

Part No:

PCS.07.A

Description:

Low Profile Cellular SMD Dielectric Antenna 824~960MHz/1710~2170MHz

PCO O RE

Features:

High Efficiency Multi-Band SMD antenna

Low profile 35mm * 7mm * 3mm

CF Certified

RoHS & Reach Compliant

1.	Introduction	3
2.	Specifications	4
3.	Antenna Characteristics	6
4.	Radiation Patterns	8
5.	Mechanical Drawing	10
6.	Footprint	11
7.	Antenna Integration Guide	12
8.	Evaluation Board Drawing	19
9.	Solder Reflow Recommendations	20
10.	Packaging	21
12.	Application Note	23
	Changelog	25

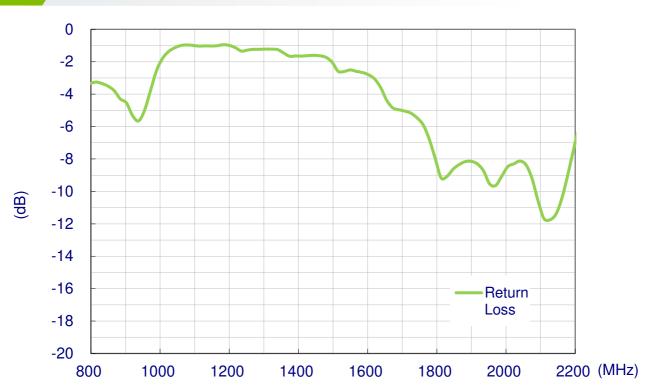
Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

The PCS.07.A is a low profile SMT cellular antenna designed for direct SMT mount on the device PCB. It provides highest efficiency in very small factor 35*7*3mm. It is more resistant to detuning compared to other antenna integrations. If tuning is required it can be tuned for the device environment, while there is no need for new tooling. Its rectangular shape and very small size makes it very easy to integrate – can be mounted directly on the edge of the PCB board.

The PCS.07 antenna is suitable for lower cost cellular applications and is especially suitable for telematics and automotive sector. If higher efficiency or improved radiated spurious emissions are required, especially on smaller ground-planes, please use our PA series antennas, PA.26 or PA.710. For further information, please contact your regional Taoglas customer support team.

2. Specifications

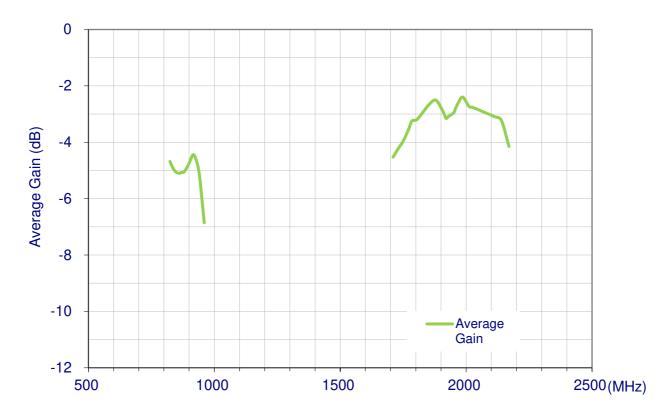
Cellular						
Frequency (MHz)	824~896	880~960	1710~1880	1850~1990	1920~2170	
Peak Gain (dBi)						
On EVB	-1.96	-1.77	2.90	2.83	2.57	
		Average Ga	in (dB)			
On EVB	-4.68	-4.44	-2.50	-2.68	-2.42	
		Efficiency	(%)			
On EVB	32.02	31.06	45.14	52.82	50.11	
	Return Loss (dB)					
On EVB	< -3	< -4	< -5	<-7	< -6	
Impedance	50Ω					
Polarization	Linear					
Radiation Pattern			Omni			
Mechanical						
Antenna Dimensions			35mm x 7mm x 3	mm		
Material	Polymer					
Soldering Type	SMT through Reflow					
Environmental						
Temperature Range			-40°C to 85°C			
Moisture Sensitivity Level (MSL)	3 (168 Hours)					



