
Features
� High Performance, Low Power 32-Bit Atmel® AVR®Microcontroller

– Compact Single-cycle RISC Instruction Set Including DSP Instruction Set

– Read-Modify-Write Instructions and Atomic Bit Manipulation

– Performing up to 1.39 DMIPS / MHz

� Up to 83 DMIPS Running at 60 MHz from Flash

� Up to 46 DMIPS Running at 30 MHz from Flash

– Memory Protection Unit

� Multi-hierarchy Bus System

– High-Performance Data Transfers on Separate Buses for Increased Performance

– 7 Peripheral DMA Channels Improves Speed for Peripheral Communication

� Internal High-Speed Flash

– 512K Bytes, 256K Bytes, 128K Bytes, 64K Bytes Versions

– Single Cycle Access up to 30 MHz

– Prefetch Buffer Optimizing Instruction Execution at Maximum Speed

– 4ms Page Programming Time and 8ms Full-Chip Erase Time

– 100,000 Write Cycles, 15-year Data Retention Capability

– Flash Security Locks and User Defined Configuration Area

� Internal High-Speed SRAM, Single-Cycle Access at Full Speed

– 96K Bytes (512KB Flash), 32K Bytes (256KB and 128KB Flash), 16K Bytes (64KB

Flash)

� Interrupt Controller

– Autovectored Low Latency Interrupt Service with Programmable Priority

� System Functions

– Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator

– Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) allowing

Independant CPU Frequency from USB Frequency

– Watchdog Timer, Real-Time Clock Timer

� Universal Serial Bus (USB)

– Device 2.0 and Embedded Host Low Speed and Full Speed

– Flexible End-Point Configuration and Management with Dedicated DMA Channels

– On-chip Transceivers Including Pull-Ups

– USB Wake Up from Sleep Functionality

� One Three-Channel 16-bit Timer/Counter (TC)

– Three External Clock Inputs, PWM, Capture and Various Counting Capabilities

� One 7-Channel 20-bit Pulse Width Modulation Controller (PWM)

� Three Universal Synchronous/Asynchronous Receiver/Transmitters (USART)

– Independant Baudrate Generator, Support for SPI, IrDA and ISO7816 interfaces

– Support for Hardware Handshaking, RS485 Interfaces and Modem Line

� One Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals

� One Synchronous Serial Protocol Controller

– Supports I2S and Generic Frame-Based Protocols

� One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible

� One 8-channel 10-bit Analog-To-Digital Converter, 384ks/s

� 16-bit Stereo Audio Bitstream DAC

– Sample Rate Up to 50 KHz

� QTouch® Library Support

– Capacitive Touch Buttons, Sliders, and Wheels

– QTouch and QMatrix Acquisition
32059L–01/2012

32-bit ATMEL

AVR

Microcontroller

AT32UC3B0512

AT32UC3B0256

AT32UC3B0128

AT32UC3B064

AT32UC3B1512

AT32UC3B1256

AT32UC3B1128

AT32UC3B164

Summary

2

32059L–AVR32–01/2012

AT32UC3B

� On-Chip Debug System (JTAG interface)

– Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace

� 64-pin TQFP/QFN (44 GPIO pins), 48-pin TQFP/QFN (28 GPIO pins)

� 5V Input Tolerant I/Os, including 4 high-drive pins

� Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply

3

32059L–AVR32–01/2012

AT32UC3B

1. Description
The AT32UC3B is a complete System-On-Chip microcontroller based on the AVR32 UC RISC

processor running at frequencies up to 60 MHz. AVR32 UC is a high-performance 32-bit RISC

microprocessor core, designed for cost-sensitive embedded applications, with particular empha-

sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-

troller for supporting modern operating systems and real-time operating systems.

Higher computation capability is achieved using a rich set of DSP instructions.

The AT32UC3B incorporates on-chip Flash and SRAM memories for secure and fast access.

The Peripheral Direct Memory Access controller enables data transfers between peripherals and

memories without processor involvement. PDCA drastically reduces processing overhead when

transferring continuous and large data streams between modules within the MCU.

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector

monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external

oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be

independently programmed to perform frequency measurement, event counting, interval mea-

surement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options

including polarity, edge alignment and waveform non overlap control. One PWM channel can

trigger ADC conversions for more accurate close loop control implementations.

The AT32UC3B also features many communication interfaces for communication intensive

applications. In addition to standard serial interfaces like USART, SPI or TWI, other interfaces

like flexible Synchronous Serial Controller and USB are available. The USART supports different

communication modes, like SPI mode.

The Synchronous Serial Controller provides easy access to serial communication protocols and

audio standards like I2S, UART or SPI.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time

thanks to the rich End-Point configuration. The Embedded Host interface allows device like a

USB Flash disk or a USB printer to be directly connected to the processor.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels

functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers

robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key

Suppression® (AKS®) technology for unambiguous detection of key events. The easy-to-use

QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3B integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive

real-time trace, full-speed read/write memory access in addition to basic runtime control. The

Nanotrace interface enables trace feature for JTAG-based debuggers.

4

32059L–AVR32–01/2012

AT32UC3B

2. Overview

2.1 Blockdiagram

Figure 2-1. Block diagram

TIMER/COUNTER

INTERRUPT

CONTROLLER

REAL TIME

COUNTER

PERIPHERAL

DMA

CONTROLLER

HSB-PB

BRIDGE B

HSB-PB

BRIDGE A

S

M M M

S

S

M

EXTERNAL

INTERRUPT

CONTROLLER

HIGH SPEED

BUS MATRIX

G
E

N
E

R
A

L
 P

U
R

P
O

S
E

 I
O

s

G
E

N
E

R
A

L
 P

U
R

P
O

S
E

 I
O

s

PA

PB

A[2..0]

B[2..0]

CLK[2..0]

EXTINT[7..0]

KPS[7..0]

NMI

GCLK[3..0]

XIN32
XOUT32

XIN0

XOUT0

PA

PB

RESET_N

32 KHz

OSC

115 kHz

RCOSC

OSC0

PLL0

SERIAL

PERIPHERAL

INTERFACE

TWO-WIRE

INTERFACE

P
D

C
P

D
C

MISO, MOSI

NPCS[3..0]

SCL

SDA

USART1

P
D

C

RXD

TXD

CLK

RTS, CTS

DSR, DTR, DCD, RI

USART0

USART2P
D

C

RXD

TXD

CLK

RTS, CTS

SYNCHRONOUS

SERIAL

CONTROLLER

P
D

C

TX_CLOCK, TX_FRAME_SYNC

RX_DATA

TX_DATA

RX_CLOCK, RX_FRAME_SYNC

ANALOG TO

DIGITAL

CONVERTER

P
D

C

AD[7..0]

ADVREF

WATCHDOG

TIMER

XIN1

XOUT1
OSC1

PLL1

SCK

JTAG

INTERFACE

MCKO

MDO[5..0]

MSEO[1..0]

EVTI_N

TCK

TDO

TDI

TMS

POWER

MANAGER

RESET

CONTROLLER

SLEEP

CONTROLLER

CLOCK

CONTROLLER

CLOCK

GENERATOR

CONFIGURATION REGISTERS BUS

PB

PB

HSBHSB

S F
L

A
S

H
C

O
N

T
R

O
L

L
E

R

M
S

USB

INTERFACE

DMA

ID

VBOF

VBUS

D-
D+

EVTO_N

AVR32 UC

CPUNEXUS

CLASS 2+

OCD

INSTR

INTERFACE

DATA

INTERFACE M
E

M
O

R
Y

 I
N

T
E

R
F

A
C

E

FAST GPIO

16/32/96 KB

 SRAM

MEMORY PROTECTION UNIT

LOCAL BUS

INTERFACE

AUDIO

BITSTREAM

DAC

P
D

C DATA[1..0]

DATAN[1..0]

PULSE WIDTH

MODULATION

CONTROLLER

PWM[6..0]

64/128/

256/512 KB

FLASH

5

32059L–AVR32–01/2012

AT32UC3B

3. Configuration Summary
The table below lists all AT32UC3B memory and package configurations:

Table 3-1. Configuration Summary

Feature AT32UC3B0512 AT32UC3B0256/128/64 AT32UC3B1512 AT32UC3B1256/128/64

Flash 512 KB 256/128/64 KB 512 KB 256/128/64 KB

SRAM 96KB 32/32/16KB 96KB 32/16/16KB

GPIO 44 28

External Interrupts 8 6

TWI 1

USART 3

Peripheral DMA Channels 7

SPI 1

Full Speed USB Mini-Host + Device Device

SSC 1 0

Audio Bitstream DAC 1 0 1 0

Timer/Counter Channels 3

PWM Channels 7

Watchdog Timer 1

Real-Time Clock Timer 1

Power Manager 1

Oscillators

PLL 80-240 MHz (PLL0/PLL1)

Crystal Oscillators 0.4-20 MHz (OSC0)

Crystal Oscillator 32 KHz (OSC32K)

RC Oscillator 115 kHz (RCSYS)

Crystal Oscillators 0.4-20 MHz (OSC1)

10-bit ADC

number of channels
8 6

JTAG 1

Max Frequency 60 MHz

Package TQFP64, QFN64 TQFP48, QFN48

6

32059L–AVR32–01/2012

AT32UC3B

4. Package and Pinout

4.1 Package

The device pins are multiplexed with peripheral functions as described in the Peripheral Multi-

plexing on I/O Line section.

