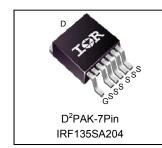


Application

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters


Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant, Halogen-Free

V _{DSS}	135V
R _{DS(on)} typ.	4.7m $Ω$
max	$5.9 \mathrm{m}\Omega$
I _{D (Silicon Limited)}	160A

G	D	S
Gate	Drain	Source

Base next number	Dookogo Typo	Standard Pack		Orderable Bort Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRF135SA204	D ² PAK-7Pin	Tape and Reel	800	IRF135SA204

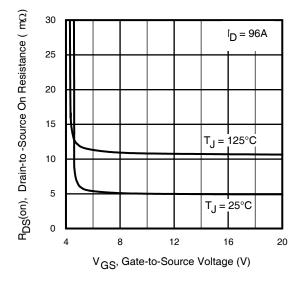


Fig 1. Typical On– Resistance vs. Gate Voltage

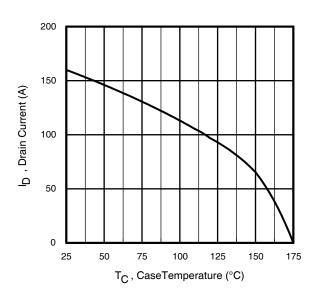


Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V	160	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	113	Α
I _{DM}	Pulsed Drain Current ①	608	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	500	W
	Linear Derating Factor	3.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②	670	m l
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy	1280	mJ
I _{AR}	Avalanche Current ①	Coo Fig 15, 16, 220, 22h	Α
E _{AR}	Repetitive Avalanche Energy ①	See Fig 15, 16, 23a, 23b	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ⑦		0.3	°C/\\\
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		40	°C/W

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	135			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.14		V/°C	Reference to 25°C, I _D = 5mA ①
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.7	5.9	mΩ	V _{GS} = 10V, I _D = 96A
$V_{GS(th)}$	Gate Threshold Voltage	2.0	3.0	4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
	Danie de Octobre la charact			20		$V_{DS} = 135 \text{ V}, V_{GS} = 0 \text{ V}$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 135V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	Λ	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
R_G	Gate Resistance		2.2		Ω	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting T_J = 25°C, L = 146μH, R_G = 50Ω, I_{AS} = 96A, V_{GS} =10V.
- $\exists \quad I_{SD} \leq 96A, \ di/dt \leq 2200A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- \circ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \mathbb{O} R₀ is measured at T_J approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf
- ① Limited by T_{Jmax} , starting T_J = 25°C, L = 1.0mH, R_G = 50Ω, I_{AS} = 49A, V_{GS} =10V.

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	270			S	$V_{DS} = 10V, I_{D} = 96A$
Q_g	Total Gate Charge		210	315		I _D = 96A
Q_{gs}	Gate-to-Source Charge		54		nC	$V_{DS} = 68V$
Q_{gd}	Gate-to-Drain Charge		57			V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg- Qgd)		153			
t _{d(on)}	Turn-On Delay Time		20			$V_{DD} = 81V$
t _r	Rise Time		56			I _D = 96A
$t_{d(off)}$	Turn-Off Delay Time		140		ns	$R_G = 2.7\Omega$
t _f	Fall Time		56			V _{GS} = 10V4
C _{iss}	Input Capacitance		11690			V _{GS} = 0V
Coss	Output Capacitance		650			V _{DS} = 50V
C _{rss}	Reverse Transfer Capacitance		290		pF	f = 1.0MHz, See Fig.7
C _{oss eff.(ER)}	Effective Output Capacitance (Energy Related)		630			V _{GS} = 0V, VDS = 0V to 108V®
Coss eff.(TR)	Output Capacitance (Time Related)		845			V _{GS} = 0V, VDS = 0V to 108VS

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			160		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			608	I	integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 96A, V_{GS} = 0V $ ④
dv/dt	Peak Diode Recovery dv/dt③		22		V/ns	$T_J = 175^{\circ}C, I_S = 96A, V_{DS} = 135V$
t _{rr}	Reverse Recovery Time		85		nc	$T_J = 25^{\circ}C$ $V_{DD} = 115V$
ι _{ΓΓ}	Reverse Recovery Time		98		ns	$T_{J} = 125^{\circ}C$ $I_{F} = 96A$,
	Poverse Pesevery Charge		315		nC	<u>T_J = 25°C</u> di/dt = 100A/µs ⊕
Q _{rr}	Reverse Recovery Charge		430		IIC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		6.6		Α	T _J = 25°C

