

Adafruit seesaw
Created by Dean Miller

https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout

Last updated on 2023-07-17 04:56:28 PM EDT

©Adafruit Industries Page 1 of 42

5

7

9

12

14

14

19

19

21

Table of Contents

Overview

Pinouts

• Power Pins:

• Logic Pins:

• GPIO Pins:

• Neopixel Pins:

• Address Pins:

• ADC Pins:

• PWM Pins:

• Interrupt Pins:

• Programming Pins:

Arduino Wiring & Test

• Arduino Wiring & Test

• I2C Wiring

• Download Adafruit_Seesaw library

• Load Test Example

• Documentation

CircuitPython Wiring & Test

• CircuitPython Wiring & Test

• I2C Wiring

• Download Adafruit_CircuitPython_Seesaw library

Python Docs

Raspberry Pi Wiring & Test

• Install Python Software

• Enable I2C

• Run example code

• Documentation

• Full Example Code

Using the Seesaw Platform

Reading and Writing Data

• Setting the Device Address

• I2C Transactions

• Writing Data

• Reading Data

Status

• Function Register Summary

• Function Register Description

• 0x01 - HW_ID

• 0x02 - VERSION

• 0x03 - OPTIONS

• 0x04 - TEMP

• 0x7F - SWRST

©Adafruit Industries Page 2 of 42

24

28

33

33

35

36

GPIO

• Function Registers

• GPIO register setup on SAMD09:

• GPIO register setup on ATTiny8x7:

• DIRSET (0x02, 32 bits, Write Only)

• DIRCLR (0x03, 32 bits, Write Only)

• GPIO (0x04, 32 bits, Read/Write)

• SET (0x05, 32 bits, Write Only)

• CLR (0x06, 32 bits, Write Only)

• TOGGLE (0x07, 32 bits, Write Only)

• INTENSET (0x08, 32 bits, Write Only)

• INTENCLR (0x09, 32 bits, Write Only)

• INTFLAG (0x0A, 32 bits, Read Only)

• PULLENSET (0x0B, 32 bits, Write Only)

• PULLENCLR (0x0C, 32 bits, Write Only)

Analog to Digital Converter

• SAMD09 ADC channels are:

• ATtiny8x7 ADC channels are:

• Function Registers

• STATUS (0x00, 8bits, Read Only)

•

• INTENSET (0x02, 8bits, Write Only)

• INTENCLR (0x03, 8bits, Write Only)

• WINMODE (0x04, 8bits, Write Only)

• WINTHRESH (0x05, 32bits, Write Only)

• CHANNEL_0 (0x07, 16bits, Read Only)

• CHANNEL_1 (0x08, 16bits, Read Only)

• CHANNEL_2 (0x09, 16bits, Read Only)

• CHANNEL_3 (0x0A, 16bits, Read Only)

• CHANNEL_20 (0x1B, 16bits, Read Only)

Interrupts

NeoPixel

• Function Registers

• PIN (0x01, 8bits, Write Only)

• SPEED (0x02, 8bits, Write Only)

• BUF_LENGTH (0x03, 16bits LE, Write Only)

• BUF (0x04, 32 bytes, Write Only)

• SHOW (0x05, no args, Write Only)

EEPROM

• Function Registers

• SAMD09

• ATtiny817

PWM

• Nomenclature

• Function Register Summary

• Function Register Description

• 0x01 - PWM_VAL

• 0x02 - PWM_FREQ

• Port Specific Details

• SAMD

©Adafruit Industries Page 3 of 42

38

41

42

• ATtiny

UART

• Function Registers

• Status (0x00, 8bits, Read Only)

• INTEN (0x2, 8bits, Read/Write)

• INTENCLR (0x03, 8bits, Write Only)

• BAUD (0x04, 32bits, Read/Write)

• DATA (0x05, 32bytes, Read/Write)

Downloads

• Documents

• Schematic

• Dimensions

Documentation

©Adafruit Industries Page 4 of 42

Overview

Adafruit seesaw is a near-universal converter framework which allows you to add and

extend hardware support to any I2C-capable microcontroller or microcomputer.

Instead of getting separate I2C GPIO expanders, ADCs, PWM drivers, etc, seesaw can

be configured to give a wide range of capabilities.

For example, our ATSAMD09 breakout with seesaw gives you

3 x 12-bit ADC inputs

•

©Adafruit Industries Page 5 of 42

3 x 8-bit PWM outputs

7 x GPIO with selectable pullup or pulldown

1 x NeoPixel output (up to 170 pixels)

1 x EEPROM with 64 byte of NVM memory (handy for storing small access tokens

or MAC addresses)

1 x Interrupt output that can be triggered by any of the accessories

2 x I2C address selection pins

1 x Activity LED

But you can reprogram and reconfigure the chip to have more or less of each

peripheral - as long as it fits into the ATSAMD09D14's firmware! For example, there's

also a UART converter but it isn't included in the default firmware.

The ATSAMD09 breakout is great for development of seesaw capabilities (we use it

in-house for our design work) or you can use it as-is to give your Raspberry Pi or

ESP8266 more hardware support! Each breakout comes with the assembled and

tested board, as well as some header strips.

Please note: The boards do not come with a bootloader. If you want to do

development using seesaw you'll need to pick up a J-Link ()and we recommend a SW

D adapter breakout () - at this time our project is for Atmel Studio but you could

probably get it working with arm gcc and a Makefile. We don't provide any support for

custom builds of seesaw - we think this is cool and useful for the Maker community!

