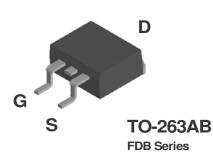
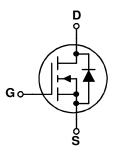


FDB3860 N-Channel PowerTrench[®] MOSFET 100 V, 30 A, 37 m Ω

Features

- Max $r_{DS(on)} = 37 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 5.9 \text{ A}$
- High performance trench technology for extremely low r_{DS(on)}
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is rugged gate version of Fairchild Semiconductor's advanced Power Trench[®] process. This part is tailored for low $r_{DS(on)}$ and low Qg figure of merit, with avalanche ruggedness for a wide range of switching applications.

Applications

- DC-AC Conversion
- Synchronous Rectifier

MOSFET Maximum Ratings $T_C = 25 \ ^{\circ}C$ unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			100	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous (Silicon limited)	T _C = 25 °C		30	_	
	-Continuous	T _A = 25 °C	(Note 1a)	6.4	Α	
	-Pulsed			60		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	96	mJ	
P _D	Power Dissipation	T _C = 25 °C		71	W	
	Power Dissipation	T _A = 25 °C	(Note 1a)	3.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

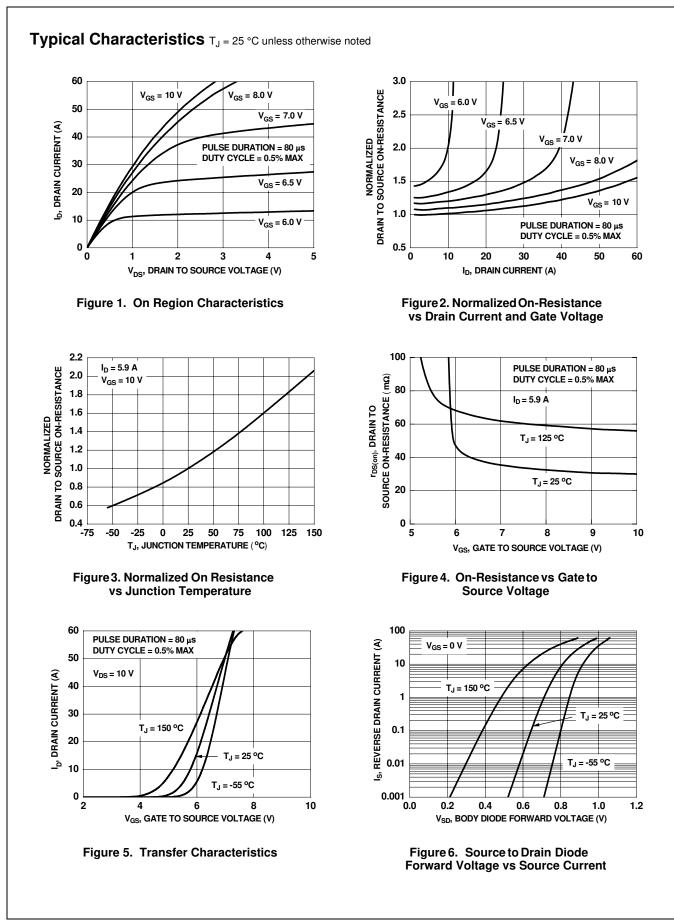
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.75	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a) 40	0/ 11

Package Marking and Ordering Information

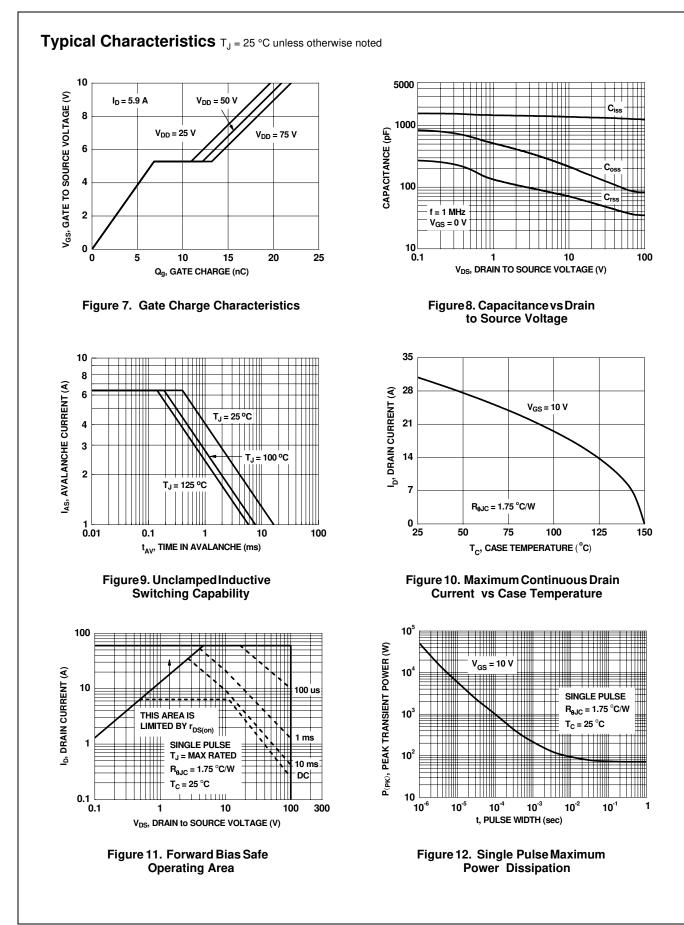
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB3860	FDB3860	TO-263AB	330 mm	24 mm	800 units