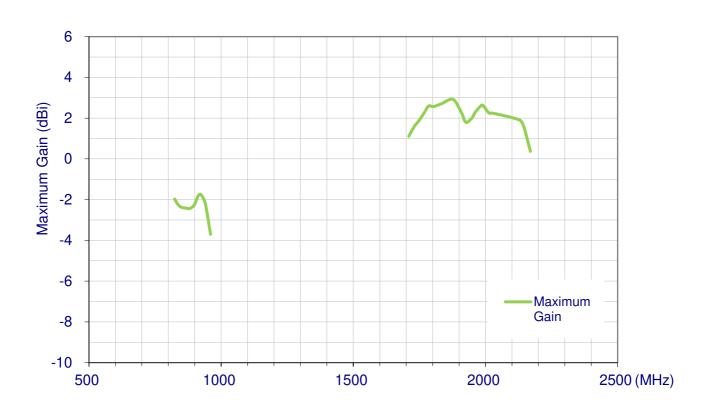
		5G/4G Bands	
Band Number	5GNR / FR1 / L	TE / LTE-Advanced / WCDMA / HSPA / HS	SPA+ / TD-SCDMA
	Uplink	Downlink	Covered
1	UL: 1920 to 1980	DL: 2110 to 2170	✓
2	UL: 1850 to 1910	DL: 1930 to 1990	✓
3	UL: 1710 to 1785	DL: 1805 to 1880	✓
4	UL: 1710 to 1755	DL: 2110 to 2155	✓
5	UL: 824 to 849	DL: 869 to 894	✓
7	UL: 2500 to 2570	DL:2620 to 2690	×
8	UL: 880 to 915	DL: 925 to 960	✓
9	UL: 1749.9 to 1784.9	DL: 1844.9 to 1879.9	✓
11	UL: 1427.9 to 1447.9	DL: 1475.9 to 1495.9	×
12	UL: 699 to 716	DL: 729 to 746	×
13	UL: 777 to 787	DL: 746 to 756	×
14	UL: 788 to 798	DL: 758 to 768	*
17	UL: 704 to 716	DL: 734 to 746	×
18	UL: 815 to 830	DL: 860 to 875	✓
19	UL: 830 to 845	DL: 875 to 890	✓
20	UL: 832 to 862	DL: 791 to 821	✓
21	UL: 1447.9 to 1462.9	DL: 1495.9 to 1510.9	*
22	UL: 3410 to 3490	DL: 3510 to 3590	×
23	UL:2000 to 2020	DL: 2180 to 2200	✓
24	UL:1625.5 to 1660.5	DL: 1525 to 1559	*
25	UL: 1850 to 1915	DL: 1930 to 1995	✓
26	UL: 814 to 849	DL: 859 to 894	✓
27	UL: 807 to 824	DL: 852 to 869	✓
28	UL: 703 to 748	DL: 758 to 803	*
29	UL: -	DL: 717 to 728	*
30	UL: 2305 to 2315	DL: 2350 to 2360	*
31	UL: 452.5 to 457.5	DL: 462.5 to 467.5	*
32	UL: -	DL: 1452 – 1496	*
35		1850 to 1910	✓
38		2570 to 2620	*
39		1880 to 1920	✓
40		2300 to 2400	*
41		2496 to 2690	*
42		3400 to 3600	*
43		3600 to 3800	*
48		3550 to 3700	*
66	UL: 1710-1780	DL: 2110-2200	✓
71		617 to 698	*
74/75/76		1427 to 1518	*
77		3300 to 4200	*
78		3300 to 3800	*
79		4400 to 5000	×