Figure 4-1. TQFP64 / QFN64 Pinout

G
N

D
1

T
C

K
2

P
A

0
0

3

P
A

0
1

4

P
A

0
2

5

P
B

0
0

6

P
B

0
1

7

V
D

D
C

O
R

E
8

P
A

0
3

9

P
A

0
4

1
0

P
A

0
5

1
1

P
A

0
6

1
2

P
A

0
7

1
3

P
A

0
8

1
4

P
A

3
0

1
5

P
A

3
1

1
6

GNDANA17
ADVREF18
VDDANA19
VDDOUT20
VDDIN21
VDDCORE22
GND23
PB0224
PB0325
PB0426
PB0527
PA0928
PA1029
PA1130
PA1231
VDDIO32

V
D

D
IO

4
8

P
A

2
3

4
7

P
A

2
2

4
6

P
A

2
1

4
5

P
A

2
0

4
4

P
B

0
7

4
3

P
A

2
9

4
2

P
A

2
8

4
1

P
A

1
9

4
0

P
A

1
8

3
9

P
B

0
6

3
8

P
A

1
7

3
7

P
A

1
6

3
6

P
A

1
5

3
5

P
A

1
4

3
4

P
A

1
3

3
3

GND 49
DP 50
DM 51

VBUS 52
VDDPLL 53

PB08 54
PB09 55

VDDCORE 56
PB10 57
PB11 58
PA24 59
PA25 60
PA26 61
PA27 62

RESET_N 63
VDDIO 64

7

32059L–AVR32–01/2012

AT32UC3B

Figure 4-2. TQFP48 / QFN48 Pinout

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to

increase board level reliability.

4.2 Peripheral Multiplexing on I/O lines

4.2.1 Multiplexed signals

Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D (D is only avail-

able for UC3Bx512 parts). The following table define how the I/O lines on the peripherals A, B,C

or D are multiplexed by the GPIO.

G
N

D
1

T
C

K
2

P
A

0
0

3

P
A

0
1

4

P
A

0
2

5

V
D

D
C

O
R

E
6

P
A

0
3

7
P

A
0

4
8

P
A

0
5

9

P
A

0
6

1
0

P
A

0
7

1
1

P
A

0
8

1
2

GNDANA13
ADVREF14
VDDANA15
VDDOUT16
VDDIN17
VDDCORE18
GND19
PA0920
PA1021
PA1122
PA1223
VDDIO24

V
D

D
IO

3
6

P
A

2
3

3
5

P
A

2
2

3
4

P
A

2
1

3
3

P
A

2
0

3
2

P
A

1
9

3
1

P
A

1
8

3
0

P
A

1
7

2
9

P
A

1
6

2
8

P
A

1
5

2
7

P
A

1
4

2
6

P
A

1
3

2
5

GND 37
DP 38
DM 39

VBUS 40
VDDPLL 41

VDDCORE 42
PA24 43
PA25 44
PA26 45
PA27 46

RESET_N 47
VDDIO 48

Table 4-1. GPIO Controller Function Multiplexing

48-pin 64-pin PIN GPIO Pin Function A Function B Function C

Function D

(only for UC3Bx512)

3 3 PA00 GPIO 0

4 4 PA01 GPIO 1

5 5 PA02 GPIO 2

7 9 PA03 GPIO 3 ADC - AD[0] PM - GCLK[0] USBB - USB_ID ABDAC - DATA[0]

8 10 PA04 GPIO 4 ADC - AD[1] PM - GCLK[1] USBB - USB_VBOF ABDAC - DATAN[0]

9 11 PA05 GPIO 5 EIC - EXTINT[0] ADC - AD[2] USART1 - DCD ABDAC - DATA[1]

8

32059L–AVR32–01/2012

AT32UC3B

10 12 PA06 GPIO 6 EIC - EXTINT[1] ADC - AD[3] USART1 - DSR ABDAC - DATAN[1]

11 13 PA07 GPIO 7 PWM - PWM[0] ADC - AD[4] USART1 - DTR
SSC -

RX_FRAME_SYNC

12 14 PA08 GPIO 8 PWM - PWM[1] ADC - AD[5] USART1 - RI SSC - RX_CLOCK

20 28 PA09 GPIO 9 TWI - SCL SPI0 - NPCS[2] USART1 - CTS

21 29 PA10 GPIO 10 TWI - SDA SPI0 - NPCS[3] USART1 - RTS

22 30 PA11 GPIO 11 USART0 - RTS TC - A2 PWM - PWM[0] SSC - RX_DATA

23 31 PA12 GPIO 12 USART0 - CTS TC - B2 PWM - PWM[1] USART1 - TXD

25 33 PA13 GPIO 13 EIC - NMI PWM - PWM[2] USART0 - CLK SSC - RX_CLOCK

26 34 PA14 GPIO 14 SPI0 - MOSI PWM - PWM[3] EIC - EXTINT[2] PM - GCLK[2]

27 35 PA15 GPIO 15 SPI0 - SCK PWM - PWM[4] USART2 - CLK

28 36 PA16 GPIO 16 SPI0 - NPCS[0] TC - CLK1 PWM - PWM[4]

29 37 PA17 GPIO 17 SPI0 - NPCS[1] TC - CLK2 SPI0 - SCK USART1 - RXD

30 39 PA18 GPIO 18 USART0 - RXD PWM - PWM[5] SPI0 - MISO
SSC -

RX_FRAME_SYNC

31 40 PA19 GPIO 19 USART0 - TXD PWM - PWM[6] SPI0 - MOSI SSC - TX_CLOCK

32 44 PA20 GPIO 20 USART1 - CLK TC - CLK0 USART2 - RXD SSC - TX_DATA

33 45 PA21 GPIO 21 PWM - PWM[2] TC - A1 USART2 - TXD
SSC -

TX_FRAME_SYNC

34 46 PA22 GPIO 22 PWM - PWM[6] TC - B1 ADC - TRIGGER ABDAC - DATA[0]

35 47 PA23 GPIO 23 USART1 - TXD SPI0 - NPCS[1] EIC - EXTINT[3] PWM - PWM[0]

43 59 PA24 GPIO 24 USART1 - RXD SPI0 - NPCS[0] EIC - EXTINT[4] PWM - PWM[1]

44 60 PA25 GPIO 25 SPI0 - MISO PWM - PWM[3] EIC - EXTINT[5]

45 61 PA26 GPIO 26 USBB - USB_ID USART2 - TXD TC - A0 ABDAC - DATA[1]

46 62 PA27 GPIO 27 USBB - USB_VBOF USART2 - RXD TC - B0 ABDAC - DATAN[1]

41 PA28 GPIO 28 USART0 - CLK PWM - PWM[4] SPI0 - MISO ABDAC - DATAN[0]

42 PA29 GPIO 29 TC - CLK0 TC - CLK1 SPI0 - MOSI

15 PA30 GPIO 30 ADC - AD[6] EIC - SCAN[0] PM - GCLK[2]

16 PA31 GPIO 31 ADC - AD[7] EIC - SCAN[1] PWM - PWM[6]

6 PB00 GPIO 32 TC - A0 EIC - SCAN[2] USART2 - CTS

7 PB01 GPIO 33 TC - B0 EIC - SCAN[3] USART2 - RTS

24 PB02 GPIO 34 EIC - EXTINT[6] TC - A1 USART1 - TXD

25 PB03 GPIO 35 EIC - EXTINT[7] TC - B1 USART1 - RXD

26 PB04 GPIO 36 USART1 - CTS SPI0 - NPCS[3] TC - CLK2

27 PB05 GPIO 37 USART1 - RTS SPI0 - NPCS[2] PWM - PWM[5]

38 PB06 GPIO 38 SSC - RX_CLOCK USART1 - DCD EIC - SCAN[4] ABDAC - DATA[0]

43 PB07 GPIO 39 SSC - RX_DATA USART1 - DSR EIC - SCAN[5] ABDAC - DATAN[0]

54 PB08 GPIO 40
SSC -

RX_FRAME_SYNC
USART1 - DTR EIC - SCAN[6] ABDAC - DATA[1]

Table 4-1. GPIO Controller Function Multiplexing

9

32059L–AVR32–01/2012

AT32UC3B

4.2.2 JTAG Port Connections

If the JTAG is enabled, the JTAG will take control over a number of pins, irrespective of the I/O

Controller configuration.

