MOSFET – Power, N-Channel, UltraFET

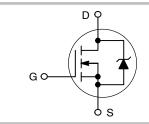
55 V, 75 A, 7 mΩ

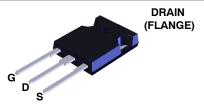
FDH5500-F085

Features

- Typ $R_{DS(on)} = 5.2 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 75 \text{ A}$
- Typ $Q_{g(10)} = 118 \text{ nC}$ at $V_{GS} = 10 \text{ V}$
- Simulation Models
 -Temperature Compensated PSPICE[™] and Saber[®] Models
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- AEC-Q101 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

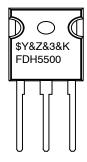
Applications


- DC Linear Mode Control
- Solenoid and Motor Control
- Switching Regulators
- Automotive Systems



ON Semiconductor®

www.onsemi.com


V _{DSS}	R _{DS(ON)} MAX	I _D MAX	
55 V	7 mΩ	75 A	

JEDEC TO-247 CASE 340CK

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week)

&3 = Da &K = Lo

FDH5500 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Parameter		Value	Unit
V_{DSS}	Drain to Source Voltage	Drain to Source Voltage (Note 1)		V
V_{DGR}	Gate to Gate Voltage (Ro	Gate to Gate Voltage (R _{GS} = 20 k Ω) (Note 1)		V
V_{GS}	Gate to Source Voltage	Gate to Source Voltage		V
I _D	Drain Current Continuous (T _C < 135°C, V _{GS} = 10 V)		75	А
	Pulsed		Figure 4]
E _{AS}	Single Pulse Avalanche Energy (Note 2)		864	mJ
P_{D}	Power Dissipation	(T _C = 25°C)	375	W
		– Derate Above 25°C	2.5	W/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to +175	°C
TL	Max. Lead Temp. for Soldering (at 1.6 mm from case for 10 sec)		300	°C
T _{pkg}	Max. Package Temp. for Soldering (Package Body for 10 sec)		260	°C

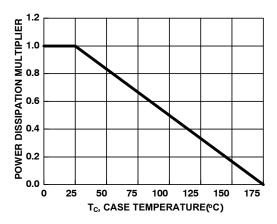
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Starting $T_J=25^{\circ}C$ to 175°C.
2. Starting $T_J=25^{\circ}C$, L=0.48 mH, $I_{AS}=60$ A

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance Junction to Case	0.4	°C/W
$R_{ heta JA}$	Thermal Resistance Junction to Ambient TO-247, 1in ² copper pad area	30	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDH5500	FDH5500-F085	TO-247	Tube	N/A	30 Units


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
FF CHARAC	TERISTICS	•			•		
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		55			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 50 V, V _{GS} = 0 V, V _{DS} = 45 V				1	μΑ
		$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, V_{DS} = 45 \text{ V},$ $T_{C} = 150 ^{\circ}\text{C}$				250	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V				±100	nA
N CHARACT	ERISTICS			•			
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250$) μΑ	2.0	2.9	4.0	V
R _{DS(ON)}	Drain to Source On Resistance	I _D = 75 A, V _{GS} = 10	V		5.2	7	mΩ
YNAMIC CHA	ARACTERISTICS			•			
C _{ISS}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			3565		pF
C _{OSS}	Output Capacitance				1310		pF
C _{RSS}	Reverse Transfer Capacitance				395		pF
Q _{g(TOT)}	Total Gate Charge at 20 V	V _{GS} = 0 V to 20 V	V _{DD} = 30 V		206	268	nC
Q _{g(10)}	Total Gate Charge 10 V	$V_{GS} = 0 \text{ V to } 10 \text{ V}$ $R_L = 0.4 \Omega$		118	153	nC	
Q _{g(TH)}	Threshold Gate Charge	V _{GS} = 0 V to 2 V	l _g = 1.0 mA		6.2	8.1	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 30 \text{ V}, I_{D} = 75 \text{ A},$ $R_{L} = 0.4 \Omega, I_{g} = 1.0 \text{ mA}$			17.8		nC
Q_{gd}	Gate to Drain "Miller" Charge				51		nC
WITCHING C	HARACTERISTICS						-
t _{on}	Turn-On Time	$\begin{aligned} &V_{DD} = 30 \text{ V} \\ &I_{D} = 75 \text{ A} \\ &R_{L} = 0.4 \Omega \\ &V_{GS} = 10 \text{ V} \\ &R_{GS} = 2.5 \Omega \end{aligned}$				185	ns
t _{d(on)}	Turn-On Delay Time				13.7		ns
t _r	Rise Time				102		ns
t _{d(off)}	Turn-Off Delay Time				34		ns
t _f	Fall Time				22		ns
t _{off}	Turn-Off Time					91	ns
RAIN-SOUR	CE DIODE CHARACTERISTICS	-		-	-		
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 75 A			1	1.25	V
t _{rr}	Reverse Recovery Time	$I_F = 75 \text{ A}, dI_{SD}/dt =$	100 A/μs		60	78	ns
Q _{rr}	Reverse Recovery Charge				77	100	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$