3. Antenna Characteristics

3.1 Return Loss

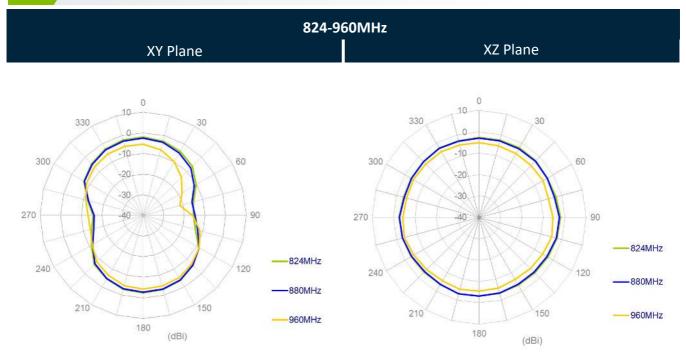


3.2 Efficiency

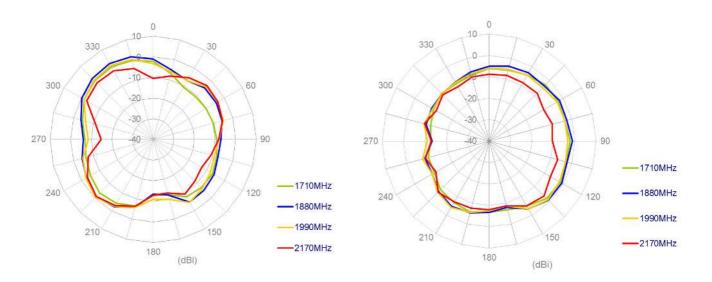


3.3 Average Gain

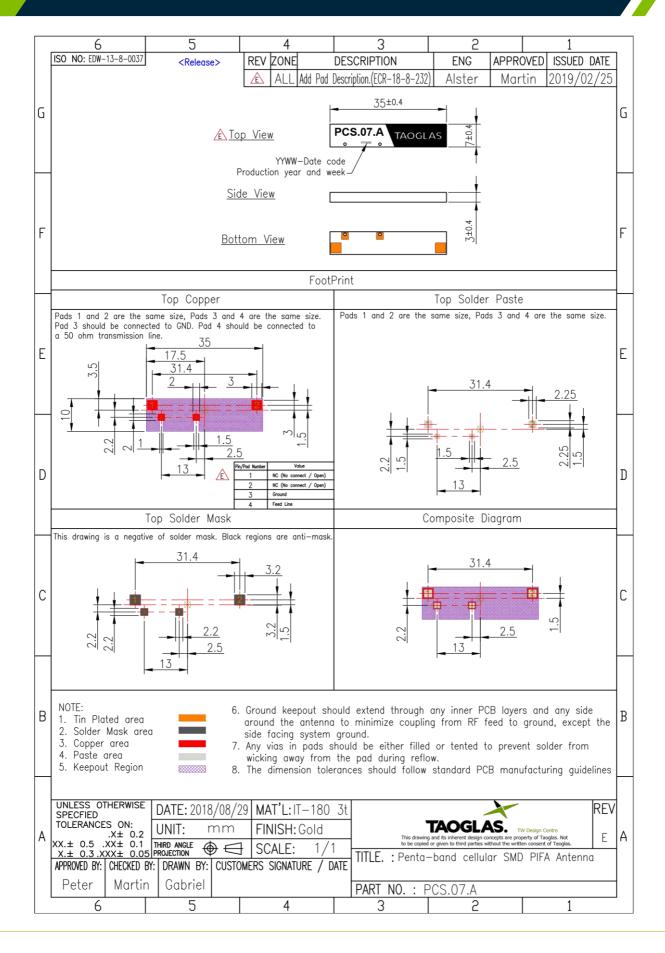
3.4 Peak Gain

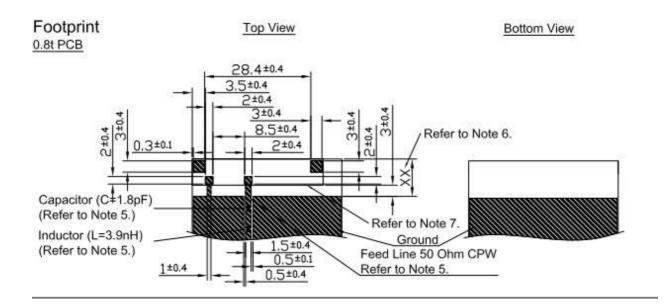

4. Radiation Patterns

4.1 Test Setup on Evaluation Board



4.2 2D Radiation Patterns





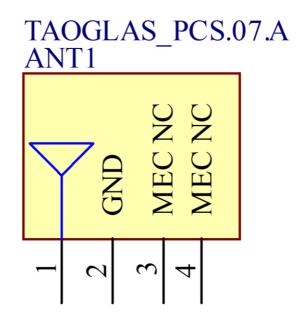
Mechanical Drawing (Units: mm)