4.2.3 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-

spectively of the PIO configuration. Two different OCD trace pin mappings are possible,

depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Tech-

nical Reference Manual.

4.2.4 Oscillator Pinout

The oscillators are not mapped to the normal A, B or C functions and their muxings are con-

trolled by registers in the Power Manager (PM). Please refer to the power manager chapter for

more information about this.

55 PB09 GPIO 41 SSC - TX_CLOCK USART1 - RI EIC - SCAN[7] ABDAC - DATAN[1]

57 PB10 GPIO 42 SSC - TX_DATA TC - A2 USART0 - RXD

58 PB11 GPIO 43
SSC -

TX_FRAME_SYNC
TC - B2 USART0 - TXD

Table 4-1. GPIO Controller Function Multiplexing

Table 4-2. JTAG Pinout

64QFP/QFN 48QFP/QFN Pin name JTAG pin

2 2 TCK TCK

3 3 PA00 TDI

4 4 PA01 TDO

5 5 PA02 TMS

Table 4-3. Nexus OCD AUX port connections

Pin AXS=0 AXS=1

EVTI_N PB05 PA14

MDO[5] PB04 PA08

MDO[4] PB03 PA07

MDO[3] PB02 PA06

MDO[2] PB01 PA05

MDO[1] PB00 PA04

MDO[0] PA31 PA03

EVTO_N PA15 PA15

MCKO PA30 PA13

MSEO[1] PB06 PA09

MSEO[0] PB07 PA10

10

32059L–AVR32–01/2012

AT32UC3B

4.3 High Drive Current GPIO

Ones of GPIOs can be used to drive twice current than other GPIO capability (see Electrical

Characteristics section).

5. Signals Description
The following table gives details on the signal name classified by peripheral.

Table 4-4. Oscillator pinout

QFP48 pin QFP64 pin Pad Oscillator pin

30 39 PA18 XIN0

41 PA28 XIN1

22 30 PA11 XIN32

31 40 PA19 XOUT0

42 PA29 XOUT1

23 31 PA12 XOUT32

Table 4-5. High Drive Current GPIO

GPIO Name

PA20

PA21

PA22

PA23

Table 5-1. Signal Description List

Signal Name Function Type

Active

Level Comments

Power

VDDPLL PLL Power Supply
Power

Input
1.65V to 1.95 V

VDDCORE Core Power Supply
Power

Input
1.65V to 1.95 V

VDDIO I/O Power Supply
Power

Input
3.0V to 3.6V

VDDANA Analog Power Supply
Power

Input
3.0V to 3.6V

VDDIN Voltage Regulator Input Supply
Power

Input
3.0V to 3.6V

11

32059L–AVR32–01/2012

AT32UC3B

VDDOUT Voltage Regulator Output
Power

Output
1.65V to 1.95 V

GNDANA Analog Ground Ground

GND Ground Ground

Clocks, Oscillators, and PLL’s

XIN0, XIN1, XIN32 Crystal 0, 1, 32 Input Analog

XOUT0, XOUT1,

XOUT32
Crystal 0, 1, 32 Output Analog

JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

Auxiliary Port - AUX

MCKO Trace Data Output Clock Output

MDO0 - MDO5 Trace Data Output Output

MSEO0 - MSEO1 Trace Frame Control Output

EVTI_N Event In Output Low

EVTO_N Event Out Output Low

Power Manager - PM

GCLK0 - GCLK2 Generic Clock Pins Output

RESET_N Reset Pin Input Low

External Interrupt Controller - EIC

EXTINT0 - EXTINT7 External Interrupt Pins Input

KPS0 - KPS7 Keypad Scan Pins Output

NMI Non-Maskable Interrupt Pin Input Low

General Purpose I/O pin- GPIOA, GPIOB

PA0 - PA31 Parallel I/O Controller GPIOA I/O

PB0 - PB11 Parallel I/O Controller GPIOB I/O

Table 5-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level Comments

12

32059L–AVR32–01/2012

AT32UC3B

Serial Peripheral Interface - SPI0

MISO Master In Slave Out I/O

MOSI Master Out Slave In I/O

NPCS0 - NPCS3 SPI Peripheral Chip Select I/O Low

SCK Clock Output

Synchronous Serial Controller - SSC

RX_CLOCK SSC Receive Clock I/O

RX_DATA SSC Receive Data Input

RX_FRAME_SYNC SSC Receive Frame Sync I/O

TX_CLOCK SSC Transmit Clock I/O

TX_DATA SSC Transmit Data Output

TX_FRAME_SYNC SSC Transmit Frame Sync I/O

Timer/Counter - TIMER

A0 Channel 0 Line A I/O

A1 Channel 1 Line A I/O

A2 Channel 2 Line A I/O

B0 Channel 0 Line B I/O

B1 Channel 1 Line B I/O

B2 Channel 2 Line B I/O

CLK0 Channel 0 External Clock Input Input

CLK1 Channel 1 External Clock Input Input

CLK2 Channel 2 External Clock Input Input

Two-wire Interface - TWI

SCL Serial Clock I/O

SDA Serial Data I/O

Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2

CLK Clock I/O

CTS Clear To Send Input

Table 5-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level Comments

13

32059L–AVR32–01/2012

AT32UC3B

5.1 JTAG pins

TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has

no pull-up resistor. These 3 pins can be used as GPIO-pins. At reset state, these pins are in

GPIO mode.

TCK pin cannot be used as GPIO pin. JTAG interface is enabled when TCK pin is tied low.

DCD Data Carrier Detect Only USART1

DSR Data Set Ready Only USART1

DTR Data Terminal Ready Only USART1

RI Ring Indicator Only USART1

RTS Request To Send Output

RXD Receive Data Input

TXD Transmit Data Output

Analog to Digital Converter - ADC

AD0 - AD7 Analog input pins
Analog

input

ADVREF Analog positive reference voltage input
Analog

input
2.6 to 3.6V

Audio Bitstream DAC - ABDAC

DATA0 - DATA1 D/A Data out Output

DATAN0 - DATAN1 D/A Data inverted out Output

Pulse Width Modulator - PWM

PWM0 - PWM6 PWM Output Pins Output

Universal Serial Bus Device - USBB

DDM USB Device Port Data - Analog

DDP USB Device Port Data + Analog

VBUS
USB VBUS Monitor and Embedded Host

Negociation

Analog

Input

USBID ID Pin of the USB Bus Input

USB_VBOF USB VBUS On/off: bus power control port output

Table 5-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level Comments

14

32059L–AVR32–01/2012

AT32UC3B

5.2 RESET_N pin

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As

the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case

no reset from the system needs to be applied to the product.

5.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and

inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the

pins have the same characteristics as GPIO pins.

5.4 GPIO pins

All the I/O lines integrate a pull-up resistor. Programming of this pull-up resistor is performed

independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as

inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset

Value” of the GPIO Controller user interface table.

5.5 High drive pins

The four pins PA20, PA21, PA22, PA23 have high drive output capabilities.

5.6 Power Considerations

5.6.1 Power Supplies

The AT32UC3B has several types of power supply pins:

� VDDIO: Powers I/O lines. Voltage is 3.3V nominal.

� VDDANA: Powers the ADC Voltage is 3.3V nominal.

� VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.

� VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.

� VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO and VDDPLL. The ground pin for

VDDANA is GNDANA.

Refer to Electrical Characteristics section for power consumption on the various supply pins.

The main requirement for power supplies connection is to respect a star topology for all electrical

connection.