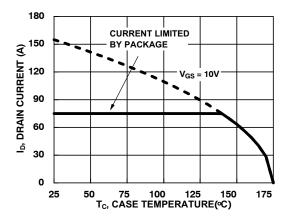


Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

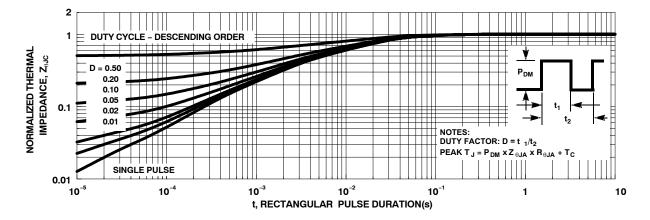


Figure 3. Normalized Maximum Transient Thermal Impedance

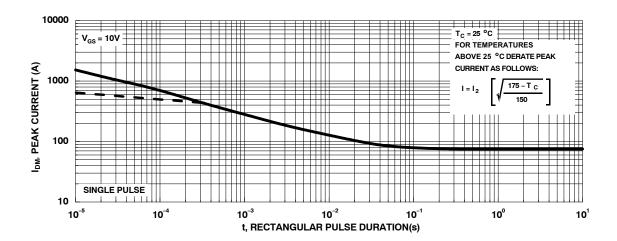


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (Continued)

(T_C = 25°C unless otherwise noted)

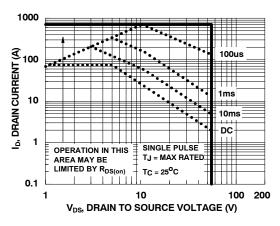


Figure 5. Forward Bias Safe Operating Area

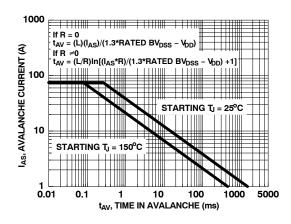


Figure 6. Unclamped Inductive Switching Capability

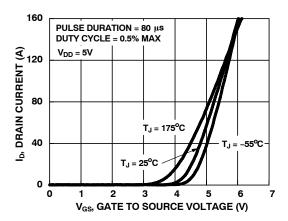


Figure 7. Transfer Characteristics

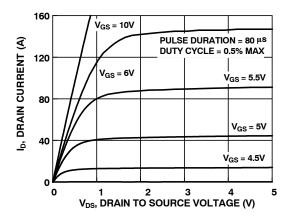


Figure 8. Saturation Characteristics

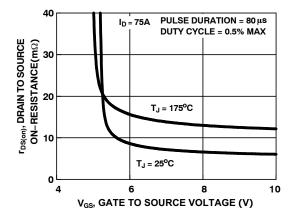


Figure 9. Drain to Source On Resistance Variation vs Gate to Source Voltage

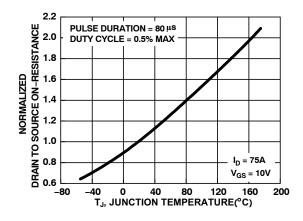
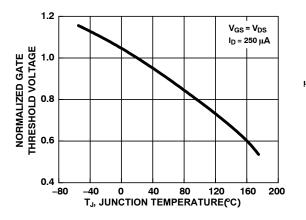
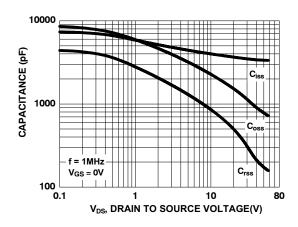



Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

TYPICAL CHARACTERISTICS (Continued)


(T_C = 25°C unless otherwise noted)

1.20 US 1.15 1.15 1.15 1.15 1.10 US 1.10 US 1.00 US 1.10 US 1.00

Figure 11. Normalized Gate Threshold Voltage vs. Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

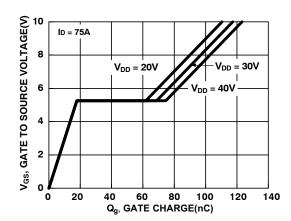
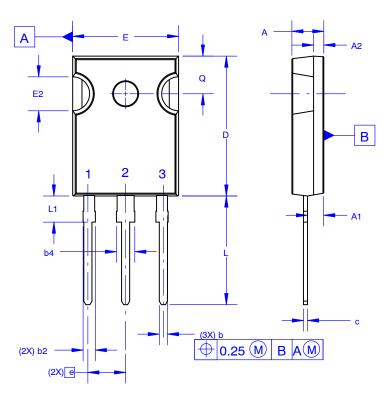



Figure 13. Capacitance vs. Drain to Source Voltage

Figure 14. Gate Charge vs. Gate to Source Voltage

TO-247-3LD SHORT LEAD

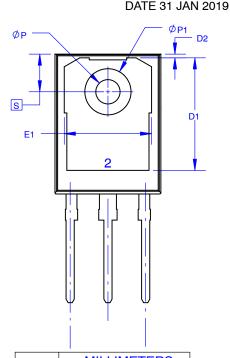
CASE 340CK ISSUE A

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code


A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIM	MIL	LIMET	ERS
DIIVI	MIN	NOM	MAX
Α	4.58	4.70	4.82
A1	2.20	2.40	2.60
A2	1.40	1.50	1.60
b	1.17	1.26	1.35
b2	1.53	1.65	1.77
b4	2.42	2.54	2.66
С	0.51	0.61	0.71
D	20.32	20.57	20.82
D1	13.08	~	~
D2	0.51	0.93	1.35
Е	15.37	15.62	15.87
E1	12.81	~	~
E2	4.96	5.08	5.20
е	~	5.56	~
L	15.75	16.00	16.25
L1	3.69	3.81	3.93
ØΡ	3.51	3.58	3.65
Ø P1	6.60	6.80	7.00
Q	5.34	5.46	5.58
S	5.34	5.46	5.58

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD SHORT LEAD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales