

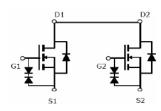
Descriptions

N-channel Double MOSFET in a SOT23-6 Plastic Package. It is ESD protested.

Features

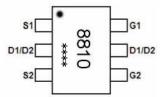
advanced trench technology to provide excellent RDS(on), low gate charge.

 $V_{DSS}\text{=}20V \ / \ V_{GSS}\text{=}\pm12V \quad I_{D}\text{=}7A$


 $R_{DS(ON)}\text{=}16m\Omega(typ.)@V_{GS}\text{=}4.5V$

 $R_{DS(ON)}\text{=}19m\Omega(typ.)@V_{GS}\text{=}2.5V$

Applications


Use as Load Switch or PWM application.

Equivalent Circuit

Pinning

Absolute Maximum Ratings(T_a =25°C)

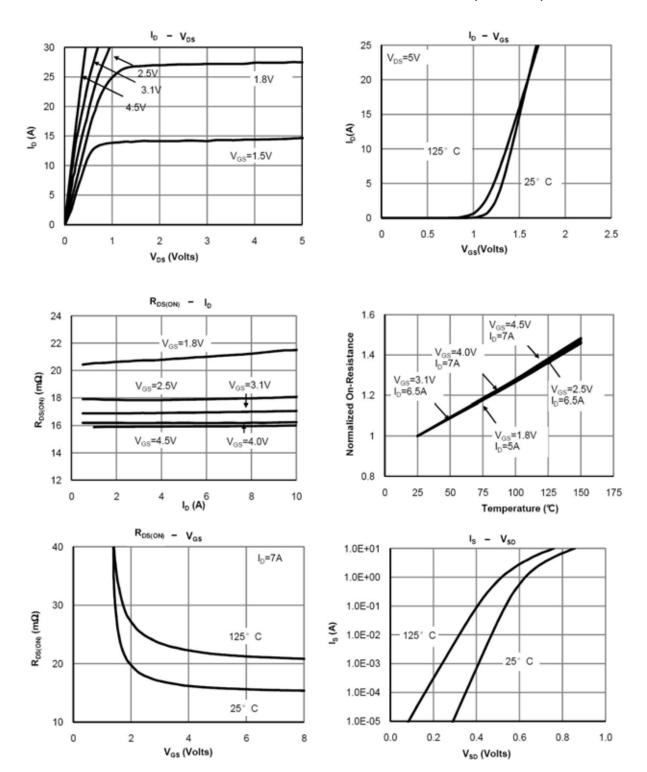
Parameter	Symbol	Rating	Unit	
Drain-Source Voltage	V_{DS}	20	V	
Drain Current - Continuous	I _D (T _a =25℃)	7.0	Δ.	
Drain Current - Continuous	I _D (T _a =70℃)	5.7	Α	
Drain Current – Pulsed	I _{DM}	25	А	
Gate-Source Voltage	V_{GS}	±8.0	V	
Power Dissipation	P _D (T _a =25℃)	1.5	10/	
Power Dissipation	P _D (T _a =70°C)	1.0	W	
Junction-to-Ambient ^A	t ≤ 10s	Б	83	°C / \\/
Junction-to-Ambient ^{AD}	Steady-State	$R_{ hetaJA}$	120	°C/W
Junction-to-Lead	Steady-State	$R_{ heta JL}$	70	°C/W
Junction and Storage Temperatur	T _{j,} T _{stg}	-55 ~ 150	°C	

