# ELECTRONIC ASSEMBLY new display design

## **DOGM240-6 GRAPHIC**



EA DOGM240W-6 + EA LED94X40-A

#### **TECHNICAL DATA**

- \* CONTROLLER UC1611s WITH INTEGRATED GRAFIC-RAM
- \* HIGH-CONTRAST LCD SUPERTWIST DISPLAY (STN AND FSTN) WITH 15µm DOT GAP
- \* OPTIONAL LED BACKLIGHTS IN VARIOUS COLORS
- \* 240x64 DOTS (CORRESPONDS TO 8x40 CHARS OR 4x20 LARGE CHARS)
- \* POWER SUPPLY: SINGLE SUPPLY 2,7..3,3V (typ. 500 μA)
- \* NO ADDITIONAL VOLTAGES REQUIRED
- \* THREE DIFFERENT INTERFACES: 3-WIRE SPI, 4-WIRE SPI AND I2C
- \* OPERATING TEMPERATURE RANGE -20..+70°C (STORAGE -30..+80°C)
- \* LED BACKLIGHTING 10 to 150mA
- \* NO MOUNTING REQUIRED: SIMPLY SOLDER ONTO PCB

## **ORDERING CODE**

| GRAPHICS DISPLAY 240x64 94x40 mm  | FA DOGM240x-6           |
|-----------------------------------|-------------------------|
| CARAPHILS HISPLAY ZAHYRA GAYAH MM | FΔ 1 10 (-1/1/24 11 Y=6 |

x: W = white background (FSTN pos. transflective)

B = blue background (STN neg. transmissive)

 $S = black\ background\ (FSTN\ neg.\ transmissive)$ 

 $N = superwhite\ background\ (FSTN\ pos.\ reflective,\ cannot\ be\ backlit)$ 

LED BACKLIGHT, WHITE LED BACKLIGHT. AMBER

LED BACKLIGHT, DUO COLOR GREEN/RED

#### **ACCESSORIES**

USB TEST BOARD FOR PC (WINDOWS 2000, XP, VISTA)
TOUCH PANEL, 4-WIRE, ANALOG, STICK-ON
ZIF CONNECTOR FOR TOUCH PANEL, BOTTOM CONTACT
10 CHARACTER SETS e.g. 6x8,8x8,8x16,CYRILLIC, FONT EDITOR
SOCKET 4.8mm HEIGHT (2 pcs. ARE NECCESSARY)

EA 9780-3USB
EA TOUCH240-4
EA WF100-04S
EA USBSTICK-FONT
EA FL-20P

EA LED94X40-W

EA LED94X40-A

EA LED94X40-GR



#### **PINOUT**

The EA DOGM240-6, a 240x64 dots graphics display, is a new addition to ELECTRONIC ASSEMBLY's EA DOG series. It, too, has pins that allow it to be mounted quickly and easily.

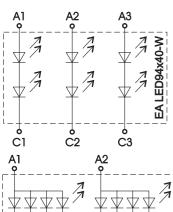
#### **CONTRAST ADJUSTMENT**

The contrast can be set by means of a command for all the displays in the EA DOGM- Series. The contrast setting of the display must be set once by the software, and is then kept constant throughout the entire operating temperature range (-20..+70°C), thanks to the integrated temperature compensation.