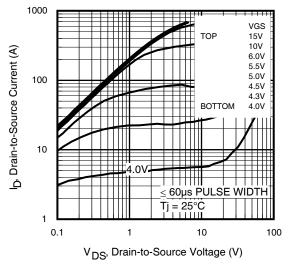


Fig 3. Typical Output Characteristics

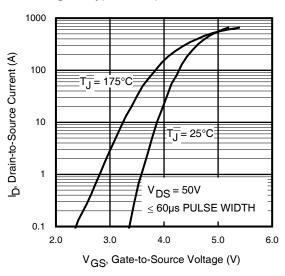


Fig 5. Typical Transfer Characteristics

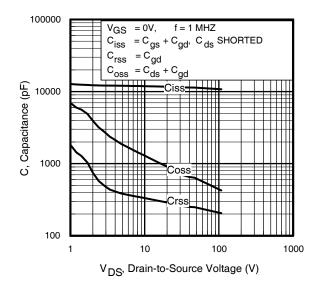


Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

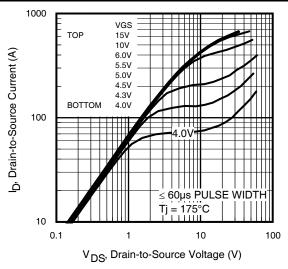


Fig 4. Typical Output Characteristics

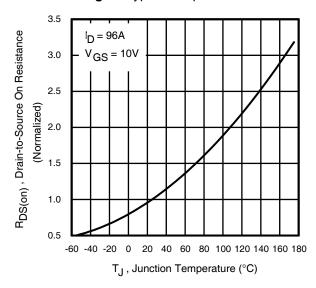


Fig 6. Normalized On-Resistance vs. Temperature

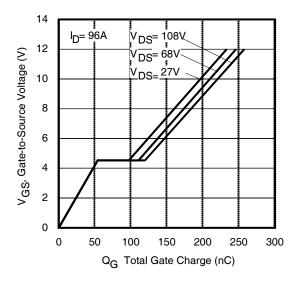


Fig 8. Typical Gate Charge vs.Gate-to-Source Voltage

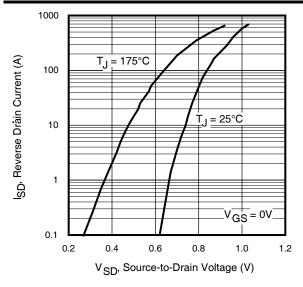


Fig 9. Typical Source-Drain Diode Forward Voltage

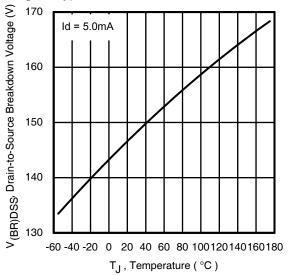


Fig 11. Drain-to-Source Breakdown Voltage

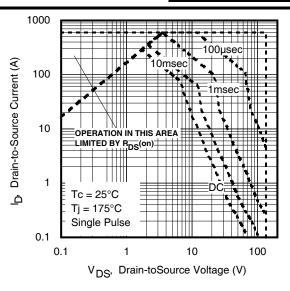


Fig 10. Maximum Safe Operating Area

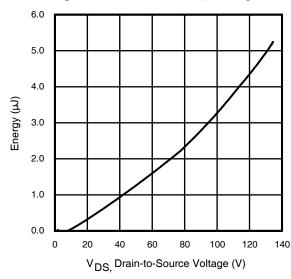


Fig 12. Typical Coss Stored Energy

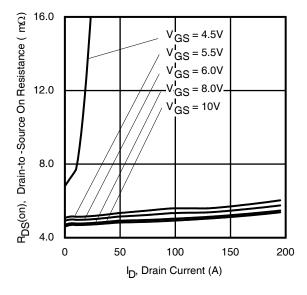


Fig 13. Typical On-Resistance vs. Drain Current

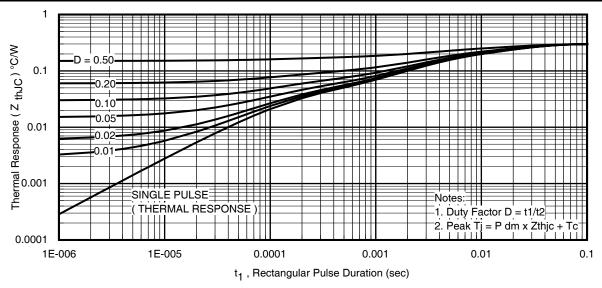


Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

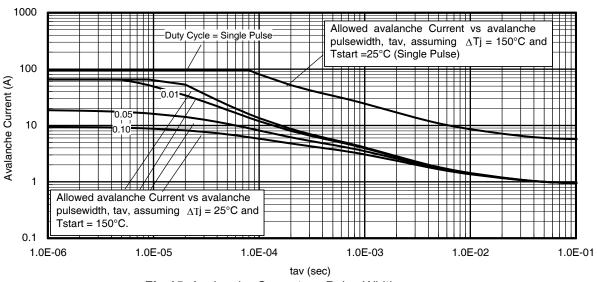


Fig 15. Avalanche Current vs. Pulse Width

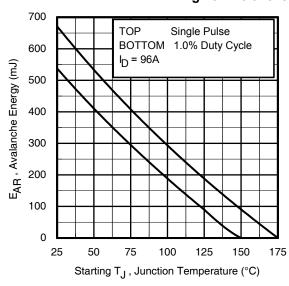


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. l_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{\text{thJC}}(D, t_{\text{av}})$ = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ($1.3 \cdot \text{BV} \cdot l_{\text{av}}$) = $\Delta T / Z_{\text{thJC}}$