6. Footprint

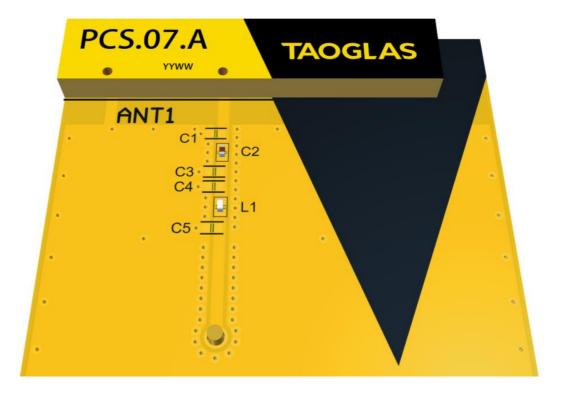
Notes

- 1. Tin Plated
- :k)
- 2. Silkscreen (Black)
- 3. Soldermask (Gold)
- 4. Copper
- 1111
- 5. Matching circuit value changes according to ground and layout.
- 6. Antenna outline for placement reference.
- 7. Keep out area.

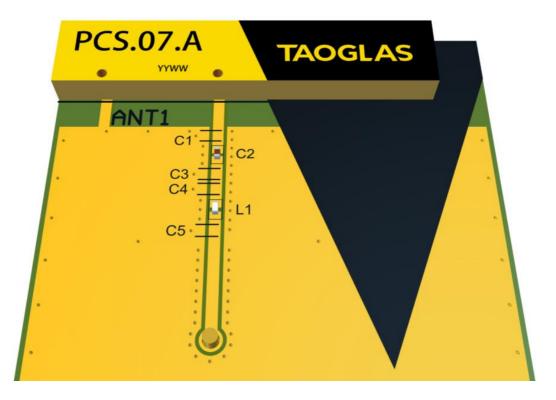
7. Antenna Integration Guide



7.1 Schematic Symbol and Pin Definition


The circuit symbol for the antenna is shown below. The antenna has 4 pins with only two pins (Pin 1 and Pin 2) as functional. Pins 3 and 4 are for mechanical strength.

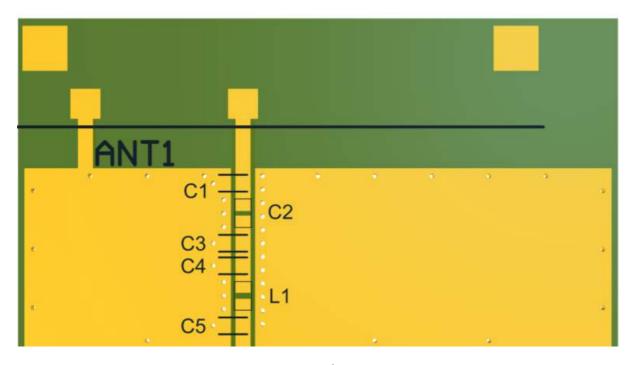
Pin	Description
1	RF Feed
2	Ground
3,4	Mechanical, Not Connected



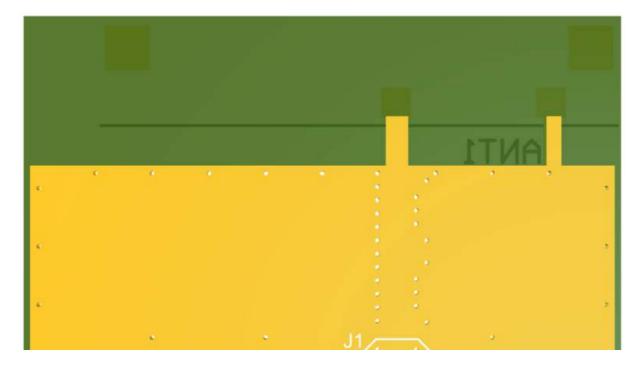
7.2 Antenna Integration

For any given PCB size, the antenna should ideally be placed on the PCB's shortest side, to take advantage of the ground plane. Optimized matching components can be placed as shown.