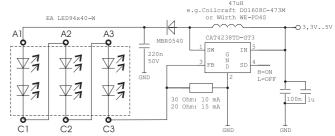
| Pin | Symbol | Level Function       | Pin | Symbol   | Level | Function                 |
|-----|--------|----------------------|-----|----------|-------|--------------------------|
| 1   | NC     | (A1+: LED backlight) | 21  | VB0+     | -     | Voltage Converter        |
| 2   | NC     | (A2+: LED backlight) | 22  | VB1+     | -     | Voltage Converter        |
| 3   | NC     | (A3+: LED backlight) | 23  | VB1-     | -     | Voltage Converter        |
| 4   |        |                      | 24  | VB0-     | -     | Voltage Converter        |
| 5   |        |                      | 25  | VA0+     | -     | Voltage Converter        |
| 6   |        |                      | 26  | VA1+     | -     | Voltage Converter        |
| 7   |        |                      | 27  | VA1-     | -     | Voltage Converter        |
| 8   |        |                      | 28  | VA0-     | -     | Voltage Converter        |
| 9   |        |                      | 29  | VLCD     | -     | Pow er LC Drive          |
| 10  |        |                      | 30  | VDD      | Н     | Pow er Supply +2,73,3V   |
| 11  |        |                      | 31  | VSS      | L     | Pow er Supply 0V (GND)   |
| 12  |        |                      | 32  | VSS      | _     | Power Supply OV (GIND)   |
| 13  |        |                      | 33  | BM0      | H/L   | Config Serial Interface  |
| 14  |        |                      | 34  | CD       | H/L   | L= Command, H= Data      |
| 15  |        |                      | 35  | CS1 (A3) | Н     | Chip Select (high low)   |
| 16  |        |                      | 36  | CS0 (A2) | L     | Chip Select (active low) |
| 17  |        |                      | 37  | RST      | L     | Reset (active low)       |
| 18  | NC     | (C1-: LED backlight) | 38  | SCK (D0) | H/L   | Serial Clock             |
| 19  | NC     | (C2-: LED backlight) | 39  | SDA (D3) | H/L   | Serial Data              |
| 20  | NC     | (C3-: LED backlight) | 40  | D13      | H/L   | Config Serial Interface  |

#### LED-BACKLIGHT

3 different variants are available for individual backlighting: white, amber and a duo-color green/red version.


With the amber backlight, there are 3 separate LED paths containing 4 parallel LEDs, that can be switched in parallel or in series to suit the system's voltage.

With the white backlight, there are 3 separate LED paths containing 2 LEDs in series. To operate the backlight, we recommend a current source (e.g. CAT4238TD).


The duo-color backlight has common anode and two terminals for driving the red and / or the green color.

The operating life of the amber and green/red backlights is 100,000 hours. The LEDs of the white backlight are high quality NICHIA LEDs. To achieve the life-time of 100k hours, we recommend dimming or switching them off whenever possible.

Important: Do never connect the backlight LEDs directly to a 5 V/3.3 V supply as this will immediately destroy the LEDs. Always use a current source. Please note that derating applies at temperatures exceeding +25°C.



| LED backlight<br>(each path ) | Forward voltage | Current |
|-------------------------------|-----------------|---------|
| (each path)                   | typ             | IIIax.  |
| white<br>EA LED94x40-W        | 6.4 V           | 15 mA   |



Application example EA LED94X40-W

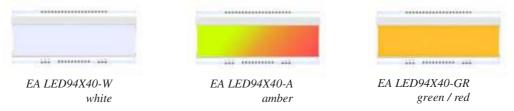
| A1<br>Ŷ | A2<br>9 | A3<br>Υ       |
|---------|---------|---------------|
|         | 7       | EA LED94x40-A |
| ر<br>د  | 6       | 6             |
| CI      | C2      | C3            |

| (AGR)           |                |
|-----------------|----------------|
| 8x yellow/green | 7x red 7       |
|                 | ******         |
|                 | EA LED94x40-GR |
| 0               | 6              |
| (CG)            | (CR)           |

| LED backlight          | Forward voltage | Current | Limiting<br>(oh |      |
|------------------------|-----------------|---------|-----------------|------|
| (each path )           | typ             | max     | @3,3 V          | @5 V |
| amber<br>EA LED94x40-A | 2.1 V           | 80 mA   | 18              | 39   |

| LED backlight<br>(each color) | Forward voltage | Current | Limiting resistor (ohm) |
|-------------------------------|-----------------|---------|-------------------------|
| ,                             | typ             | max     | @5 V                    |
| full color<br>EA LED94x40-GR  | 2.1 V           | 120 mA  | 25                      |