 $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

E_{AS (AR)} = P_{D (ave)}·t_{av}

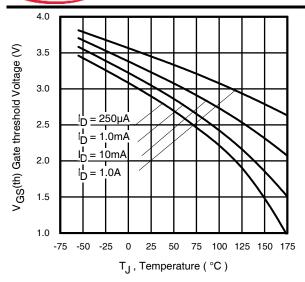


Fig 17. Threshold Voltage vs. Temperature

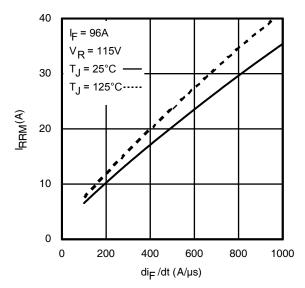


Fig 19. Typical Recovery Current vs. dif/dt

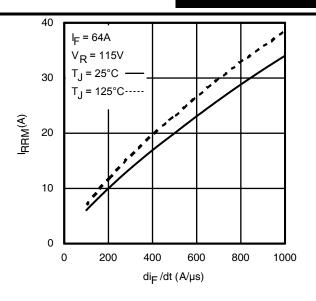


Fig 18. Typical Recovery Current vs. dif/dt

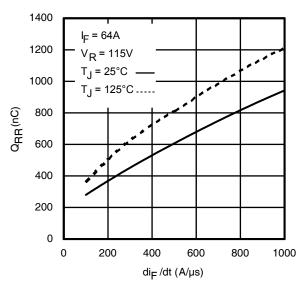


Fig 20. Typical Stored Charge vs. dif/dt

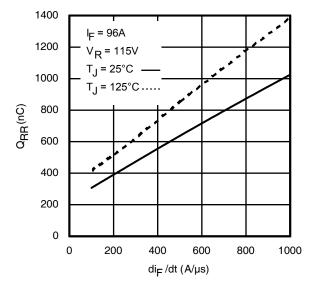


Fig 21. Typical Stored Charge vs. dif/dt

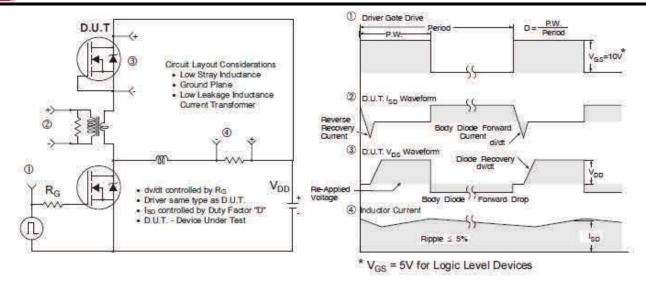


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

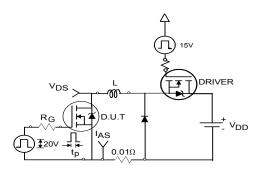


Fig 23a. Unclamped Inductive Test Circuit

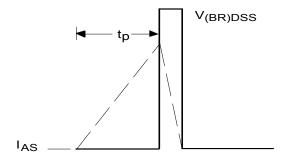


Fig 23b. Unclamped Inductive Waveforms

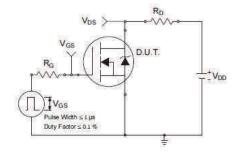


Fig 24a. Switching Time Test Circuit

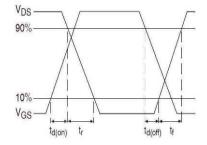


Fig 24b. Switching Time Waveforms

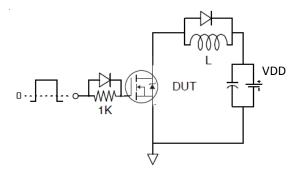


Fig 25a. Gate Charge Test Circuit

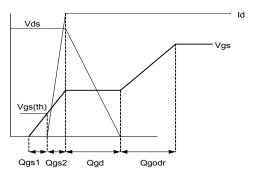
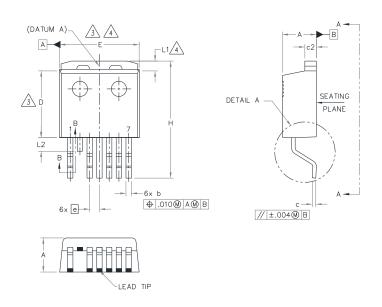
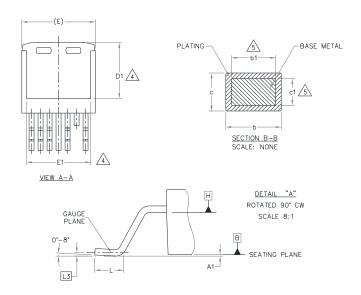




Fig 25b. Gate Charge Waveform

D²PAK-7Pin Package Outline (Dimensions are shown in millimeters (inches))

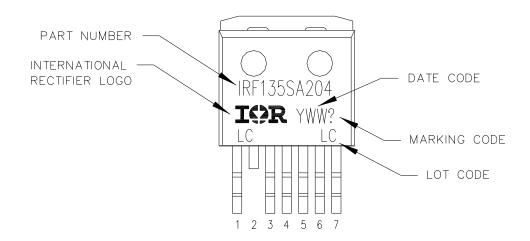
S Y M	DIMENSIONS				N
В	MILLIM	MILLIMETERS INCHES		HES	O T E S
0 L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	_	0.254	_	.010	
b	0.51	0.91	.020	.036	
b1	0.51	0.81	.020	.032	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	7.42	.270	.292	4
E	9.65	10.54	.380	.415	3,4
E1	8.00	9.00	.315	.354	4
е	1.27	BSC	.050	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25 BSC		.010	BSC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

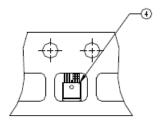
3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

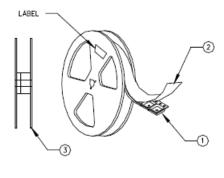
4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.


5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


D²Pak-7Pin Part Marking Information


D²PAK-7Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- TAPE AND REEL,
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES,
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THER RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE; IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Lavel	Industrial			
Qualification Level	(per JEDEC JESD47F) ††			
Moisture Sensitivity Level	D ² PAK-7Pin MSL1			
RoHS Compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments					
05/12/2017	 Corrected package picture added "s" on pin number 2 - page 1. Changed datasheet with Infineon logo - all pages. Added disclaimer on last page 					

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.