	-65 to +150	°C
Thermal Resist	ance	$\Theta_{\sf JA}$	357	°C/W
ELECTRICAL	CHARACTERISTICS PER TRAN	ISISTOR: (T _A =25°C	unless otherwise noted	d)
SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
I _{CBO}	V _{CB} =15V		50	nA
I _{EBO}	V _{EB} =4.5V		100	nA
BV _{CBO}	I _C =100μA	30		V
BV _{CEO}	I _C =1.0mA	25		V

I _{CBO}	V _{CB} =15V		50	nA
I _{EBO}	V _{EB} =4.5V		100	nA
BV _{CBO}	I _C =100μA	30		V
BV _{CEO}	I _C =1.0mA	25		V
BVEBO	I _E =100μA	4.5		V
V _{CE} (SAT)	I _C =10mA, I _B =1.0mA		0.5	V
V _{BE(SAT)}	I _C =10mA, I _B =1.0mA		0.8	V
hFE	V_{CE} =5.0V, I_{C} =0.1mA	400	1200	
hFE	V_{CE} =5.0V, I_{C} =1.0mA	450		
h _{FE}	V_{CE} =5.0V, I_{C} =10mA	400		
f _T	V_{CE} =5.0V, I_{C} =500 μ A, f=20MHz	50		MHz
C _{ob}	V_{CB} =5.0V, I_E =0, f=1.0MHz		4.0	pF
C _{ib}	V_{BE} =0.5V, I_{C} =0, f=1.0MHz		10	pF
h _{fe}	V_{CE} =5.0V, I_{C} =1.0mA, f=1.0kHz	450	1800	
NF	V_{CE} =5.0V, I_{C} =100 μ A, R_{S} =1.0 $k\Omega$,			
	f=10Hz to 15.7kHz		2.0	dB

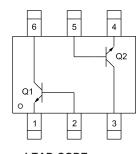
MATCHING CI SYMBOL	HARACTERISTICS: TEST CONDITIONS	MIN	MAX	UNITS
h _{FE1} /h _{FE2} *	V_{CE} =5.0V, I_{C} =1.0mA	0.9	1.0	
V _{BE1} -V _{BE2}	V _C F=5.0V, I _C =100μA		5.0	mV

^{*} The lowest hFE reading is taken as hFE1.


R4 (13-January 2010)


CMKT5089M10

SURFACE MOUNT DUAL NPN SILICON ${\tt MATCHED}\; {\tt h_{FE}}\; {\tt TRANSISTORS}$



SOT-363 CASE - MECHANICAL OUTLINE

PIN CONFIGURATION

LEAD CODE:

- 1) Emitter Q1 2) Base Q1
- 3) Collector Q2
- 4) Emitter Q2
- 5) Base Q2
- 6) Collector Q1

MARKING CODE: C9M0

DIMENSIONS				
	INCHES		MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX
Α	0.004	0.010	0.10	0.25
В	0.005	-	0.12	-
С	0.000	0.004	0.00	0.10
D	0.031	0.043	0.80	1.10
Е	0.071	0.087	1.80	2.20
F	0.051		1.30	
G	0.026		0.65	
Н	0.075	0.091	1.90	2.30
J	0.043	0.055	1.10	1.40
K	0.006	0.012	0.15	0.30

SOT-363 (REV: R2)

R4 (13-January 2010)

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- · Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA

Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms

www.centralsemi.com (001)