#### **4 DIFFERENT TECHNOLOGIES**

See below for an overview of available technologies, combinations with available backlights and their usability:

| Displaytyp                        | Technologie                  | optionale<br>Beleuchtung                           | Lesbarkeit                                | Displayfarbe<br>unbeleuchtet | Displayfarbe<br>mit<br>Beleuchtung                | empfohlene<br>Beleuchtung |
|-----------------------------------|------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------|---------------------------------------------------|---------------------------|
| En DOGM240W-6                     | FSTN pos.<br>transflektiv    | mit und ohne<br>Beleuchtungskörper<br>zu verwenden | auch bei<br>abgeschalteter<br>Bel. lesbar | schwarz auf weiß             | schwarz auf<br>Beleuchtungsfarbe                  | alle                      |
| ER DOGM2408-6                     | STN neg. blau<br>transmissiv | nur beleuchtet zu<br>verwenden                     |                                           |                              | Beleuchtungsfarbe<br>auf blauem<br>Hintergrund    | weiß, amber               |
| ER DOGM2405-6                     | FSTN neg.<br>transmissiv     | nur beleuchtet zu<br>verwenden                     |                                           |                              | Beleuchtungsfarbe<br>auf schwarzem<br>Hintergrund | alle                      |
| €A DOGM240N-6 Take off   Take off | FSTN pos.<br>reflektiv       | keine Beleuchtung<br>möglich                       | ohne<br>Beleuchtung<br>bestens lesbar     | schwarz auf weiß             |                                                   |                           |

#### **3 DIFFERENT BACKLIGHTS**

Three different backlight colors are available to match equipments design as much as possible. The most effective and brightest one is the white one EA LED94X40-W.



If you see black and white pictures on this page but you want to see the colors of the displays, you can download a full-colored version of this document at:

http://www.lcd-module.de/deu/pdf/grafik/dogm240-6e.pdf

## CHARACTER SET AND FONT EDITOR (ACCESSORY)

With the ordering code EA USBSTICK-FONT a memory stick comes with various character sets, especially made for this display. An import function allows additionally to use Windows fonts. With the FontEditor it is easy to generate for example Cyrillic, Greek and Arabic fonts. The preview function shows immediately the size and style in simulation window.

When the testboard EA 9780-3USB is connected to the USB port, you can see the character (or any predefined text) live on the display !

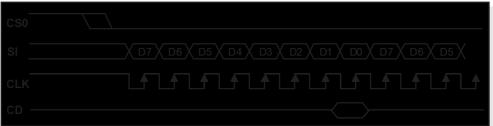


#### **DATA TRANSFER**

The EA DOGM240-6 supports three serial modes. The data transfer of the two SPI-Modes is unidirectional, that means data can only be written, not read back. Compared to other displays, a busy query is not necessary. The clock-pulse rate of the CLK line can be up to 8MHz, depending on the supply voltage and interface mode.

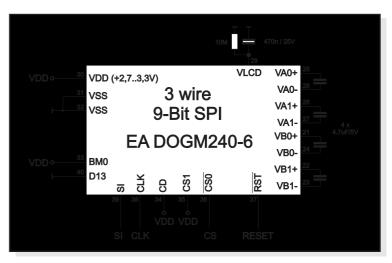
|     | Seria | l Modes           |
|-----|-------|-------------------|
| ВМО | D13   | Description       |
| 0   | 0     | 4-wire, 8-Bit SPI |
| 1   | 0     | 3-wire, 9-Bit SPI |
| 1   | 1     | 2-wire, I2C       |

More detailed information on timing can be found on page 64 to 66 of the data sheet of the UC1611s controller on our website at <a href="http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s-v1-0.pdf">http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s-v1-0.pdf</a>


## 4 WIRE, 8-BIT SPI-MODE

Falling edge on Pin CS0 (or rising edge on PIN CS1) is used for chip select and bus cycle reset. During each write cycle, 8 bits of data, MSB first, are latched on eight rising CLK edges into an 8-bit data holder.