Electrical Characteristics($T_a=25$ °C)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	BV_{DSS}	V_{GS} =0V I_D =250 μ A		20			V	
Drain-Source Leakage Current		V _{DS} =16V	$V_{GS}=0V$			1.0	μΑ	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =16V T _j =85℃	V _{GS} =0V			10	μA	
Gate-Source Leakage Current	I_{GSS}	V _{GS} =±8V	V _{DS} =0V			±10	μΑ	
On state drain current	$I_{D(ON)}$	V _{GS} =4.5V	V _{DS} =5V	25			Α	
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS}	I _D =250μA	0.45	0.6	1.0	V	
Static Drain-Source On-Resistance	R _{DS(on)}	V _{GS} =4.5V	I _D =6.0A		16	20	mΩ	
Static Drain-Source On-Resistance		V _{GS} =2.5V	$I_D=6.0A$		19	25	11122	
Forward Transconductance	g FS	V _{DS} =5.0V	I _D =7.0A		50		S	
Forward On Voltage	V _{SD}	V _{GS} =0V	I _S =1.0A			1.3	V	
Maximum Body-Diode Continuous Current	Is					2	Α	
Input Capacitance	C_{iss}				1295			
Output Capacitance	C _{oss}	V_{DS} =10V V_{GS} =0V f=1.0MHz			160		pF	
Reverse Transfer Capacitance	C_{rss}				87			

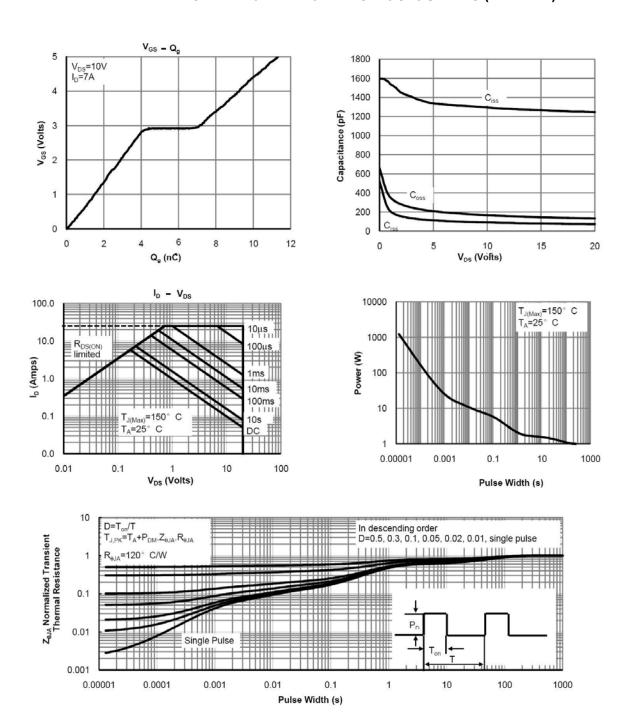
Electrical Characteristics(T_a=25°C)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Gate resistance	R _g	V_{DS} =0V V_{GS} =0V f=1.0MHz		1.8		ΚΩ
Total Gate Charge	Q_g			10	14	
Gate Source Charge	Q_{gs}	V_{DS} =10V V_{GS} =4.5V I_{D} =7.0A		4.2		nC
Gate Drain Charge	Q_{gd}			2.6		
Turn-on Delay Time	t _{d(on)}			280		ns
Rise Time	t _r	V _{DS} =10V V _{GS} =4.5V		328		ns
Turn-off Delay Time	t _{d(off)}	$R_G=3.0\Omega$ $R_L=1.54\Omega$		3.76		μs
Fall Time	t _f			2.24		μs
Body Diode Reverse Recovery Time	t _{rr}	I _F =7A dI/dt=100A/ms V _{GS} =-9V		31		ns
Body Diode Reverse Recovery Charge	Q _{rr}	IF=7A dI/dt=100A/ms V _{GS} =-9V		6.8		nC

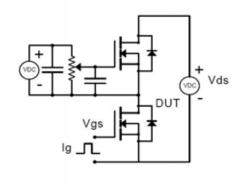

Notes:

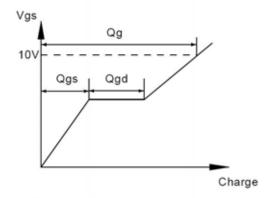
A. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

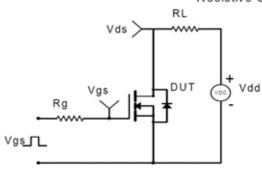
- B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

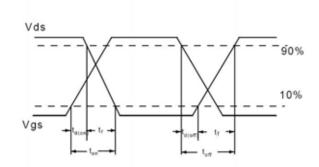


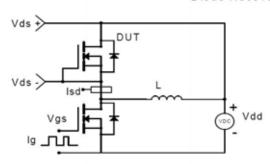
RATING AND CHARACTERISTICS CURVES (RM8810)