Top Side w/ Solder Mask

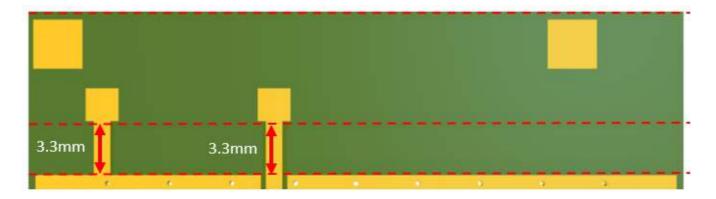


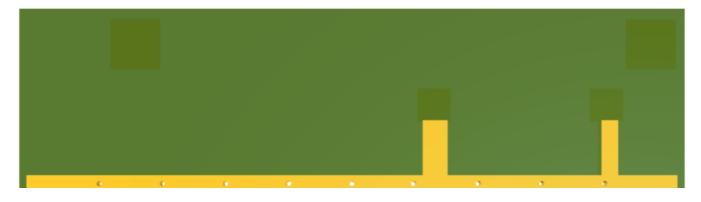
Top Side w/o Solder Mask


7.3

PCB Layout

The footprint and clearance on the PCB must meet the layout drawing in section (Footprint Drawing). Note the placement of the optimized components. C1 is placed as close as possible to the RF feed (pad 1) but still within the transmission line. C2 & L1 are then placed tightly in series after that. C3, C4, & C5 are optional components but the footprints are recommended in case they are needed.

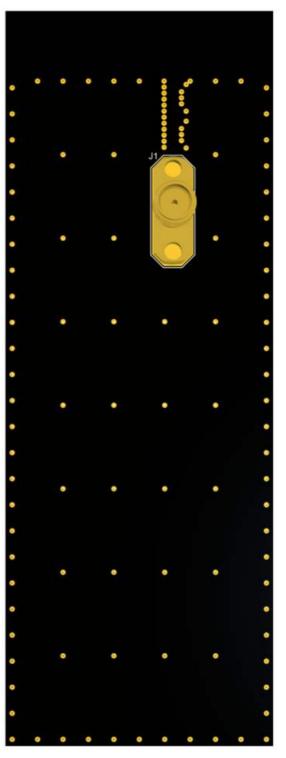

Topside


Bottom Side

7.4 PCB Clearance

Below shows the antenna footprint and clearance through ALL layers on the PCB. Only the antenna pads and connections to feed and GND are present within this clearance area (marked RED). The clearance area extends to 2.8mm in length & 10.6mm in width from the centre of the PCB. This clearance area includes the bottom side and ALL internal layers on the PCB.

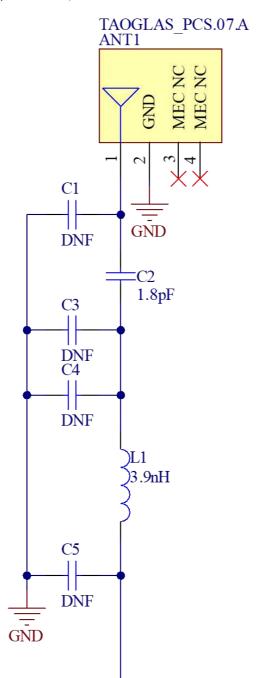
Topside


Bottom Side

7.5 Evaluation Board

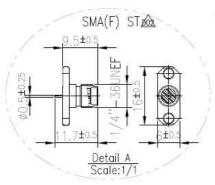
110mm

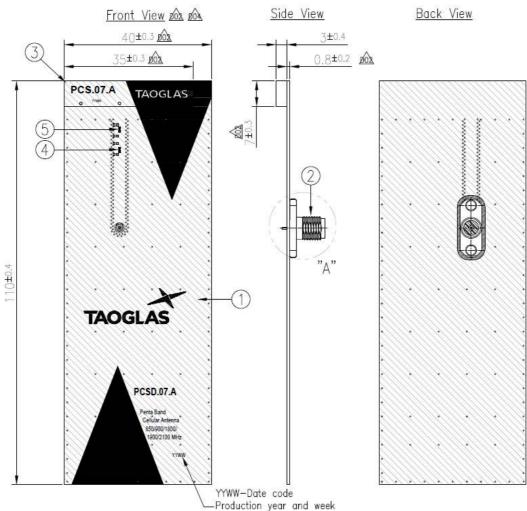
Topside


Bottom Side

17

7.6 Evaluation Board Matching Circuit


Additional matching components may be necessary for your device, so we recommend incorporating extra component footprints, forming a "pi" network, between the cellular module and the edge of the ground plane.