If CD=0 (reading at D0), the byte will be decoded as command. If CD=1, this 8-bit will be treated as data byte.


The clock-pulse rate of the CLK line can be up to 8 MHz, depending on power supply and wiring.





#### 3 WIRE, 9-BIT SPI-MODE

Falling edge on PIN CS0 (or rising edge on PIN CS1) is used for chip select and bus cycle reset. First of all the CD-Bit is transferred to select whether data (H) or command (L) is followed up within the next 8 bit (MSB first) The clock-pulse rate of the CLK line can be up to 8 MHz, depending on power supply and wiring.







#### 2 WIRE, I<sup>2</sup>C-MODE

Pin A2 and A3 is used to configure the device address. That means up to 4 displays can use the same I2C bus.

The I<sup>2</sup>C mode has a bidirectional data transfer, i.e. data can be read back from the display's ram.

The clock-pulse rate of the CLK line can be up to 1.7 MHz, depending on power supply and wiring.

Please be informed, that the pins SDA+SCK contain an internal resistance of 600 to 1000 Ohm, or even more (Important, because of the LO-level while reading data and the ACK-Bit).

**Important:** After the commands to set page or column adress you always have to read a dummy byte.



|      | VSS / A3=VSS<br>Dication example) |
|------|-----------------------------------|
| Adr  | Function                          |
| \$70 | Write Command                     |
| \$71 | Read Status                       |
| \$72 | Write Data                        |
| \$73 | Read Data                         |

| A2=\ | /DD / A3=VDD  |
|------|---------------|
| Adr  | Function      |
| \$7C | Write Command |
| \$7D | Read Status   |
| \$7E | Write Data    |
| \$7F | Read Data     |

| MPÚ<br>IJ        | MPU<br>n U    | MPU<br>U ft U | MPU<br>U n | MP             |
|------------------|---------------|---------------|------------|----------------|
| S 0 1 1 1        | A A C 0 A D 7 | D A D         | _ D A      | AF             |
|                  |               |               |            | Dinnel History |
| Read Mode        |               |               |            |                |
| Read Mode<br>MPU | MPU<br>n n    | MPU<br>0 B B  | MPU        | MPU            |

| A2=VDD / A3=VSS |               |  |  |  |  |  |  |
|-----------------|---------------|--|--|--|--|--|--|
| Adr             | Function      |  |  |  |  |  |  |
| \$74            | Write Command |  |  |  |  |  |  |
| \$75            | Read Status   |  |  |  |  |  |  |
| \$76            | Write Data    |  |  |  |  |  |  |
| \$77            | Read Data     |  |  |  |  |  |  |

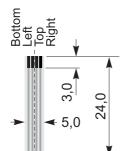
| A2=VSS / A3=VDD |               |  |  |  |  |  |  |  |
|-----------------|---------------|--|--|--|--|--|--|--|
| Adr             | Function      |  |  |  |  |  |  |  |
| \$78            | Write Command |  |  |  |  |  |  |  |
| \$79            | Read Status   |  |  |  |  |  |  |  |
| \$7A            | Write Data    |  |  |  |  |  |  |  |
| \$7B            | Read Data     |  |  |  |  |  |  |  |

#### **USB-TEST BOARD EA 9780-3USB**

For easy startup, an USB test board is available that can be connected to a PC. It comes with an USB cable and a Windows software. This allows text and images (BMP) to be displayed directly on the plugged-in display. You will find more information on the test board in the EA 9780-3USB's data sheet.