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 42

https://www.adafruit.com/?q=j-link
https://www.adafruit.com/product/2743
https://www.adafruit.com/product/2743

Pinouts

©Adafruit Industries Page 7 of 42

Power Pins:

Vin - this is the power pin. Since the ATSAMD09 uses 3.3V, we have included an

on-board voltage regulator that will take 3-5VDC and safely convert it down. You

can power from 3.3V to 5V

3Vo - this is the 3.3V output from the voltage regulator, you can grab up to

100mA from this if you like

GND - common ground for power and logic

Logic Pins:

23 / SCL - this is the I2C clock pin, connect to your microcontrollers I2C clock

line. There is a 10K pullup on this pin to 3.3V. I2C is 'open drain' which means as

long as you don't add an extra pullup you can use with 5V logic devices.

22 / SDA - this is the I2C data pin, connect to your microcontrollers I2C data line.

There is a 10K pullup on this pin to 3.3V. I2C is 'open drain' which means as long

as you don't add an extra pullup you can use with 5V logic devices.

RST - this is the reset pin. Pulling this pin to ground resets the device.

GPIO Pins:

Pins 9, 10, 11, 14, 15, 24, and 25 can be used as GPIO.

Neopixel Pins:

Pins 9, 10, 11, 14, 15, 24, and 25 can be used as the NeoPixel output.

Address Pins:

16 / AD0 - this is the ADDR0 pin. Connect this to ground to increment the

devices I2C address by 1.

17 / AD1 - this is the ADDR1 pin. Connect this to ground to increment the devices

I2C addres by 2.

ADC Pins:

2 - this pin can be configured as an ADC input.

3 - this pin can be configured as an ADC input.

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 42

4 - this pin can be configured as an ADC input.

PWM Pins:

5 - this pin can be configured as a PWM output.

6 - this pin can be configured as a PWM output.

7 - this pin can be configured as a PWM output.

Interrupt Pins:

8 / IRQ - this pin gets pulled low by the seesaw to signal to your host

microcontroller that an interrupt has occurred.

Programming Pins:

SWD - this pin connects to SWDIO of an SWD compatible programmer to

program the device over SWD.

SWC - this pin connects to SWCLK of an SWD compatible programmer to

program the device over SWD.

RST - this pin connects to RESET of an SWD compatible programmer to program

the device over SWD.

Arduino Wiring & Test

Arduino Wiring & Test

You can easily wire this breakout to any microcontroller, we'll be using an Adafruit

Metro M0 Express (Arduino compatible) with the Arduino IDE. But, you can use any

other kind of microcontroller as well as long as it has I2C clock and I2C data lines.

I2C Wiring

Connect Vin to the power supply, 3-5V is fine.

Connect GND to common power/data ground

Connect the SCL pin (23) to the I2C clock SCL pin on your Microcontroller.

Connect the SDA pin (22) to the I2C data SDA pin on your Microcontroller.

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 42

Connect the positive (long lead) of an LED to pin 15 on the seesaw breakout and

the other lead to GND through a 1k ohm resistor.

This seesaw uses I2C address 0x49 by default. You can change this by grounding the

AD0/16 and/or AD1/15 pins, but we recommend not doing that until you have it

working

Download Adafruit_Seesaw library

To begin reading sensor data, you will need to download Adafruit_Seesaw from the

Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit Seesaw library and install it

•

©Adafruit Industries Page 10 of 42

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Load Test Example

Open up File->Examples->Adafruit_Seesaw->digital->blink and upload to your Arduino

wired up to the seesaw breakout. If everything is wired up correctly, the led should

blink on and off repeatedly.

Documentation

see here () for documentation of the seesaw python API.

©Adafruit Industries Page 11 of 42

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
https://adafruit.github.io/Adafruit_Python_seesaw/classAdafruit__Seesaw_1_1seesaw_1_1Seesaw.html

CircuitPython Wiring & Test

CircuitPython Wiring & Test

You can easily wire this breakout to a microcontroller running CircuitPython. We will

be using a Metro M0 Express.

I2C Wiring

Connect Vin to the power supply, 3-5V is fine.

Connect GND to common power/data ground

Connect the SCL pin (23) to the I2C clock SCL pin on your CircuitPython board,

usually marked SCL. On a Gemma M0 this would be Pad #2/ A1

Connect the SDA pin (22) to the I2C data SDA pin on your CircuitPython board,

usually marked SDA. On an Gemma M0 this would be Pad #0/A2

Connect the positive (long lead) of an LED to pin 15 on the samd09 breakout

and the other lead to GND through a 1k ohm resistor.

The seesaw uses I2C address 0x49 by default. You can change this by grounding the

AD0/16 and/or AD1/15 pins, but we recommend not doing that until you have it

working

•

•

•

•

•

©Adafruit Industries Page 12 of 42

Download Adafruit_CircuitPython_Seesaw
library

To begin using the seesaw, you will need to download

Adafruit_CircuitPython_Seesaw from our github repository. You can do that by visiting

the github repo and manually downloading or, easier, just click this button to

download the zip

Adafruit CircuitPython Seesaw

Library

Extract the zipped folder and rename the folder it contains to Adafruit_seesaw. drag

the Adafruit_seesaw folder to the lib folder that appears on the CIRCUITPY drive.