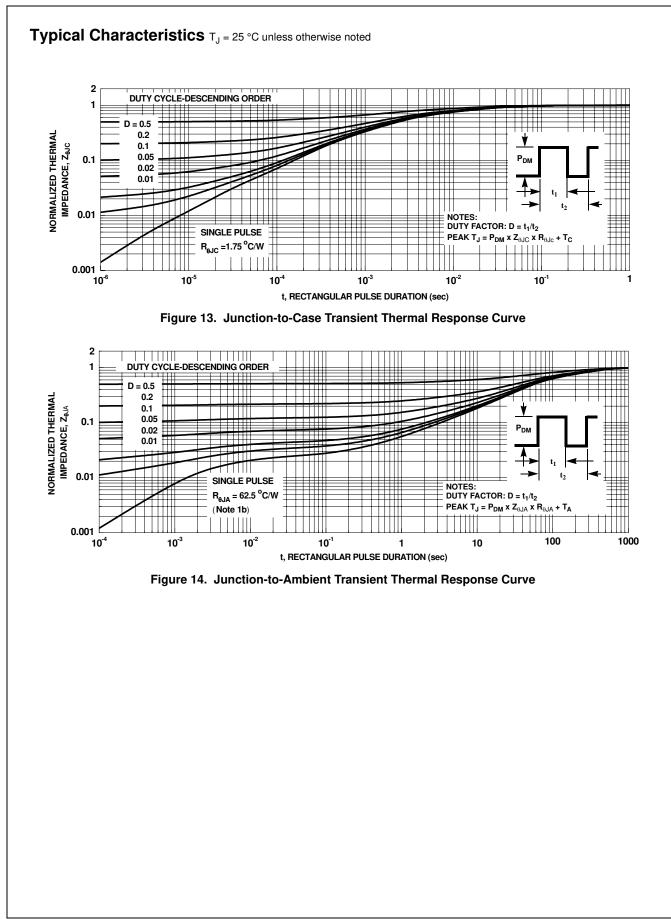
March 2009

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		104		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2.5	3.8	4.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-11		mV/°C
r	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.9 \text{ A}$		31	37	mΩ
r _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 10 V, I_{D} = 5.9 A, T_{J} = 125 °C		56	67	1115.2
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 5.9 \text{ A}$		18		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V 50.V.V 0.V		1310	1740	pF
C _{oss}	Output Capacitance	─ V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz		100	130	pF
C _{rss}	Reverse Transfer Capacitance			40	65	pF
R _q	Gate Resistance			1.7		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			12	22	ns
t _r	Rise Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 5.9 \text{ A},$		6	12	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		17	31	ns
t _f	Fall Time			3	10	ns
Qg	Total Gate Charge at 10 V			21	30	nC
Q _{gs}	Gate to Source Charge	V _{DD} = 50 V, I _D = 5.9 A		6.9		nC
Q _{gd}	Gate to Drain "Miller" Charge			5.4		nC
Drain-So	urce Diode Characteristics					
		V _{GS} = 0 V, I _S = 2.0 A (Note 2)		0.7	1.2	V
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 5.9 A (Note 2)		0.8	1.3	V
t _{rr}	Reverse Recovery Time			35	56	ns
	Reverse Recovery Charge	— I _F = 5.9 A, di/dt = 100 A/μs		37		


Notes:

1: $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,JA}$ is determined by the user's board design.


a. 40 °C/W when mounted on a 1 \mbox{in}^2 pad of 2 oz copper


b. 62.5 $^{\circ}\text{C/W}$ when mounted on a minimum pad.

2: Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%. 3: Starting T_J = 25 °C, L = 3 mH, I_{AS} = 8 A, V_{DD} = 100 V, V_{GS} = 10 V.

FDB3860 N-Channel PowerTrench[®] MOSFET

Preliminary Datasheet