15

32059L–AVR32–01/2012

AT32UC3B

Figure 5-1. Power Supply

5.6.2 Voltage Regulator

5.6.2.1 Single Power Supply

The AT32UC3B embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes

its input voltage from VDDIN, and supplies the output voltage on VDDOUT that should be exter-

nally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability

and reduce source voltage drop. Two input decoupling capacitors must be placed close to the

chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-

lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and

GND as close to the chip as possible

Figure 5-2. Supply Decoupling

3.3V VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

3.3V

1.8

V

VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

Single Power Supply
Dual Power Supply

1.8V

Regulator1.8V

Regulator

3.3V

1.8V

VDDIN

VDDOUT

1.8V

Regulator

C
IN1

C
OUT1

C
OUT2

C
IN2

16

32059L–AVR32–01/2012

AT32UC3B

Refer to Section 9.3 on page 38 for decoupling capacitors values and regulator characteristics.

For decoupling recommendations for VDDIO, VDDANA, VDDCORE and VDDPLL, please refer

to the Schematic checklist.

5.6.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent

from leakage current.

To avoid over consumption during the power up sequence, VDDIO and VDDCORE voltage dif-

ference needs to stay in the range given Figure 5-3.

Figure 5-3. VDDIO versus VDDCORE during power up sequence

5.6.3 Analog-to-Digital Converter (ADC) reference.

The ADC reference (ADVREF) must be provided from an external source. Two decoupling

capacitors must be used to insure proper decoupling.

Figure 5-4. ADVREF Decoupling

Refer to Section 9.4 on page 38 for decoupling capacitors values and electrical characteristics.

In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra

consumption.

Extra consumption on VDDCORE

VDDCORE (V)

Extra consumption on VDDIO

V
D

D
IO

 (
V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1.5

1

2

2.5

3

3.5

4

ADVREF

CC
VREF1VREF2

3.3V

17

32059L–AVR32–01/2012

AT32UC3B

6. Processor and Architecture
Rev: 1.0.0.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the

AVR32 architecture. A summary of the programming model, instruction set, and MPU is pre-

sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical

Reference Manual.

6.1 Features
� 32-bit load/store AVR32A RISC architecture

– 15 general-purpose 32-bit registers

– 32-bit Stack Pointer, Program Counter and Link Register reside in register file

– Fully orthogonal instruction set

– Privileged and unprivileged modes enabling efficient and secure Operating Systems

– Innovative instruction set together with variable instruction length ensuring industry leading

code density

– DSP extention with saturating arithmetic, and a wide variety of multiply instructions

� 3-stage pipeline allows one instruction per clock cycle for most instructions

– Byte, halfword, word and double word memory access

– Multiple interrupt priority levels

� MPU allows for operating systems with memory protection

6.2 AVR32 Architecture

AVR32 is a high-performance 32-bit RISC microprocessor architecture, designed for cost-sensi-

tive embedded applications, with particular emphasis on low power consumption and high code

density. In addition, the instruction set architecture has been tuned to allow a variety of micro-

architectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance

processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-

piled and analyzed to achieve the best code density in its class. In addition to lowering the

memory requirements, a compact code size also contributes to the core’s low power characteris-

tics. The processor supports byte and halfword data types without penalty in code size and

performance.

Memory load and store operations are provided for byte, halfword, word, and double word data

with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely

linked to the architecture and is able to exploit code optimization features, both for size and

speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.

As an example, instructions with immediates often have a compact format with a smaller imme-

diate, and an extended format with a larger immediate. In this way, the compiler is able to use

the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-

pact format with two operands as well as an extended format with three operands. The larger

format increases performance, allowing an addition and a data move in the same instruction in a

single cycle. Load and store instructions have several different formats in order to reduce code

size and speed up execution.

18

32059L–AVR32–01/2012

AT32UC3B

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the

Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values

from function calls and is used implicitly by some instructions.

6.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an

advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration

hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,

one High Speed Bus master for data access, and one High Speed Bus slave interface allowing

other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the

CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.

Also, power consumption is reduced by not needing a full High Speed Bus access for memory

accesses. A dedicated data RAM interface is provided for communicating with the internal data

RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,

such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the

LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the

CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory

range allocated to it, and data transfers are performed using regular load and store instructions.

Details on which devices that are mapped into the local bus space is given in the Memories

chapter of this data sheet.

Figure 6-1 on page 19 displays the contents of AVR32UC.

19

32059L–AVR32–01/2012

AT32UC3B

Figure 6-1. Overview of the AVR32UC CPU

6.3.1 Pipeline Overview

AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-

tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic

(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to

complete, and in this case, the instruction resides in the ID and EX stages for the required num-

ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is

required, and no data dependencies can arise in the pipeline.

Figure 6-2 on page 20 shows an overview of the AVR32UC pipeline stages.

AVR32UC CPU pipeline

Instruction memory controller

High

Speed

Bus

master

MPU

H
ig

h
 S

p
e
e

d
 B

u
s

H
ig

h
 S

p
e
e

d
 B

u
s

OCD

system

O
C

D
 i
n

te
rf

a
c
e

In
te

rr
u

p
t
c
o
n
tr

o
lle

r
in

te
rf

a
c
e

High

Speed

Bus slave

H
ig

h
 S

p
e
e

d
 B

u
s

D
a
ta

 R
A

M
 i
n

te
rf

a
c
e

High Speed Bus master

Power/

Reset

control

R
e
s
e
t
in

te
rf

a
c
e

CPU Local

Bus

master

C
P

U
 L

o
c
a

l
B

u
s

Data memory controller

20

32059L–AVR32–01/2012

AT32UC3B

Figure 6-2. The AVR32UC Pipeline

6.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-

geted at cost-sensit ive, lower-end applications l ike smaller microcontrollers. This

microarchitecture does not provide dedicated hardware registers for shadowing of register file

registers in interrupt contexts. Additionally, it does not provide hardware registers for the return

address registers and return status registers. Instead, all this information is stored on the system

stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These

registers are pushed regardless of the priority level of the pending interrupt. The return address

and status register are also automatically pushed to stack. The interrupt handler can therefore

use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are

restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.

Executing the rete or rets instruction at the completion of an exception or system call will pop

this status register and continue execution at the popped return address.

6.3.3 Java Support

AVR32UC does not provide Java hardware acceleration.

6.3.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is

attempted to an illegal memory address, the access is aborted and an exception is taken. The

MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

6.3.5 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is

able to perform word-aligned st.d and ld.d. Any other unaligned memory access will cause an

address exception. Doubleword-sized accesses with word-aligned pointers will automatically be

performed as two word-sized accesses.

IF ID ALU

MUL

Regf ile

w rite

Prefetch unit Decode unit

ALU unit

Multiply unit

Load-store

unit
LS

Regf ile

Read

21

32059L–AVR32–01/2012

AT32UC3B

The following table shows the instructions with support for unaligned addresses. All other

instructions require aligned addresses.

6.3.6 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented

Instruction Exception if executed:

� All SIMD instructions

� All coprocessor instructions if no coprocessors are present

� retj, incjosp, popjc, pushjc

� tlbr, tlbs, tlbw

� cache

6.3.7 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist.

The Architecture Revision field in the CONFIG0 system register identifies which architecture

revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled

for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Table 6-1. Instructions with Unaligned Reference Support

Instruction Supported alignment

ld.d Word

st.d Word

22

32059L–AVR32–01/2012

AT32UC3B

6.4 Programming Model

6.4.1 Register File Configuration

The AVR32UC register file is shown below.

Figure 6-3. The AVR32UC Register File

6.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 6-4 on

page 22 and Figure 6-5 on page 23. The lower word contains the C, Z, N, V, and Q condition

code flags and the R, T, and L bits, while the upper halfword contains information about the

mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 6-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R3

R1

R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

INT0

SP_APP SP_SYS

R12

R11

R9

R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SYS

LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SYS

LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SYS

LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SYS

LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SYS

LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SYS

LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC

INT1PC

SMPC

R7

R5

R6

R4

R11

R9

R10

R8

R3

R1

R2

R0

SP_SEC

LR

SS_STATUS

SS_ADRF

SS_ADRR

SS_ADR0

SS_ADR1

SS_SP_SYS

SS_SP_APP

SS_RAR

SS_RSR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask

Interrupt Level 1 Mask

Interrupt Level 3 Mask

Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2
LC

1

Initial value

Bit nameI1M

Mode Bit 0

Mode Bit 1

-

Mode Bit 2

Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

-

23

32059L–AVR32–01/2012

AT32UC3B

Figure 6-5. The Status Register Low Halfword

6.4.3 Processor States

6.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 6-2 on

page 23.