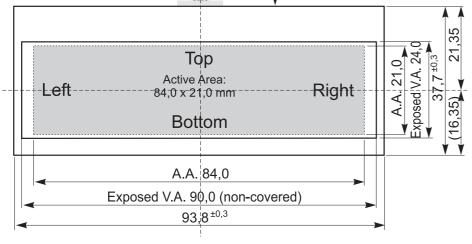
#### SIMULATION WITH WINDOWS

A simulator window also displays the contents of the display. The software can simulate all the displays and colors even without the hardware. You can download the software for free from our website. <a href="http://www.lcd-module.com/produkte/dog.html">http://www.lcd-module.com/produkte/dog.html</a>






## **TOUCH PANEL EA TOUCH240-4 (OPTIONAL)**


An analog touch panel is available as an accessory. It has a selfadhesive material on its rear surface and is simply stuck onto the display. The connection is made by means of a 4-pin flexible cable for a ZIF connector (e.g. EA WF100-04S) with a grid of 1.0 mm. Bending radius is defined with min. 5mm. For optimum readability

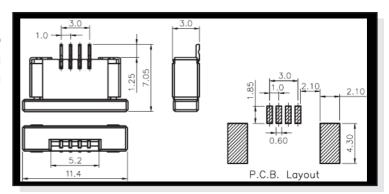
we recommend that the display. Interfacing to done by an external with a controller that is inputs. The touch panel potentiometer:



processor can be either touch panel controller or featured with analogue similar to is connecting a voltage of

you use a backlight with




| Specification    |        |      |        |  |  |  |  |  |  |
|------------------|--------|------|--------|--|--|--|--|--|--|
| Specification    | min    | max  | Unit   |  |  |  |  |  |  |
| Top-Bottom       | 100    | 180  | Ω      |  |  |  |  |  |  |
| Left-Right       | 1300   | 2200 | Ω      |  |  |  |  |  |  |
| Voltage          | 3      | 12   | V      |  |  |  |  |  |  |
| Current          | 5      | 25   | mA     |  |  |  |  |  |  |
| Linearity        |        | 3    | %      |  |  |  |  |  |  |
| Force            | 90     | 120  | g      |  |  |  |  |  |  |
| Contact Bounce   | 5      | 10   | ms     |  |  |  |  |  |  |
| Op. Temperatur   | -20    | +60  | °C     |  |  |  |  |  |  |
| Stor. Temperatur | -20    | +70  | °C     |  |  |  |  |  |  |
| Transmission     | 75     | 85   | %      |  |  |  |  |  |  |
| Life Time        | 100000 |      | Cycles |  |  |  |  |  |  |

e.g. 3.3V to the pins *Top-Bottom* makes it possible to read out a voltage on pin Left or Right which is linear to the Y-coordinate of the pressed point. The X-coordinate will result when the voltage will be Left-Right and supplied to measurement is done at Top or Bottom.

The pinout of the connecting cable is shown in the drawing.

#### **ZIF CONNECTOR EA WF100-04S**

As an accessory for the touch panel we do provide a ZIF connector (4 pins) with pitch 1.0mm (SMD type). This connector is a "bottom side contact" type



## 12:00 VIEW ANGLE, TOP VIEW

If the display is read mostly from above (on the front of a laboratory power supply unit e.g.), the preferred angle of viewing can be set to 12 o'clock. This rotaties the display by 180°. A slightly different initialization setup is required for this.







12:00 o'clock (Top View)

|      | Initialisation example (changes for top view ) |    |    |    |    |    |    |    |    |    |      |              |
|------|------------------------------------------------|----|----|----|----|----|----|----|----|----|------|--------------|
| Com  | mand                                           | CD | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex  | Remark       |
| [04] | Cat I CD Manning Cantral                       | _  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | \$C0 | Catton view  |
| [21] | Set LCD Mapping Control                        | U  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | \$04 | Set top view |

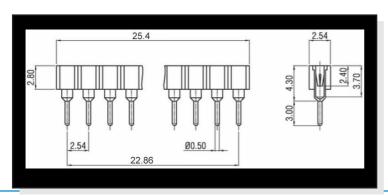


## **TABLE OF COMMANDS (OVERVIEW)**

|      |                         | Command Code |    |    |    |          | Code     | )           |    |                                                                                                                             | Function                            | Default |  |
|------|-------------------------|--------------|----|----|----|----------|----------|-------------|----|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------|--|
|      | Command                 | CD           | D7 | D6 | D5 | D4       | D3       | D2          | D1 | D0                                                                                                                          |                                     | Delault |  |
| (1)  | Write Data Byte         | 1            |    |    | d  | ata bi   | t D[7.   | 70]         |    |                                                                                                                             | Write one byte to memory            | N/A     |  |
| (4)  | Set Column Address LSB  | 0            | 0  | 0  | 0  | 0        |          | CA[30]      |    | Set the SRAM column address<br>CA=0239                                                                                      |                                     | 0x00    |  |
| ,    | Set Column Address MSB  |              | 0  | 0  | 0  | 1        |          | CA[74]      |    |                                                                                                                             |                                     | 1       |  |
| (10) | Set Page Address LSB    | 0            | 0  | 1  | 1  | 0        |          | PA[30]      |    | PA[30] Set the SRAM page address<br>PA=015 in black and white mode                                                          |                                     | 0x00    |  |
|      | Set Page Address MSB    | 0            | 0  | 1  | 1  | 1        | 0        | 0 PA[64]    |    | 4]                                                                                                                          |                                     | 7       |  |
| (15) | Set RAM Address Control | 0            | 1  | 0  | 0  | 0        | 1        | AC[20]      |    | AC[20] AC0: 0=stop increment at end ,1=warp at AC[20] AC1: 0=column, 1=page increment AC2: Set page increment: 0= +1, 1= -1 |                                     | 0x01    |  |
| (31) | Set Window Start Column | 0            | 1  | 1  | 1  | 1<br>WPC | 0        | -   -   -   |    | 0                                                                                                                           | Set Start Column of Window Function | 0x00    |  |
|      |                         |              | 1  | 1  | 1  | 1        | 0[70     | 1           | 0  | 1                                                                                                                           |                                     |         |  |
| (32) | Set Window Start Page   | 0            | 0  | 0  | '  | '        | WPP      | ı '<br>0[50 | •  | , '                                                                                                                         | Set Start Page of Window Function   | 0x00    |  |
| (33) | Set Window End Column   | 0            | 1  | 1  | 1  | 1        | 0        | 1           | 1  | 0                                                                                                                           | Set End Column of Window Function   | 0xFF    |  |
| . ,  |                         |              | _  |    |    | WPC      |          |             | Ι. |                                                                                                                             |                                     |         |  |
| (34) | Set Window End Page     | 0            | 1  | 1  | 1  | _1_      | 0        | 1 1         | 1  | 1                                                                                                                           | Set End Page of Window Function     | 0x4F    |  |
|      |                         |              | 0  | 0  |    |          | WPP<br>I | 1[50<br>    |    | ı                                                                                                                           |                                     |         |  |
| (35) | Set Window program mode | 0            | 1  | 1  | 1  | 1        | 1        | 0           | 0  | C4                                                                                                                          | C4: 0=inside 1=outside              | 0x00    |  |

Further information, please download the datasheet of the controller UC1611s from our homepage: <a href="http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s-v1-0.pdf">http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s-v1-0.pdf</a>