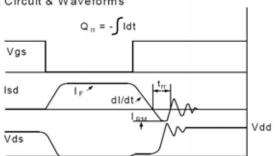


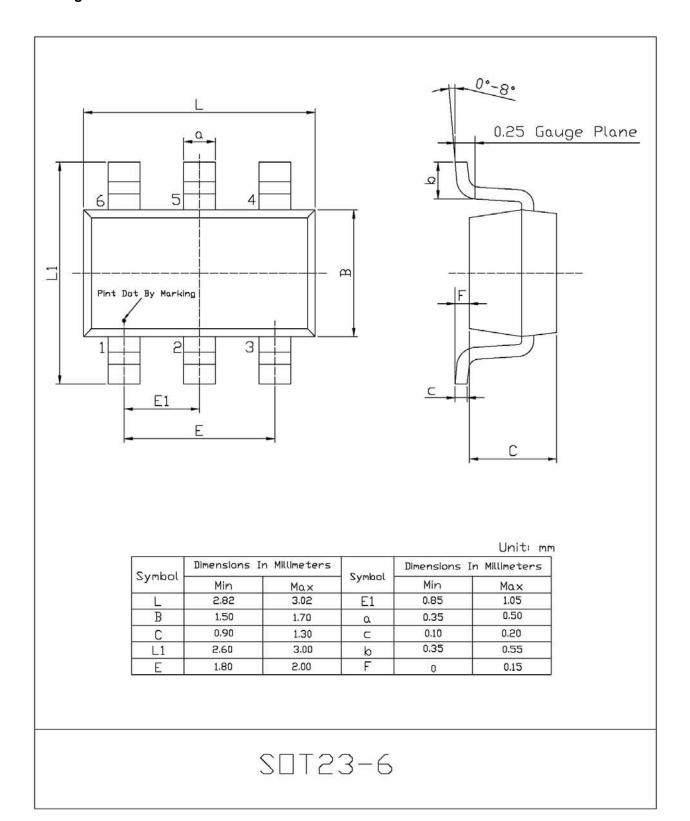

RATING AND CHARACTERISTICS CURVES (RM8810)

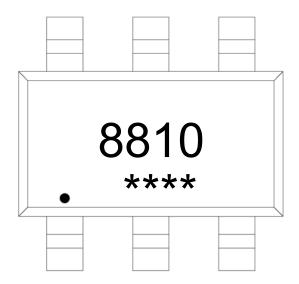



Test circuit and waveform



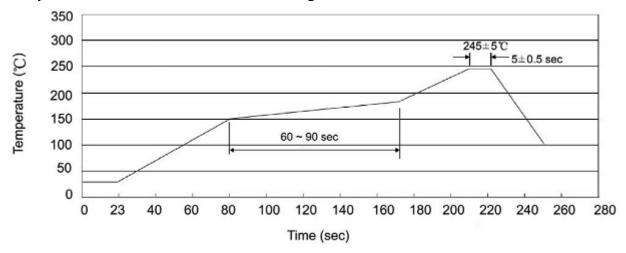

Resistive Switching Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms



Package Dimensions

Marking Instructions


Note:

8810: Product Type.

****: Date code change with manufacturing date.

Temperature Profile for IR Reflow Soldering(Pb-Free)

Notes:

1.Preheating:25~150 °C, Time:60~90sec.

2.Peak Temp.:245 $\pm 5^{\circ}$ C, Duration:5 ± 0.5 sec.

3. Cooling Speed: 2~10°C/sec.

Resistance to Soldering Heat Test Conditions

Temp:260±5℃ Time:10±1 sec

Packaging SPEC.

REEL

Pac	ckage Type		Units				Dimension		(unit: mm ³)	
l acting type		Units/Reel	Reels/Inner Box	Units/Inner Box	Inner Boxes/Outer Box	Units/Outer Box	Reel	Inner Box	Outer Box	
S	OT23-5/6	3,000	10	30,000	4	120,000	7″ ×8	210×205×205	445×230×435	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