Mode changes can be made under software control, or can be caused by external interrupts or

exception processing. A mode can be interrupted by a higher priority mode, but never by one

with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the

application mode. The programs executed in this mode are restricted from executing certain

instructions. Furthermore, most system registers together with the upper halfword of the status

register cannot be accessed. Protected memory areas are also not available. All other operating

modes are privileged and are collectively called System Modes. They have full access to all priv-

ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

6.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor rou-

tines that can read out and alter system information for use during application development. This

implies that all system and application registers, including the status registers and program

counters, are accessible in debug state. The privileged instructions are also available.

Bit 15 Bit 0

Reserved

Carry

Zero

Sign

0 0 0 00000000000

- - --T- Bit name

Initial value0 0

L Q V N Z C-

Overflow

Saturation

- - -

Lock

Reserved

Scratch

Table 6-2. Overview of Execution Modes, their Priorities and Privilege Levels.

Priority Mode Security Description

1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode

2 Exception Privileged Execute exceptions

3 Interrupt 3 Privileged General purpose interrupt mode

4 Interrupt 2 Privileged General purpose interrupt mode

5 Interrupt 1 Privileged General purpose interrupt mode

6 Interrupt 0 Privileged General purpose interrupt mode

N/A Supervisor Privileged Runs supervisor calls

N/A Application Unprivileged Normal program execution mode

24

32059L–AVR32–01/2012

AT32UC3B

All interrupt levels are by default disabled when debug state is entered, but they can individually

be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

6.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible

using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-

fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is

responsible for maintaining correct sequencing of any instructions following a mtsr instruction.

For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 6-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INT0 Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INT0 Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LV0 Unused in AVR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

25

32059L–AVR32–01/2012

AT32UC3B

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVR32UC

28 112 JAVA_LV5 Unused in AVR32UC

29 116 JAVA_LV6 Unused in AVR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIG0 Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNT0 Unused in AVR32UC

77 308 PCNT1 Unused in AVR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUAR0 MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUAR3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUAR5 MPU Address Register region 5

86 344 MPUAR6 MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSR0 MPU Privilege Select Register region 0

89 356 MPUPSR1 MPU Privilege Select Register region 1

90 360 MPUPSR2 MPU Privilege Select Register region 2

91 364 MPUPSR3 MPU Privilege Select Register region 3

Table 6-3. System Registers (Continued)

Reg # Address Name Function

26

32059L–AVR32–01/2012

AT32UC3B

6.5 Exceptions and Interrupts

AVR32UC incorporates a powerful exception handling scheme. The different exception sources,

like Illegal Op-code and external interrupt requests, have different priority levels, ensuring a well-

defined behavior when multiple exceptions are received simultaneously. Additionally, pending

exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-

ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is

passed to an event handler at an address specified in Table 6-4 on page 29. Most of the han-

dlers are placed sequentially in the code space starting at the address specified by EVBA, with

four bytes between each handler. This gives ample space for a jump instruction to be placed

there, jumping to the event routine itself. A few critical handlers have larger spacing between

them, allowing the entire event routine to be placed directly at the address specified by the

EVBA-relative offset generated by hardware. All external interrupt sources have autovectored

interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify

the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-

ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as

(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception

code segments must be set up appropriately. The same mechanisms are used to service all dif-

ferent types of events, including external interrupt requests, yielding a uniform event handling

scheme.

An interrupt controller does the priority handling of the external interrupts and provides the

autovector offset to the CPU.

6.5.1 System Stack Issues

Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,

SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event

code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,

since the timing of accesses to this memory section is both fast and deterministic.

92 368 MPUPSR4 MPU Privilege Select Register region 4

93 372 MPUPSR5 MPU Privilege Select Register region 5

94 376 MPUPSR6 MPU Privilege Select Register region 6

95 380 MPUPSR7 MPU Privilege Select Register region 7

96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC

100 400 MPUAPRA MPU Access Permission Register A

101 404 MPUAPRB MPU Access Permission Register B

102 408 MPUCR MPU Control Register

103-191 448-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

Table 6-3. System Registers (Continued)

Reg # Address Name Function

27

32059L–AVR32–01/2012

AT32UC3B

The user must also make sure that the system stack is large enough so that any event is able to

push the required registers to stack. If the system stack is full, and an event occurs, the system

will enter an UNDEFINED state.

6.5.2 Exceptions and Interrupt Requests

When an event other than scall or debug request is received by the core, the following actions

are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM,

and GM bits in the Status Register are used to mask different events. Not all events can

be masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and

Bus Error) can not be masked. When an event is accepted, hardware automatically

sets the mask bits corresponding to all sources with equal or lower priority. This inhibits

acceptance of other events of the same or lower priority, except for the critical events

listed above. Software may choose to clear some or all of these bits after saving the

necessary state if other priority schemes are desired. It is the event source’s respons-

ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current

context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-

isters R8-R12 and LR are also automatically stored to stack. Storing the Status

Register ensures that the core is returned to the previous execution mode when the

current event handling is completed. When exceptions occur, both the EM and GM bits

are set, and the application may manually enable nested exceptions if desired by clear-

ing the appropriate bit. Each exception handler has a dedicated handler address, and

this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-

ter file bank is selected. The address of the event handler, as shown in Table 6-4, is

loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register

and Return Address Register are popped from the system stack and restored to the Status Reg-

ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,

registers R8-R12 and LR are also popped from the system stack. The restored Status Register

contains information allowing the core to resume operation in the previous execution mode. This

concludes the event handling.

6.5.3 Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is

designed so that privileged routines can be called from any context. This facilitates sharing of

code between different execution modes. The scall mechanism is designed so that a minimal

execution cycle overhead is experienced when performing supervisor routine calls from time-

critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-

iour is detailed in the instruction set reference. In order to allow the scall routine to return to the

correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC

CPU, scall and rets uses the system stack to store the return address and the status register.

6.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by

the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

28

32059L–AVR32–01/2012

AT32UC3B

status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the

Debug Exception handler. By default, Debug mode executes in the exception context, but with

dedicated Return Address Register and Return Status Register. These dedicated registers

remove the need for storing this data to the system stack, thereby improving debuggability. The

mode bits in the status register can freely be manipulated in Debug mode, to observe registers

in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

6.5.5 Entry Points for Events

Several different event handler entry points exists. In AVR32UC, the reset address is

0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-

dler can be placed. This speeds up execution by removing the need for a jump instruction placed

at the program address jumped to by the event hardware. All other exceptions have a dedicated

event routine entry point located relative to EVBA. The handler routine address identifies the

exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.

ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of

the entries in the MPU. TLB multiple hit exception indicates that an access address did map to

multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This

autovector offset is specified by an external Interrupt Controller. The programmer must make

sure that none of the autovector offsets interfere with the placement of other code. The autovec-

tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-

siderations, the event handlers should be located in non-writeable flash memory, or optionally in

a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority

ordering is presented in Table 6-4. If events occur on several instructions at different locations in

the pipeline, the events on the oldest instruction are always handled before any events on any

younger instruction, even if the younger instruction has events of higher priority than the oldest

instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later

than A.

The addresses and priority of simultaneous events are shown in Table 6-4. Some of the excep-

tions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

29

32059L–AVR32–01/2012

AT32UC3B

Table 6-4. Priority and Handler Addresses for Events

Priority Handler Address Name Event source Stored Return Address

1 0x8000_0000 Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit MPU

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address CPU PC of offending instruction

13 EVBA+0x50 ITLB Miss MPU

14 EVBA+0x18 ITLB Protection MPU PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point UNUSED

20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction

23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) MPU

25 EVBA+0x70 DTLB Miss (Write) MPU

26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction

28 EVBA+0x44 DTLB Modified UNUSED

30

32059L–AVR32–01/2012

AT32UC3B

6.6 Module Configuration

All AT32UC3B parts do not implement the same CPU and Architecture Revision.

Table 6-5. CPU and Architecture Revision

Part Name Architecture Revision

AT32UC3Bx512 2

AT32UC3Bx256 1

AT32UC3Bx128 1

AT32UC3Bx64 1

31

32059L–AVR32–01/2012

AT32UC3B

7. Memories

7.1 Embedded Memories
� Internal High-Speed Flash

– 512KBytes (AT32UC3B0512, AT32UC3B1512)

– 256 KBytes (AT32UC3B0256, AT32UC3B1256)

– 128 KBytes (AT32UC3B0128, AT32UC3B1128)

– 64 KBytes (AT32UC3B064, AT32UC3B164)

� - 0 Wait State Access at up to 30 MHz in Worst Case Conditions

� - 1 Wait State Access at up to 60 MHz in Worst Case Conditions

� - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations,

hiding penalty of 1 wait state access

� - 100 000 Write Cycles, 15-year Data Retention Capability

� - 4 ms Page Programming Time, 8 ms Chip Erase Time

� - Sector Lock Capabilities, Bootloader Protection, Security Bit

� - 32 Fuses, Erased During Chip Erase

� - User Page For Data To Be Preserved During Chip Erase

� Internal High-Speed SRAM, Single-cycle access at full speed

– 96KBytes ((AT32UC3B0512, AT32UC3B1512)

– 32KBytes (AT32UC3B0256, AT32UC3B0128, AT32UC3B1256 and AT32UC3B1128)

– 16KBytes (AT32UC3B064 and AT32UC3B164)

7.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they

are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented

translation, as described in the AVR32UC Technical Architecture Manual. The 32-bit physical

address space is mapped as follows:

Table 7-1. AT32UC3B Physical Memory Map

Device
Embedded

SRAM

Embedded

Flash
USB Data

HSB-PB

Bridge A

HSB-PB

Bridge B

Start Address 0x0000_0000 0x8000_0000 0xD000_0000 0xFFFF_0000 0xFFFE_0000

Size

AT32UC3B0512

AT32UC3B1512
96 Kbytes 512 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B0256

AT32UC3B1256
32 Kbytes 256 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B0128

AT32UC3B1128
32 Kbytes 128 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

AT32UC3B064

AT32UC3B164
16 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

32

32059L–AVR32–01/2012

AT32UC3B

7.3 Peripheral Address Map

Table 7-2. Peripheral Address Mapping

Address Peripheral Name

0xFFFE0000
USB USB 2.0 Interface - USB

0xFFFE1000
HMATRIX HSB Matrix - HMATRIX

0xFFFE1400
HFLASHC Flash Controller - HFLASHC

0xFFFF0000
PDCA Peripheral DMA Controller - PDCA

0xFFFF0800
INTC Interrupt controller - INTC

0xFFFF0C00
PM Power Manager - PM

0xFFFF0D00
RTC Real Time Counter - RTC

0xFFFF0D30
WDT Watchdog Timer - WDT

0xFFFF0D80
EIM External Interrupt Controller - EIM

0xFFFF1000
GPIO General Purpose Input/Output Controller - GPIO

0xFFFF1400
USART0

Universal Synchronous/Asynchronous

Receiver/Transmitter - USART0

0xFFFF1800
USART1

Universal Synchronous/Asynchronous

Receiver/Transmitter - USART1

0xFFFF1C00
USART2

Universal Synchronous/Asynchronous

Receiver/Transmitter - USART2

0xFFFF2400
SPI0 Serial Peripheral Interface - SPI0

0xFFFF2C00
TWI Two-wire Interface - TWI

0xFFFF3000
PWM Pulse Width Modulation Controller - PWM

0xFFFF3400
SSC Synchronous Serial Controller - SSC

0xFFFF3800
TC Timer/Counter - TC

33

32059L–AVR32–01/2012

AT32UC3B

7.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to

being mapped on the Peripheral Bus. These registers can therefore be reached both by

accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since

the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at

CPU speed, one write or read operation can be performed per clock cycle to the local bus-

mapped GPIO registers.

The following GPIO registers are mapped on the local bus:

0xFFFF3C00
ADC Analog to Digital Converter - ADC

0xFFFF4000
ABDAC Audio Bitstream DAC - ABDAC

Table 7-2. Peripheral Address Mapping

Table 7-3. Local bus mapped GPIO registers

Port Register Mode

Local Bus

Address Access

0 Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only

SET 0x4000_0044 Write-only

CLEAR 0x4000_0048 Write-only

TOGGLE 0x4000_004C Write-only

Output Value Register (OVR) WRITE 0x4000_0050 Write-only

SET 0x4000_0054 Write-only

CLEAR 0x4000_0058 Write-only

TOGGLE 0x4000_005C Write-only

Pin Value Register (PVR) - 0x4000_0060 Read-only

1 Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only

SET 0x4000_0144 Write-only

CLEAR 0x4000_0148 Write-only

TOGGLE 0x4000_014C Write-only

Output Value Register (OVR) WRITE 0x4000_0150 Write-only

SET 0x4000_0154 Write-only

CLEAR 0x4000_0158 Write-only

TOGGLE 0x4000_015C Write-only

Pin Value Register (PVR) - 0x4000_0160 Read-only

34

32059L–AVR32–01/2012

AT32UC3B

8. Boot Sequence
This chapter summarizes the boot sequence of the AT32UC3B. The behaviour after power-up is

controlled by the Power Manager. For specific details, refer to section Power Manager (PM).

8.1 Starting of clocks

After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the

power has stabilized throughout the device. Once the power has stabilized, the device will use

the internal RC Oscillator as clock source.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have

a divided frequency, all parts of the system recieves a clock with the same frequency as the

internal RC Oscillator.

8.2 Fetching of initial instructions

After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset

address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The code read from the internal Flash is free to configure the system to use for example the

PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the

clocks to unused peripherals.

When powering up the device, there may be a delay before the voltage has stabilized, depend-

ing on the rise time of the supply used. The CPU can start executing code as soon as the supply

is above the POR threshold, and before the supply is stable. Before switching to a high-speed

clock source, the user should use the BOD to make sure the VDDCORE is above the minimum

level.

35

32059L–AVR32–01/2012

AT32UC3B

9. Electrical Characteristics

9.1 Absolute Maximum Ratings*

Operating Temperature.................................... -40°C to +85°C *NOTICE: Stresses beyond those listed under “Absolute

Maximum Ratings” may cause permanent dam-

age to the device. This is a stress rating only and

functional operation of the device at these or

other conditions beyond those indicated in the

operational sections of this specification is not

implied. Exposure to absolute maximum rating

conditions for extended periods may affect

device reliability.

Storage Temperature -60°C to +150°C

Voltage on GPIO Pins

with respect to Ground for TCK, RESET_N, PA03, PA04,

PA05, PA06, PA07, PA08, PA11, PA12, PA18, PA19, PA28,

PA29, PA30, PA31 ... -0.3 to 3.6V

Voltage on GPIO Pins

with respect to Ground except for TCK, RESET_N, PA03,

PA04, PA05, PA06, PA07, PA08, PA11, PA12, PA18, PA19,

PA28, PA29, PA30, PA31....................................... -0.3 to 5.5V

Maximum Operating Voltage (VDDCORE, VDDPLL) 1.95V

Maximum Operating Voltage (VDDIO,VDDIN,VDDANA) . 3.6V

Total DC Output Current on all I/O Pin

for 48-pin package... 200 mA

for 64-pin package... 265 mA

36

32059L–AVR32–01/2012

AT32UC3B

9.2 DC Characteristics

The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-

ified and are certified for a junction temperature up to TJ = 100°C.

Table 9-1. DC Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VVDDCORE DC Supply Core 1.65 1.95 V