## **INITIALISACTION EXAMPLE (6:00 VIEW ANGLE)**


| Initialisation example (bottom view) |    |    |    |    |    |    |    |    |    |      |                                        |
|--------------------------------------|----|----|----|----|----|----|----|----|----|------|----------------------------------------|
| Command                              | CD | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Hex  | Remark                                 |
| [28] Set COM End                     | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | \$F1 | Set last COM electrode to 63           |
| [28] Set COM Ella                    | U  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | \$3F | (number of COM electrodes - 1)         |
| [20] Cot portitiol display start     | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 0  | \$F2 | Set Dienlay start line to 0            |
| [29] Set partitial display start     | U  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | \$00 | Set Display start line to 0            |
| [30] Set partitial display end       | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | \$F3 | Set Display end line to 63             |
| [30] Set partitial display end       | U  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | \$3F | Set Display end line to 63             |
| [11] Set Potentiometer               | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | \$81 | Set Contrast                           |
| [11] Set Fotentionleter              |    | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 1  | \$B7 | Set Contrast                           |
| [01] Cot I CD manning control        | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | \$C0 | set bottom view                        |
| [21] Set LCD mapping control         | U  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | \$02 | Set bottom view                        |
| [17] Set line rate                   | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  | 1  | \$A3 | 9.4 kilo-lines per second              |
| [27] Set LCD bias ratio              | 0  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | \$E9 | Set bias ratio to 10.                  |
| [20] Set display enable              | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | \$A9 | Enable display in block and white made |
| [23] Set display pattern             | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 1  | \$D1 | Enable display in black and white mode |

#### **GRAPHIC RAM**

The EA DOG M240-6 has integrated a RAM to store 4 complete display contents. One byte contains 8 dots.

The complete datasheet for the controller UC1611s can be downloaded on our homepage:

http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s\_v1\_0.pdf



## SOCKET EA FL-20P

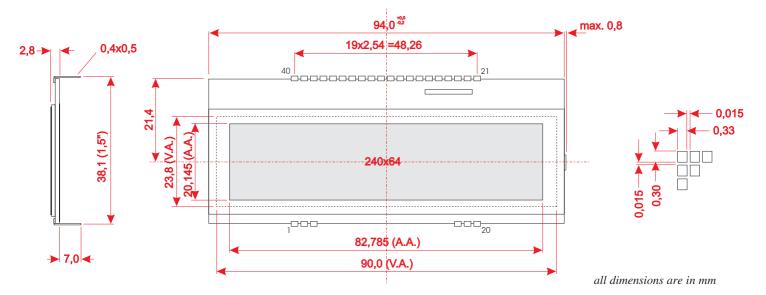
With the help of the single-row female connector stripe EA FL20-P

| D0<br>₹<br>D7 | Page 5 |
|---------------|--------|
| D0            | Page 6 |
| D0            | Page 7 |

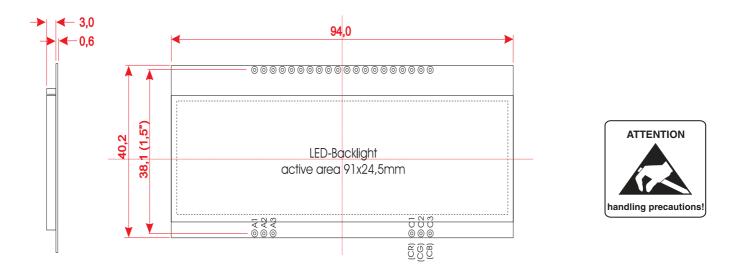
Column address \_\_\_\_239

Page 0

Page 1


Page 2

the mounting of the display is detachable. In addition the overall height can be adjusted 2 pieces are required for one display!


. D7

<sub>D</sub>₹

## **DIMENSIONS EA DOGM240-6**



#### **DIMENSIONS EA LED94X40**



## **MOUNTING / ASSEMBLING**

First, clip the display and backlight modules together by gently pushing the display pins through the corresponding holes on the backlight module. Then insert the entire module into the socket, or into the soldering holes on the pcb. The backlight pins (6 pins at the bottom) must be soldered on the top side as well to ensure good contact between the modules.

### **Important:**

- The display and the backlight do have in summary 3 protective films. There are some on the top and the bottom of the display and also one on the backlight. These must be removed.
- LC displays are generally not suited for wave or reflow soldering. Temperatures of over 80°C can cause lasting damage.
- Make sure that either display nor backlight will never come into contact with any kind of liquid like Fluxer, Cleaner, Water.