Designator	Туре	Value	Manufacturer	Manufacturer Part Number
L1	Inductor	3.9nH	TDK	MLK1005S3N9ST000
C2	Capacitor	1.8pF	Murata	GRM1555C1H1R8CA01D
C1, C3, C4, C5	Capacitor	Not Fitted	-	-

Evaluation Board Drawing (Units: mm)

Note:

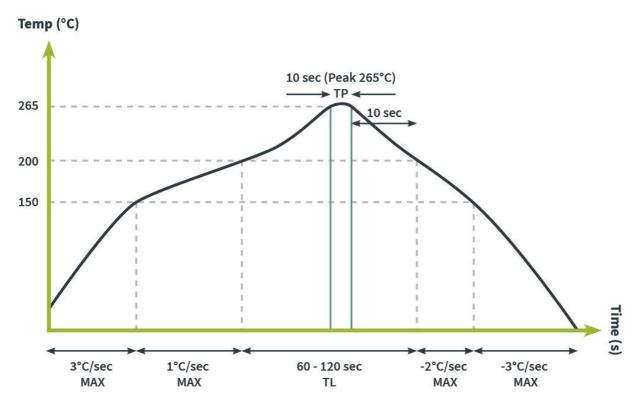
1. Week Batch Code

Example: 2013 Week 10=1310
2. Soldered area

3. Soldermask area(Gold)

4. Logo & Text Ink Printing : Black

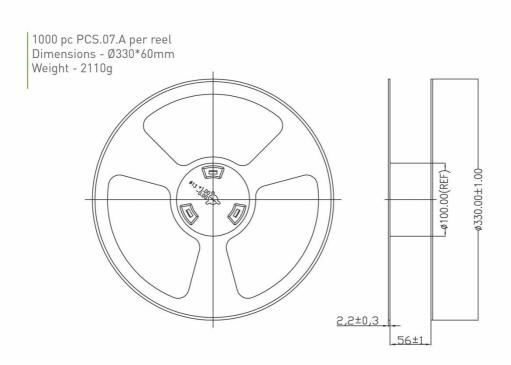
	Name	P/N	Material	Finish	QTY
1	PCSD.07.A EVB PCB	100212I000052A	Composite 0.8t	Au Plated	1
2	SMA(F)ST PCB	200413B000002A	Brass	Au Plated	1
3	PCS.07.A PCB Antenna	100212I040052A	Composite 3t	Gold	1
4	3.9nH Inductor	001513C000055A	Ceramic	N/A	1
5	1.8pF Capacitor	001513C010055A	Ceramic	N/A	1

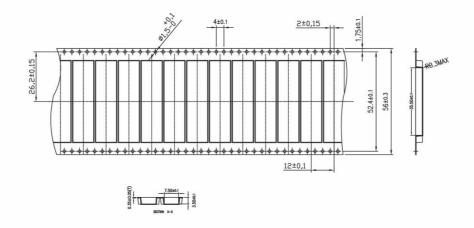

19

www.taoglas.com SPE-13-8-028-G

9. Solder Reflow Recommendations

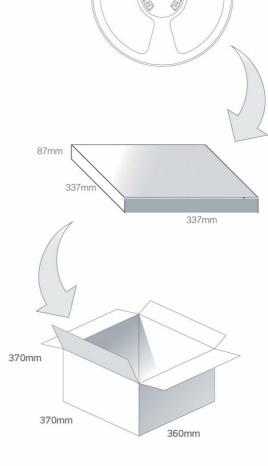
The PCS.07.A can be assembled by following the recommended soldering temperatures are as follows:

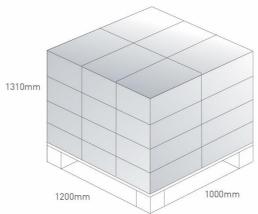



^{*}Temperatures listed within a tolerance of +/- 10º C

The PCS.07.A is not limited to the number of passes through the reflow process. Smaller components are typically mounted on the first pass, however, we do advise mounting the PCS.07.A when placing larger components on the board during subsequent reflows.