You'll also need the adafruit_busdevice driver.

Open the code.py file on the CIRCUITPY drive and copy and paste the following code:

from board import *
import busio
from adafruit_seesaw.seesaw import Seesaw
import time

myI2C = busio.I2C(SCL, SDA)

ss = Seesaw(myI2C)

ss.pin_mode(15, ss.OUTPUT);

while True:
ss.digital_write(15, True) # turn the LED on (True is the voltage level)

Our CircuitPython library may change APIs so consider this beta!

©Adafruit Industries Page 13 of 42

https://github.com/adafruit/Adafruit_CircuitPython_seesaw/archive/main.zip

time.sleep(1) # wait for a second
ss.digital_write(15, False) # turn the LED off by making the voltage LOW
time.sleep(1)

The LED attached to pin 15 should blink on and off repeatedly.

Python Docs

Python Docs ()

Raspberry Pi Wiring & Test

The Raspberry Pi also has an I2C interface that can be used to communicate with this

seesaw. You can use this breakout with the CircuitPython library and Python thanks to

Adafruit_Blinka, our CircuitPython-for-Python compatibility library ().

Install Python Software

You'll need to install the Adafruit_Blinka library that provides the CircuitPython library

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3.

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-seesaw

If your default Python is version 3 you may need to run ' pip ' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•

©Adafruit Industries Page 14 of 42

https://circuitpython.readthedocs.io/projects/seesaw/en/latest/
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Enable I2C

We need to enable the I2C bus so we can communicate with the seesaw.

sudo raspi-config

select Advanced options, enable I2C, and

then finish.

©Adafruit Industries Page 15 of 42

https://learn.adafruit.com//assets/47803
https://learn.adafruit.com//assets/47803
https://learn.adafruit.com//assets/47804
https://learn.adafruit.com//assets/47804
https://learn.adafruit.com//assets/47806
https://learn.adafruit.com//assets/47806

With the Pi powered off, we can wire up the sensor to the Pi Cobbler like this:

Connect Vin to the 3V or 5V power supply (either is fine)

Connect GND to the ground pin on the Cobbler

Connect SDA (22) to SDA on the Cobbler

Connect SCL (23) to SCL on the Cobbler

Connect the positive (long lead) of an LED to pin 15 on the samd09 breakout

and the other lead to GND through a 1k ohm resistor.

You can also use direct wires, we happen to have a Cobbler ready. remember you can

plug the cobbler into the bottom of the PiTFT to get access to all the pins!

Now you should be able to verify that the sensor is wired up correctly by asking the Pi

to detect what addresses it can see on the I2C bus:

•

•

•

•

•

©Adafruit Industries Page 16 of 42

https://learn.adafruit.com//assets/47807
https://learn.adafruit.com//assets/47807

sudo i2cdetect -y 1

It should show up under it's default address (0x49). If you don't see 49, check your

wiring, did you install I2C support, etc?

Run example code

At long last, we are finally ready to run our example code. Open the Python REPL to

begin.

First we'll import the necessary libraries, initialise the I2C bus and setup the LED pin

for use:

import time
import board
import busio
from adafruit_seesaw.seesaw import Seesaw

i2c_bus = busio.I2C(board.SCL, board.SDA)
ss = Seesaw(i2c_bus)

ss.pin_mode(15, ss.OUTPUT)

Now you're ready to blink the LED using digital_write :

while True:
 ss.digital_write(15, True)
 time.sleep(1)
 ss.digital_write(15, False)
 time.sleep(1)

©Adafruit Industries Page 17 of 42

If everything is set up correctly, the LED attached to pin 15 on the SAMD09 breakout

should blink on and off repeatedly. Press CTRL + C to stop the program running once

you are satisfied with the blinking.

Documentation

See here () for documentation of the seesaw CircuitPython API.

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple seesaw test using an LED attached to Pin 15.
#
See the seesaw Learn Guide for wiring details:
https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout?
view=all#circuitpython-wiring-and-test
import time

import board
from adafruit_seesaw.seesaw import Seesaw

i2c_bus = board.I2C() # uses board.SCL and board.SDA
i2c_bus = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

ss = Seesaw(i2c_bus)

ss.pin_mode(15, ss.OUTPUT)

while True:
 ss.digital_write(15, True) # turn the LED on (True is the voltage level)
 time.sleep(1) # wait for a second
 ss.digital_write(15, False) # turn the LED off by making the voltage LOW
 time.sleep(1)

©Adafruit Industries Page 18 of 42

https://circuitpython.readthedocs.io/projects/seesaw/en/latest/

Using the Seesaw Platform

The sections under this heading contain more detailed information about how the

Seesaw platform works. If you are using our Arduino, CircuitPython, or Python API you

can skip these sections. These sections are intended for people who either want to

understand and modify seesaw, or who want to make their own API for a platform that

is no officially supported by Adafruit such as C/C++ on Raspberry Pi.

Reading and Writing Data

The SeeSaw operates as an I2C secondary device using standard I2C protocol. It

uses the SDA and SCL pins to communicate with the host system.

The I2C bus on the SAMD09 is 3.3V logic level, but all boards other than the SAMD09

breakout have level shifting so you can use 3 or 5V logic. Boards with Attiny chips are

3 or 5V safe so you can use either for power and logic

Only 7-bit addressing is supported.

I2C pullup resistors are included in our SeeSaw boards but if you are DIY'ing, be sure

to add your own! 2.2K - 10K is a good range.

Setting the Device Address

Standard 7-bit addressing is used. The seesaw's default I2C address is initially

configured in the compiled firmware (e.g for theSeeSaw breakouts we use 0x49) but

other boards will have a different base address. Check the board documentation for

the default base I2C address, or you can plug it in and scan the I2C bus to find it ().

This address can be modified using the address select pins, there can be multiple

address pins. If address select pin 0 (A0) is tied to ground on boot, the I2C address is

incremented by 1. If address select pin 1 (A1) is pulled low, the I2C address is

incremented by 2. If both address select pins are pulled low, the I2C address is

incremented by 3. Thus you can, with the same hardware, have up to 4 devices

©Adafruit Industries Page 19 of 42

https://learn.adafruit.com/scanning-i2c-addresses

On both the SAMD09 and Attiny817 breakouts, the default A0 pin is 16, default A1 pin

is 17. On boards where the chips are embedded, there may be as many as 4 address

pins, they'll be labeled with jumpers

The base I2C address can also be modified by writing a new address to EEPROM. See

the EEPROM section for more information.

I2C Transactions

We recommend using 100KHz I2C, but speeds of up to 400KHz are supported. You

may want to decrease the SDA/SCL pullups to 2.2K from 10K in that case.

Writing Data

A seesaw write command consists of the standard I2C write header (with the R/W bit

set to 0), followed by 2 register bytes followed by zero or more data bytes.

The first register byte is the module base register address. Each module (GPIO, ADC,

DAC, etc.) has it's own unique 8 bit base identifier.

The second register byte is the module function register address. This byte specifies

the desired register within the module to be written.

Thus we have up to 254 modules available (0x00 is reserved) and 255 functions per

module - plenty to allow all sorts of different capabilities!

In code, this may look like this (using the Arduino wire I2C object):

void Adafruit_seesaw::write(uint8_t moduleBase, uint8_t moduleFunction, uint8_t
*buf, uint8_t num)
{

Wire.beginTransmission((uint8_t)_i2caddr);
Wire.write((uint8_t)moduleBase); //module base register address
Wire.write((uint8_t)moduleFunction); //module function register address
Wire.write((uint8_t *)buf, num); //data bytes
Wire.endTransmission();

}

The Arduino UNO Wire library implementation has a limit of 32 bytes per

transaction so be aware you may not be able to read/write more than that

amount. We have designed the library to work within those constraints

©Adafruit Industries Page 20 of 42

Reading Data

A register read is accomplished by first sending the standard I2C write header,

followed by the two register bytes corresponding to the data to be read. Allow a short

delay, and then send a standard I2C read header (with the R/W bit set to 1) to read the

data.

The length of the required delay depends on the data that is to be read. These delays

are discussed in the sections specific to each module.

In code, this may look like this (using the Arduino wire I2C object):

void Adafruit_seesaw::read(uint8_t moduleBase, uint8_t moduleFunction, uint8_t
*buf, uint8_t num, uint16_t delay)
{
 Wire.beginTransmission((uint8_t)_i2caddr);
 Wire.write((uint8_t)moduleBase); //module base register address
 Wire.write((uint8_t)moduleFunction); //module function register address
 Wire.endTransmission();

 delayMicroseconds(delay);

 Wire.requestFrom((uint8_t)_i2caddr, num);

 for(int i=0; i<num; i++){
 buf[i] = Wire.read();
 }
}

Status

This module provides hardware specific information, status, and soft reset.

Function Register Summary

0x00 Base Register Address

Register Address Register Name Register Size Access

0x01 HW_ID 1 byte R

©Adafruit Industries Page 21 of 42

Function Register Description

0x01 - HW_ID

A single byte value that provides the hardware specific Hardware ID Code.

0x02 - VERSION

The Product Code is a unique 16 bit number assigned to each product.

The Date Code is a 16 bit value that indicates the year, month, and day of the

firmware build:

Top 5 bits are day of the month (1-31)

0x02 VERSION 4 bytes R

0x03 OPTIONS 4 bytes R

0x04 TEMP 4 bytes R

0x7F SWRST 0 bytes W

Byte 0

Hardware ID Code

Byte 0 Byte 1 Byte 2 Byte 3

Product Code MSB Product Code LSB Date Code MSB Date Code LSB

•

©Adafruit Industries Page 22 of 42

Middle 4 bits are month (1-12)

Bottom 7 bits are 20xx year (00-99)

Here's a Python function for decoding a Date Code into year, month, and day:

def datecode_decode(code):
 year = code & 0x7F // bottom 7 bits are 20xx year (00-99)
 month = (code >> 7) & 0x0F // middle 4 bits are month (1-12)
 day = (code >> 11) & 0x1F // top 5 bits are day of month (1-31)
 return year, month, day

0x03 - OPTIONS

Options is a 32 bit field register indicating if a specific option (ADC, PWM, etc.) has

been enabled or not within the firmware. If enabled, the bit reads a 1, otherwise 0.

Bit locations for options are defined below:

#define SEESAW_STATUS_BASE 0x00
#define SEESAW_GPIO_BASE 0x01
#define SEESAW_SERCOM0_BASE 0x02
#define SEESAW_SERCOM1_BASE 0x03
#define SEESAW_SERCOM2_BASE 0x04
#define SEESAW_SERCOM3_BASE 0x05
#define SEESAW_SERCOM4_BASE 0x06
#define SEESAW_SERCOM5_BASE 0x07
#define SEESAW_TIMER_BASE 0x08
#define SEESAW_ADC_BASE 0x09
#define SEESAW_DAC_BASE 0x0A
#define SEESAW_INTERRUPT_BASE 0x0B
#define SEESAW_DAP_BASE 0x0C
#define SEESAW_EEPROM_BASE 0x0D
#define SEESAW_NEOPIXEL_BASE 0x0E
#define SEESAW_TOUCH_BASE 0x0F
#define SEESAW_KEYPAD_BASE 0x10
#define SEESAW_ENCODER_BASE 0x11

0x04 - TEMP

•

•

Byte 0 Byte 1 Byte 2 Byte 3

Options MSB Options Options Options LSB

Byte 0 Byte 1 Byte 2 Byte 3

©Adafruit Industries Page 23 of 42

The on board Temperature of the device, as a signed 32 bit integer.

0x7F - SWRST

Writing to the register address will initiate a software reset.

GPIO

The GPIO module provides every day input and outputs. You'll get logic GPIO pins

that can act as outputs or inputs. With pullups or pulldowns. When inputs, you can

also create pin-change interrupts that are routed the the IRQ pin.

On SAMD09-based boards the GPIO is 3V only. On ATtiny-based boards, the GPIO

logic is whatever the power pin is, 3V or 5V.

The module base register address for the GPIO module is 0x01.

 Function Registers

Temperature MSB Temperature Temperature Temperature LSB

Register

Address

Function

Name

Register

Size
Notes

0x02 DIRSET 32 bits Write Only

0x03 DIRCLR 32 bits Write Only

0x04 GPIO 32 bits Read/Write

0x05 SET 32 bits Write Only

©Adafruit Industries Page 24 of 42

Writes of GPIO function registers should contain 4 data bytes (32 bits) following the

initial register data bytes. Each bit in these registers represents a GPIO pin on PORTA

of the seesaw device.

If the corresponding pin does not exist on the SeeSaw device, then reading or writing

the bit has no effect.

We decided to go with this method to make GPIO toggling fast (rather than having

one i2c transaction per individual pin control) but the host processor will need to do a

little work to keep the pins identified.

GPIO register setup on SAMD09:

0x06 CLR 32 bits Write Only

0x07 TOGGLE 32 bits Write Only

0x08 INTENSET 32 bits Write Only

0x09 INTENCLR 32 bits Write Only

0x0A INTFLAG 32 bits Read Only

0x0B PULLENSET 32 bits Write Only

0x0C PULLENCLR 32 bits Write Only

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27
. .

 .
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PA31 PA30 PA29 PA28 PA27
. .

 .
PA04 PA03 PA02 PA01 PA00

©Adafruit Industries Page 25 of 42

GPIO register setup on ATTiny8x7:

(this is the same as the megaTinyCore pin mapping ())

Bit 0: PA4

Bit 1: PA5

Bit 2: PA6

Bit 3: PA7

Bit 4: PB7

Bit 5: PB6

Bit 6: PB5

Bit 7: PB4

Bit 8: PB3

Bit 9: PB2

Bit 10: PB1

Bit 11: PB0

Bit 12: PC0

Bit 13: PC1

Bit 14: PC2

Bit 15: PC3

Bit 16: PC4

Bit 17: PC5

Bit 18: PA1

Bit 19: PA2

Bit 20: PA3

DIRSET (0x02, 32 bits, Write Only)

Writing a 1 to any bit in this register sets the direction of the corresponding pin to

OUTPUT.

Writing zeros to this register has no effect.

DIRCLR (0x03, 32 bits, Write Only)

Writing a 1 to any bit in this register sets the direction of the corresponding pin to

INPUT.

Writing zeros to this register has no effect.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 26 of 42

https://github.com/SpenceKonde/megaTinyCore/blob/master/megaavr/extras/ATtiny_x17.md

GPIO (0x04, 32 bits, Read/Write)

When this register is written, all bits that are set to 0 will have their corresponding

pins set LOW.

All bits that are set to 1 will have their corresponding pins set HIGH.

Reading this register reads all pins on of the seesaw device. On the Attiny series

please wait at least 250uS between command write and data read to allow the data

to be read and formatted for retrieval. Reading this register will also reset the IRQ pin

if it was configured.

SET (0x05, 32 bits, Write Only)

Writing a 1 to any bit in this register writes the corresponding pin HIGH.

Writing zeros to this register has no effect.

CLR (0x06, 32 bits, Write Only)

Writing a 1 to any bit in this register writes the corresponding pin LOW.

Writing zeros to this register has no effect.

TOGGLE (0x07, 32 bits, Write Only)

Writing a 1 to any bit in this register toggles the corresponding pin.

Writing zeros to this register has no effect.

INTENSET (0x08, 32 bits, Write Only)

Writing a 1 to any bit in this register enables the interrupt on the corresponding pin.

When the value on this pin changes, the corresponding bit will be set in the INTFLAG

register.

©Adafruit Industries Page 27 of 42

Writing zeros to this register has no effect.

INTENCLR (0x09, 32 bits, Write Only)

Writing a 1 to any bit in this register disables the interrupt on the corresponding pin.

Writing zeros to this register has no effect.

INTFLAG (0x0A, 32 bits, Read Only)

This register hold the status of all GPIO interrupts. When an interrupt fires, the

corresponding bit in this register gets set. Reading this register clears all interrupts. T

his will also reset the IRQ pin if it was configured.

Writing to this register has no effect.

PULLENSET (0x0B, 32 bits, Write Only)

Writing a 1 to any bit in this register enables the internal pullup or pulldown on the

corresponding pin. The pull direction (up/down) is determined by the GPIO (output)

value - if the corresponding GPIO register bit is low, its a pulldown. High, its a pullup.

Writing zeros to this register has no effect.

PULLENCLR (0x0C, 32 bits, Write Only)

Writing a 1 to any bit in this register disables the pull up/down on the corresponding

pin.

Writing zeros to this register has no effect.

Analog to Digital Converter

The ADC provides the ability to measure analog voltages at 10-bit resolution. The

SAMD09 seesaw has 4 ADC inputs, the Attiny8x7 has 11 ADC inputs.

The module base register address for the ADC is 0x09

©Adafruit Industries Page 28 of 42

Conversions can be read by reading the corresponding CHANNEL register.

When reading ADC data, there should be at least a 500 uS delay between writing the

register number you would like to read from and attempting to read the data.

Allow a delay of at least 1ms in between sequential ADC reads on different channels.

SAMD09 ADC channels are:

ATtiny8x7 ADC channels are:

Channel 0: PA4

Channel 1: PA5

Channel 2: PA6

Channel 3: PA7

Channel 6: PB5

Channel 7: PB4

Channel 10: PB1

Channel 11: PB0

Channel 18: PA1

Channel 19: PA2

Channel 20: PA3

(These are the same as the Arduino GPIO pin names for the ADCs in megaTinyCore ())

Channel 0 PA02

Channel 1 PA03

Channel 2 PA04

Channel 3 PA05

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 29 of 42

https://github.com/SpenceKonde/megaTinyCore/blob/master/megaavr/extras/ATtiny_x17.md

Function Registers

Register Address Register Name Register Size Notes

0x00 STATUS 8 bits Read Only

0x02 INTENSET 8 bits Write Only

0x03 INTENCLR 8 bits Write Only

0x04 WINMODE Write Only

0x05 WINTHRESH 32 bits Write Only

0x07 CHANNEL_0 16 bits Read Only

0x08 CHANNEL_1 16 bits Read Only

0x09 CHANNEL_2 16 bits Read Only

0x0A CHANNEL_3 16 bits Read Only

...

0x1B
CHANNEL_20 16-bit Read Only

©Adafruit Industries Page 30 of 42

STATUS (0x00, 8bits, Read Only)

This register contains status information on the ADC

INTENSET (0x02, 8bits, Write Only)

Writing a 1 to any bit in this register enables the corresponding interrupt.

Writing zeros to this register has no effect.

INTENCLR (0x03, 8bits, Write Only)

Writing a 1 to any bit in this register enables the corresponding interrupt.

Writing zeros to this register has no effect.

WINMODE (0x04, 8bits, Write Only)

Writing 1 to this register sets window control.

Window mode or ADC interrupts is not yet supported as of the time of writing this

guide.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved WINMON_INT ERROR

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved WINMON

©Adafruit Industries Page 31 of 42

WINTHRESH (0x05, 32bits, Write Only)

This register sets the threshold values for window mode.

CHANNEL_0 (0x07, 16bits, Read Only)

ADC value for channel 0

CHANNEL_1 (0x08, 16bits, Read Only)

ADC value for channel 1

CHANNEL_2 (0x09, 16bits, Read Only)

ADC value for channel 2

CHANNEL_3 (0x0A, 16bits, Read Only)

ADC value for channel 3

...

CHANNEL_20 (0x1B, 16bits, Read Only)

ADC value for channel 20

Bits 31 - 16 Bits 15 - 0

High Threshold Low Threshold

©Adafruit Industries Page 32 of 42

Interrupts

The seesaw has a configurable interrupt pin that can be triggered through various

channels.

Once the interrupt is triggered, it can be only be cleared when the conditions of it's

source module(s) have been met (e.g. data has been read, an interrupt has been

cleared by reading an INTFLAG register).

See individual module sections for details on their available interrupt configurations.

The hardware interrupt pin is available on PA08 (#8)

NeoPixel

The seesaw has built in NeoPixel support for up to 170 RGB or 127 RGBW pixels. The

output pin as well as the communication protocol frequency are configurable. Note:

older firmware is limited to 63 pixels max.

The module base register address for the NeoPixel module is 0x0E.

Function Registers

Register Address Register Name Register Size Notes

0x01 PIN 8 bits Write Only

0x02 SPEED 8 bits Write Only

0x03 BUF_LENGTH 16 bits Write Only

0x04 BUF 32 bytes Write Only

©Adafruit Industries Page 33 of 42

PIN (0x01, 8bits, Write Only)

This register sets the pin number (PORTA) that is used for the NeoPixel output.

SPEED (0x02, 8bits, Write Only)

The protocol speed.

0x00 = 400khz

0x01 = 800khz (default)

BUF_LENGTH (0x03, 16bits LE, Write Only)

the number of bytes currently used for the pixel array. This is dependent on when the

pixels you are using are RGB or RGBW. 2 Bytes, little endian order

BUF (0x04, 32 bytes, Write Only)

The data buffer. The first 2 bytes are the start address, and the data to write follows.

Data should be written in blocks of maximum size 30 bytes at a time.

SHOW (0x05, no args, Write Only)

Sending the SHOW command will cause the output to update. There's no arguments/

data after the command

0x05 SHOW none Write Only

Bytes 0 - 1 Bytes 2 - 32

Start address Data

©Adafruit Industries Page 34 of 42

EEPROM

The EEPROM module provides persistent storage of data across reboots.

On the SAMD09, there are 64 bytes of emulated EEPROM available for use. Byte 63

(0x3F) can be written to change the devices default I2C address.

On the ATtiny817, there are 128 bytes of actual EEPROM available for use. Byte 127 (0x

7F) can be written to change the device's default I2C address.

The module base register address for the EEPROM module is 0x0D

Function Registers

SAMD09

ATtiny817

The SAMD09 does not have true EEPROM, but flash memory on the seesaw that

performs the same function. Performing a chip erase will erase all data stored in

the emulated EEPROM. Also, be aware that the emulated EEPROM has a limited

write/erase cycle lifespan. Care should be taken to not write/erase too many

times or you will get inconsistant results and possibly damage the FLASH! The

FLASH is rated for 100,000 cycles

Register Address Function Name Register Size Notes

0x00 - 0x3E General Purpose EEPROM 8 bits each Read/Write

0x3F I2C Address 8 bits Read/Write

Register Address Function Name Register Size Notes

©Adafruit Industries Page 35 of 42

PWM

This module provides support for Pulse Width Modulation (PWM) output.

Nomenclature

The seesaw PWM Function Registers are defined using a generic nomenclature as

follows:

PWM Number - Specifies a specific PWM output (pin).

PWM Value - Specifies the PWM duty cycle.

PWM Frequency - Specifies the PWM frequency.

See the Port Specific Details section below for further information.

Function Register Summary

0x00 - 0x7E General purpose EEPROM 8 bits each Read/write

0x7F I2C Address 8 bits Read/write

0x08 Base Register Address

•

•

•

Register Address Register Name Register Size Access

0x01 PWM_VAL 3 bytes W

0x02 PWM_FREQ 3 bytes W

©Adafruit Industries Page 36 of 42

Function Register Description

0x01 - PWM_VAL

Sets the PWM Value for a specified PWM Number. The first byte written is the PWM

Number. The next two bytes are the 16 bit PWM Value, most significant byte (MSB)

followed by least significant byte (LSB).

0x02 - PWM_FREQ

Sets the PWM Frequency for a specified PWM Number. The first byte written is the P

WM Number. The next two bytes are the 16 bit PWM Frequency, most significant byte

(MSB) followed by least significant byte (LSB).

Port Specific Details

SAMD

PWM outputs are available on pins PA04, PA05, PA06, and PA07. The PWM Number

for each is shown in the table below.

Byte 0 Byte 1 Byte 2

PWM Number PWM Value MSB PWM Value LSB

Byte 0 Byte 1 Byte 2

PWM Number
PWM Frequency MSB

PWM Frequency LSB

PWM Number Output Pin

©Adafruit Industries Page 37 of 42

The full 16 bit PWM Value is used. This value should be an unsigned integer ranging

from 0 for full off to 65535 for full on.

The PWM Frequency is a 16 bit unsigned integer value which specifies the frequency

in hertz (Hz).

ATtiny

The PWM Number is the Arduino GPIO pin number.

Currently, only the MSB of the 16 bit PWM Value is used. This is due to the 8 bit limit

of analogWrite() used internally. However, a full 16 bit value should be sent from 0 for

full off to 65535 for full on.

The PWM Frequency is a 16 bit unsigned integer value which specifies the frequency

in hertz (Hz). (NOTE: uses tone() internally)

UART

When the UART module is configured, the seesaw can act as an I2C UART bridge.

UART Pins are:

RX: PA11

0 PA04

1 PA05

2 PA06

3 PA07

Note that the default firmware on the SAMD09 breakout does not include UART

support.

©Adafruit Industries Page 38 of 42

TX: PA10

The module base register address for the UART is 0x02.

Function Registers

Status (0x00, 8bits, Read Only)

The ERROR bit is set when the UART encounters an error.

The I2C <-> UART bridge is still in beta at the time of writing this guide. Detailed

specs are not yet available.

Register Address Register Name Regsiter Size Notes

0x00 STATUS 8 bits Read Only

0x02 INTEN 8 bits Read/Write

0x03 INTENCLR 8 bits Write Only

0x04 BAUD 32 bits Read/Write

0x05 DATA 32 bytes Read/Write

bits 7-2 bit 1 bit 0

Reserved DATA_RDY ERROR

©Adafruit Industries Page 39 of 42

The DATA_RDY bit is set when there is data available in the RX buffer. This bit gets

cleared when the data is read.

INTEN (0x2, 8bits, Read/Write)

If the DATA_RDY bit is set, the interrupt will fire when there is data in the RX buffer.

Writing zeros to this register has no effect.

INTENCLR (0x03, 8bits, Write Only)

same bits as INTEN. Writing 1 to any bit in this register disabled the corresponding

interrupt.

Writing zeros to this register has no effect.

BAUD (0x04, 32bits, Read/Write)

Writing to this register sets the BAUD rate.