11. Packaging

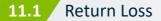


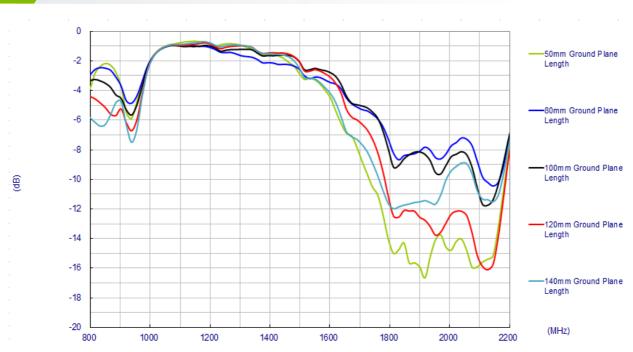

1000 pcs PCS.07.A reel Dimensions - 330*330*60mm Weight -2110g

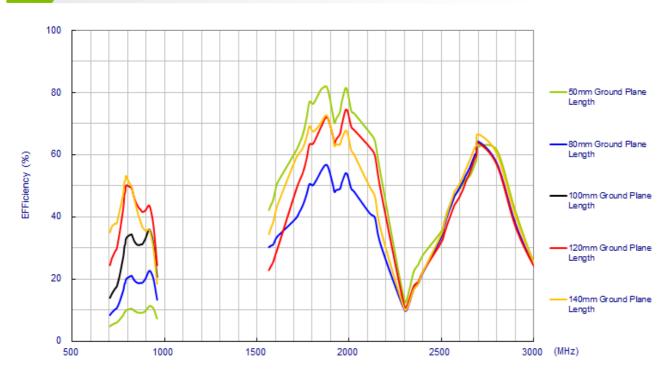
1000 pcs PCS.07.A / 1 Reel in small box Dimensions - 337*337*87mm Weight -2.39Kg

4 reels, 4000 pcs in one carton Carton Dimensions - 370*360*370mm Weight -10.44Kg

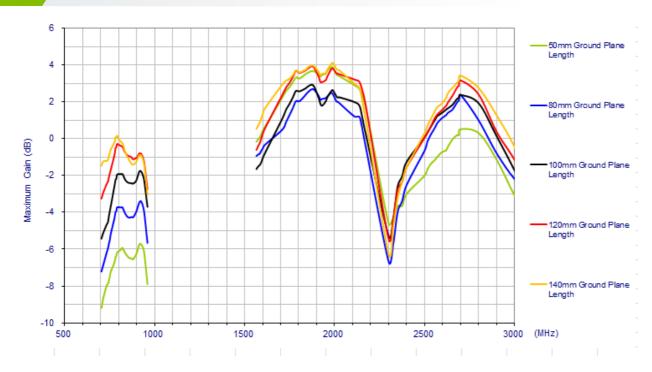
Pallet Dimensions 1200*1000*1310mm 18 Cartons per Pallet 6 Cartons per layer 4 Layers



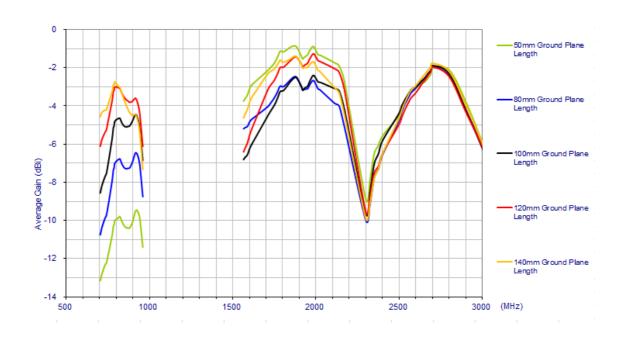



12. Application Note

Investigations of PCS.07.A antenna performance on different lengths of ground plane were conducted, the results are shown below.



11.2 Efficiency



11.3 Peak Gain

11.4 Average Gain

Changelog for the datashee

SPE-13-8-042 - PCS.07.A

Revision: G (Current Version)		
Date: 2023-03-14		
Changes:	Antenna Integration Guide Added	
Changes Made by:	Cesar Sousa	

Previous Revisions

Revision: F				
Date:	2021-09-09			
Changes:	Solder Reflow Recommendations Amended.			
Changes Made by:	Gary West			

Revision: A (Original First Release)		
Date:	2013-04-11	
Notes:		
Author:	Wayne Yang	

Revision: E			
Date:	2021-09-09		
Changes:	Added MSL rating, updated font.		
Changes Made by:	Erik Landi		

Revision: D				
Date:	2020-12-01			
Changes:	Updated Format and Drawing			
Changes Made by:	Jack Conroy			

Revision: C			
Date:	2018-10-23		
Changes:	Updated Drawing		
Changes Made by:	David Connolly		

Revision: B	
Date:	2013-08-11
Changes:	Drawing Updated
Changes Made by:	Aine Doyle

www.taoglas.com