Default 9600

DATA (0x05, 32bytes, Read/Write)

Writing to the DATA register puts the data into the TX buffer to be output on the TX

pin.

Reading from the DATA register reads the data from the RX buffer.

bits 7-1 bit 0

Reserved DATA_RDY

©Adafruit Industries Page 40 of 42

When this register is read, the DATA_RDY bit is cleared.

Downloads

Documents

Seesaw Arduino Driver ()

Seesaw CircuitPython Driver ()

Fritzing object in the Adafruit Fritzing library ()

SAMD09 breakout PCB files (EAGLE format) ()

SAMD09 datasheet ()

Schematic

click to enlarge

Dimensions

in inches. Click to enlarge

•

•

•

•

•

©Adafruit Industries Page 41 of 42

https://github.com/adafruit/Adafruit_Seesaw
https://github.com/adafruit/Adafruit_CircuitPython_seesaw
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-SAMD09-Breakout-PCB/tree/master
https://cdn-learn.adafruit.com/assets/assets/000/047/797/original/Atmel-42414-SAM-D09_Datasheet.pdf?1509562415

Documentation

Python API Documentation ()

Arduino API Documentation ()

•

•

©Adafruit Industries Page 42 of 42

https://adafruit.github.io/Adafruit_Python_seesaw/classAdafruit__Seesaw_1_1seesaw_1_1Seesaw.html
https://adafruit.github.io/Adafruit_Seesaw/html/annotated.html

	Adafruit seesaw
	Table of Contents
	Overview
	Pinouts
	Arduino Wiring & Test
	CircuitPython Wiring & Test
	Python Docs
	Raspberry Pi Wiring & Test
	Using the Seesaw Platform
	Reading and Writing Data
	Status
	GPIO
	Analog to Digital Converter
	Interrupts
	NeoPixel
	EEPROM
	PWM
	UART
	Downloads
	Documentation

	Overview
	Pinouts
	Power Pins:
	Logic Pins:
	GPIO Pins:
	Neopixel Pins:
	Address Pins:
	ADC Pins:
	PWM Pins:
	Interrupt Pins:
	Programming Pins:

	Arduino Wiring & Test
	Arduino Wiring & Test
	I2C Wiring
	Download Adafruit_Seesaw library
	Load Test Example
	Documentation
	CircuitPython Wiring & Test
	CircuitPython Wiring & Test
	I2C Wiring
	Download Adafruit_CircuitPython_Seesaw library
	Python Docs
	Raspberry Pi Wiring & Test
	Install Python Software
	Enable I2C
	Run example code
	Documentation
	Full Example Code
	Using the Seesaw Platform
	Reading and Writing Data
	Setting the Device Address
	I2C Transactions
	Writing Data
	Reading Data

	Status
	Function Register Summary
	Function Register Description
	0x01 - HW_ID
	0x02 - VERSION
	0x03 - OPTIONS
	0x04 - TEMP
	0x7F - SWRST

	GPIO
	Function Registers
	GPIO register setup on SAMD09:
	GPIO register setup on ATTiny8x7:

	DIRSET (0x02, 32 bits, Write Only)
	DIRCLR (0x03, 32 bits, Write Only)
	GPIO (0x04, 32 bits, Read/Write)
	SET (0x05, 32 bits, Write Only)
	CLR (0x06, 32 bits, Write Only)
	TOGGLE (0x07, 32 bits, Write Only)
	INTENSET (0x08, 32 bits, Write Only)
	INTENCLR (0x09, 32 bits, Write Only)
	INTFLAG (0x0A, 32 bits, Read Only)
	PULLENSET (0x0B, 32 bits, Write Only)
	PULLENCLR (0x0C, 32 bits, Write Only)
	Analog to Digital Converter
	SAMD09 ADC channels are:
	ATtiny8x7 ADC channels are:

	Function Registers
	STATUS (0x00, 8bits, Read Only)
	INTENSET (0x02, 8bits, Write Only)
	INTENCLR (0x03, 8bits, Write Only)
	WINMODE (0x04, 8bits, Write Only)
	WINTHRESH (0x05, 32bits, Write Only)
	CHANNEL_0 (0x07, 16bits, Read Only)
	CHANNEL_1 (0x08, 16bits, Read Only)
	CHANNEL_2 (0x09, 16bits, Read Only)
	CHANNEL_3 (0x0A, 16bits, Read Only)
	CHANNEL_20 (0x1B, 16bits, Read Only)
	Interrupts
	NeoPixel
	Function Registers
	PIN (0x01, 8bits, Write Only)
	SPEED (0x02, 8bits, Write Only)
	BUF_LENGTH (0x03, 16bits LE, Write Only)
	BUF (0x04, 32 bytes, Write Only)
	SHOW (0x05, no args, Write Only)
	EEPROM
	Function Registers
	SAMD09
	ATtiny817

	PWM
	Nomenclature
	Function Register Summary
	Function Register Description
	0x01 - PWM_VAL
	0x02 - PWM_FREQ

	Port Specific Details
	SAMD
	ATtiny

	UART
	Function Registers
	Status (0x00, 8bits, Read Only)
	INTEN (0x2, 8bits, Read/Write)
	INTENCLR (0x03, 8bits, Write Only)
	BAUD (0x04, 32bits, Read/Write)
	DATA (0x05, 32bytes, Read/Write)
	Downloads
	Documents
	Schematic
	Dimensions
	Documentation