VVDDPLL DC Supply PLL 1.65 1.95 V

VVDDIO DC Supply Peripheral I/Os 3.0 3.6 V

VIL Input Low-level Voltage -0.3 +0.8 V

VIH Input High-level Voltage

AT32UC3B064

AT32UC3B0128

AT32UC3B0256

AT32UC3B164

AT32UC3B1128

AT32UC3B1256

All I/O pins except TCK,

RESET_N, PA03, PA04,

PA05, PA06, PA07, PA08,

PA11, PA12, PA18, PA19,

PA28, PA29, PA30, PA31

2.0 5.5 V

TCK, RESET_N, PA03,

PA04, PA05, PA06, PA07,

PA08, PA11, PA12, PA18,

PA19, PA28, PA29, PA30,

PA31

2.0 3.6 V

AT32UC3B0512

AT32UC3B1512

All I/O pins except TCK,

RESET_N, PA03, PA04,

PA05, PA06, PA07, PA08,

PA11, PA12, PA18, PA19,

PA28, PA29, PA30, PA31

2.0 5.5 V

TCK, RESET_N 2.5 3.6 V

PA03, PA04, PA05, PA06,

PA07, PA08, PA11, PA12,

PA18, PA19, PA28, PA29,

PA30, PA31

2.0 3.6 V

VOL Output Low-level Voltage

IOL= -4mA for all I/O except PA20, PA21, PA22,

PA23
0.4 V

IOL= -8mA for PA20, PA21, PA22, PA23 0.4 V

VOH Output High-level Voltage

IOL= -4mA for all I/O except PA20, PA21, PA22,

PA23

VVDDIO

-0.4
V

IOL= -8mA for PA20, PA21, PA22, PA23
VVDDIO

-0.4
V

IOL Output Low-level Current
All I/O pins except PA20, PA21, PA22, PA23 -4 mA

PA20, PA21, PA22, PA23 -8 mA

IOH Output High-level Current

All I/O pins except for PA20, PA21, PA22,

PA23
4 mA

PA20, PA21, PA22, PA23 8 mA

ILEAK Input Leakage Current Pullup resistors disabled 1 µA

37

32059L–AVR32–01/2012

AT32UC3B

CIN Input Capacitance

QFP64 7 pF

QFP48 7 pF

QFN64 7 pF

QFN48 7 pF

RPULLUP Pull-up Resistance

AT32UC3B064

AT32UC3B0128

AT32UC3B0256

AT32UC3B164

AT32UC3B1128

AT32UC3B1256

All I/O pins except

RESET_N, TCK, TDI,

TMS pins

13 19 25 KΩ

RESET_N pin, TCK, TDI,

TMS pins
5 12 25 KΩ

AT32UC3B0512

AT32UC3B1512

All I/O pins except PA20,

PA21, PA22, PA23,

RESET_N, TCK, TDI,

TMS pins

10 15 20 KΩ

PA20, PA21, PA22, PA23 5 7.5 12 KΩ

RESET_N pin, TCK, TDI,

TMS pins
5 10 25 KΩ

ISC Static Current

AT32UC3B064

AT32UC3B0128

AT32UC3B0256

AT32UC3B164

AT32UC3B1128

AT32UC3B1256

On VVDDCORE =

1.8V,

device in static

mode

TA =

25°C
6 µA

All inputs driven

including JTAG;

RESET_N=1

TA =

85°C
42.5 µA

AT32UC3B0512

AT32UC3B1512

On VVDDCORE =

1.8V,

device in static

mode

TA =

25°C
7.5 µA

All inputs driven

including JTAG;

RESET_N=1

TA =

85°C
39 µA

Table 9-1. DC Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

38

32059L–AVR32–01/2012

AT32UC3B

9.3 Regulator Characteristics

9.4 Analog Characteristics

9.4.1 ADC Reference

9.4.2 BOD

Table 9-6 describes the values of the BODLEVEL field in the flash FGPFR register.

Table 9-2. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VVDDIN Supply voltage (input) 3 3.3 3.6 V

VVDDOUT Supply voltage (output) 1.70 1.8 1.85 V

IOUT Maximum DC output current VVDDIN = 3.3V 100 mA

ISCR Static Current of internal regulator
Low Power mode (stop, deep stop or

static) at TA = 25°C
10 µA

Table 9-3. Decoupling Requirements

Symbol Parameter Conditions Typ. Technology Unit

CIN1 Input Regulator Capacitor 1 1 NPO nF

CIN2 Input Regulator Capacitor 2 4.7 X7R µF

COUT1 Output Regulator Capacitor 1 470 NPO pF

COUT2 Output Regulator Capacitor 2 2.2 X7R µF

Table 9-4. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VADVREF Analog voltage reference (input) 2.6 3.6 V

Table 9-5. Decoupling Requirements

Symbol Parameter Conditions Typ. Technology Unit

CVREF1 Voltage reference Capacitor 1 10 NPO nF

CVREF2 Voltage reference Capacitor 2 1 NPO uF

Table 9-6. BOD Level Values

Symbol Parameter Value Conditions Min. Typ. Max. Unit

BODLEVEL

00 0000b 1.44 V

01 0111b 1.52 V

01 1111b 1.61 V

10 0111b 1.71 V

39

32059L–AVR32–01/2012

AT32UC3B

9.4.3 Reset Sequence

Table 9-7. BOD Timing

Symbol Parameter Conditions Min. Typ. Max. Unit

TBOD

Minimum time with VDDCORE <

VBOD to detect power failure
Falling VDDCORE from 1.8V to 1.1V 300 800 ns

Table 9-8. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VDDRR

VDDCORE rise rate to ensure power-

on-reset
2.5 V/ms

VDDFR

VDDCORE fall rate to ensure power-

on-reset
0.01 400 V/ms

VPOR+

Rising threshold voltage: voltage up

to which device is kept under reset by

POR on rising VDDCORE

Rising VDDCORE:

VRESTART -> VPOR+

1.4 1.55 1.65 V

VPOR-

Falling threshold voltage: voltage

when POR resets device on falling

VDDCORE

Falling VDDCORE:

1.8V -> VPOR+

1.2 1.3 1.4 V

VRESTART

On falling VDDCORE, voltage must

go down to this value before supply

can rise again to ensure reset signal

is released at VPOR+

Falling VDDCORE:

1.8V -> VRESTART

-0.1 0.5 V

TPOR

Minimum time with VDDCORE <

VPOR-

Falling VDDCORE:

1.8V -> 1.1V
15 µs

TRST

Time for reset signal to be propagated

to system
200 400 µs

TSSU1

Time for Cold System Startup: Time

for CPU to fetch its first instruction

(RCosc not calibrated)

480 960 µs

TSSU2

Time for Hot System Startup: Time for

CPU to fetch its first instruction

(RCosc calibrated)

420 µs

40

32059L–AVR32–01/2012

AT32UC3B

Figure 9-1. MCU Cold Start-Up RESET_N tied to VDDIN

Figure 9-2. MCU Cold Start-Up RESET_N Externally Driven

Figure 9-3. MCU Hot Start-Up

In dual supply configuration, the power up sequence must be carefully managed to ensure a

safe startup of the device in all conditions.

The power up sequence must ensure that the internal logic is safely powered when the internal

reset (Power On Reset) is released and that the internal Flash logic is safely powered when the

CPU fetch the first instructions.

VPOR+
VDDCORE

Internal

MCU Reset

TSSU1

Internal

POR Reset

VPOR-

TPOR TRST

RESET_N

VRESTART

VPOR+
VDDCORE

Internal

MCU Reset

TSSU1

Internal

POR Reset

VPOR-

TPOR TRST

RESET_N

VRESTART

VDDCORE

Internal

MCU Reset

TSSU2

RESET_N

BOD Reset

WDT Reset

41

32059L–AVR32–01/2012

AT32UC3B

Therefore VDDCORE rise rate (VDDRR) must be equal or superior to 2.5V/ms and VDDIO must

reach VDDIO mini value before 500 us (< TRST + TSSU1) after VDDCORE has reached VPOR+

min value.

Figure 9-4. Dual Supply Configuration

9.4.4 RESET_N Characteristics

V
D

D
R

R

2
.5

V
/m

s
m

in
im

u
m

Vpor+ m in

VD DIO m in

<500us

VD D IO

VD DC O R E

Internal

PO R

(active low)

TRST

TSSU 1

First instruction

fe tched in flash

Table 9-9. RESET_N Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

tRESET RESET_N minimum pulse width 10 ns

42

32059L–AVR32–01/2012

AT32UC3B

9.5 Power Consumption

The values in Table 9-10, Table 9-11 on page 43 and Table 9-12 on page 44 are measured val-

ues of power consumption with operating conditions as follows:

�VDDIO = VDDANA = 3.3V

�VDDCORE = VDDPLL = 1.8V

�TA = 25°C, TA = 85°C

�I/Os are configured in input, pull-up enabled.

Figure 9-5. Measurement Setup

The following tables represent the power consumption measured on the power supplies.

Internal

Voltage

Regulator

Amp0

Amp1

VDDANA

VDDIO

VDDIN

VDDOUT

VDDCORE

VDDPLL

43

32059L–AVR32–01/2012

AT32UC3B

9.5.1 Power Consumtion for Different Sleep Modes

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fPLL0 < 160 MHz and 10 MHz < fXIN0 < 12 MHz.

Table 9-10. Power Consumption for Different Sleep Modes for AT32UC3B064, AT32UC3B0128, AT32UC3B0256,

AT32UC3B164, AT32UC3B1128, AT32UC3B1256

Mode Conditions Typ. Unit

Active

- CPU running a recursive Fibonacci Algorithm from flash and clocked from

PLL0 at f MHz.

- Voltage regulator is on.

- XIN0: external clock. Xin1 Stopped. XIN32 stopped.

- All peripheral clocks activated with a division by 8.

- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-

up and Input pins are connected to GND

0.3xf(MHz)+0.443 mA/MHz

Same conditions at 60 MHz 18.5 mA

Idle
See Active mode conditions 0.117xf(MHz)+0.28 mA/MHz

Same conditions at 60 MHz 7.3 mA

Frozen
See Active mode conditions 0.058xf(MHz)+0.115 mA/MHz

Same conditions at 60 MHz 3.6 mA

Standby
See Active mode conditions 0.042xf(MHz)+0.115 mA/MHz

Same conditions at 60 MHz 2.7 mA

Stop

- CPU running in sleep mode

- XIN0, Xin1 and XIN32 are stopped.

- All peripheral clocks are desactived.

- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-

up and Input pins are connected to GND.

37.8 µA

Deepstop See Stop mode conditions 24.9 µA

Static See Stop mode conditions
Voltage Regulator On 13.9 µA

Voltage Regulator Off 8.9 µA

Table 9-11. Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512

Mode Conditions Typ. Unit

Active

- CPU running a recursive Fibonacci Algorithm from flash and clocked from

PLL0 at f MHz.

- Voltage regulator is on.

- XIN0: external clock. Xin1 Stopped. XIN32 stopped.

- All peripheral clocks activated with a division by 8.

- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-

up and Input pins are connected to GND

0.359xf(MHz)+1.53 mA/MHz

Same conditions at 60 MHz 24 mA

Idle
See Active mode conditions 0.146xf(MHz)+0.291 mA/MHz

Same conditions at 60 MHz 9 mA

44

32059L–AVR32–01/2012

AT32UC3B

Notes: 1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fPLL0 < 160 MHz and 10 MHz < fXIN0 < 12 MHz.

Frozen
See Active mode conditions

0.0723xf(MHz)+0.15

6
mA/MHz

Same conditions at 60 MHz 4.5 mA

Standby
See Active mode conditions

0.0537xf(MHz)+0.16

6
mA/MHz

Same conditions at 60 MHz 3.4 mA

Stop

- CPU running in sleep mode

- XIN0, Xin1 and XIN32 are stopped.

- All peripheral clocks are desactived.

- GPIOs are inactive with internal pull-up, JTAG unconnected with external pull-

up and Input pins are connected to GND.

62 µA

Deepstop See Stop mode conditions 30 µA

Static See Stop mode conditions
Voltage Regulator On 15.5

µA
Voltage Regulator Off 7.5

Table 9-11. Power Consumption for Different Sleep Modes for AT32UC3B0512, AT32UC3B1512

Mode Conditions Typ. Unit

Table 9-12. Peripheral Interface Power Consumption in Active Mode

Peripheral Conditions Consumption Unit

INTC

AT32UC3B064

AT32UC3B0128

AT32UC3B0256

AT32UC3B164

AT32UC3B1128

AT32UC3B1256

AT32UC3B0512

AT32UC3B1512

20

µA/MHz

GPIO 16

PDCA 12

USART 14

USB 23

ADC 8

TWI 7

PWM 18

SPI 8

SSC 11

TC 11

ABDAC
AT32UC3B0512

AT32UC3B1512
6

45

32059L–AVR32–01/2012

AT32UC3B

9.6 System Clock Characteristics

These parameters are given in the following conditions:

� VDDCORE = 1.8V

� Ambient Temperature = 25°C

9.6.1 CPU/HSB Clock Characteristics

9.6.2 PBA Clock Characteristics

9.6.3 PBB Clock Characteristics

Table 9-13. Core Clock Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPCPU) CPU Clock Frequency 60 MHz

tCPCPU CPU Clock Period 16.6 ns

Table 9-14. PBA Clock Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPPBA) PBA Clock Frequency 60 MHz

tCPPBA PBA Clock Period 16.6 ns

Table 9-15. PBB Clock Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPPBB) PBB Clock Frequency 60 MHz

tCPPBB PBB Clock Period 16.6 ns

46

32059L–AVR32–01/2012

AT32UC3B

9.7 Oscillator Characteristics

The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of

power supply, unless otherwise specified.

9.7.1 Slow Clock RC Oscillator

9.7.2 32 KHz Oscillator

Note: 1. CL is the equivalent load capacitance.

Table 9-16. RC Oscillator Frequency

Symbol Parameter Conditions Min. Typ. Max. Unit

FRC RC Oscillator Frequency

Calibration point: TA = 85°C 115.2 116 KHz

TA = 25°C 112 KHz

TA = -40°C 105 108 KHz

Table 9-17. 32 KHz Oscillator Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCP32KHz) Oscillator Frequency
External clock on XIN32 30 MHz

Crystal 32 768 Hz

CL Equivalent Load Capacitance 6 12.5 pF

ESR Crystal Equivalent Series Resistance 100 KΩ

tST Startup Time
CL = 6pF(1)

CL = 12.5pF(1)
600

1200
ms

tCH XIN32 Clock High Half-period 0.4 tCP 0.6 tCP

tCL XIN32 Clock Low Half-period 0.4 tCP 0.6 tCP

CIN XIN32 Input Capacitance 5 pF

IOSC Current Consumption
Active mode 1.8 µA

Standby mode 0.1 µA

47

32059L–AVR32–01/2012

AT32UC3B

9.7.3 Main Oscillators

9.7.4 Phase Lock Loop

Table 9-18. Main Oscillators Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPMAIN) Oscillator Frequency
External clock on XIN 50 MHz

Crystal 0.4 20 MHz

CL1, CL2 Internal Load Capacitance (CL1 = CL2) 7 pF

ESR Crystal Equivalent Series Resistance 75 Ω

Duty Cycle 40 50 60 %

tST Startup Time

f = 400 KHz

f = 8 MHz

f = 16 MHz

f = 20 MHz

25

4

1.4

1

ms

tCH XIN Clock High Half-period 0.4 tCP 0.6 tCP

tCL XIN Clock Low Half-period 0.4 tCP 0.6 tCP

CIN XIN Input Capacitance 7 pF

IOSC Current Consumption

Active mode at 400 KHz. Gain = G0

Active mode at 8 MHz. Gain = G1

Active mode at 16 MHz. Gain = G2

Active mode at 20 MHz. Gain = G3

30

45

95

205

µA

Table 9-19. Phase Lock Loop Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

FOUT VCO Output Frequency 80 240 MHz

FIN Input Frequency 4 16 MHz

IPLL Current Consumption

Active mode FVCO@96 MHz

Active mode FVCO@128 MHz

Active mode FVCO@160 MHz

320

410

450

µA

Standby mode 5 µA

48

32059L–AVR32–01/2012

AT32UC3B

9.8 ADC Characteristics

Notes: 1. Corresponds to 13 clock cycles: 3 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

2. Corresponds to 15 clock cycles: 5 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

Note: 1. ADVREF should be connected to GND to avoid extra consumption in case ADC is not used.

Table 9-20. Channel Conversion Time and ADC Clock

Parameter Conditions Min. Typ. Max. Unit

ADC Clock Frequency 10-bit resolution mode 5 MHz

ADC Clock Frequency 8-bit resolution mode 8 MHz

Startup Time Return from Idle Mode 20 µs

Track and Hold Acquisition Time 600 ns

Track and Hold Input Resistor 350 Ω

Track and Hold Capacitor 12 pF

Conversion Time
ADC Clock = 5 MHz 2 µs

ADC Clock = 8 MHz 1.25 µs

Throughput Rate
ADC Clock = 5 MHz 384(1) kSPS

ADC Clock = 8 MHz 533(2) kSPS

Table 9-21. External Voltage Reference Input

Parameter Conditions Min. Typ. Max. Unit

ADVREF Input Voltage Range (1) 2.6 VDDANA V

ADVREF Average Current On 13 samples with ADC Clock = 5 MHz 200 250 µA

Current Consumption on VDDANA On 13 samples with ADC Clock = 5 MHz 1 mA

Table 9-22. Analog Inputs

Parameter Conditions Min. Typ. Max. Unit

Input Voltage Range 0 VADVREF V

Input Leakage Current 1 µA

Input Capacitance 7 pF

Table 9-23. Transfer Characteristics in 8-bit Mode

Parameter Conditions Min. Typ. Max. Unit

Resolution 8 Bit

Absolute Accuracy
ADC Clock = 5 MHz 0.8 LSB

ADC Clock = 8 MHz 1.5 LSB

Integral Non-linearity
ADC Clock = 5 MHz 0.35 0.5 LSB

ADC Clock = 8 MHz 0.5 1.0 LSB

49

32059L–AVR32–01/2012

AT32UC3B

Differential Non-linearity
ADC Clock = 5 MHz 0.3 0.5 LSB

ADC Clock = 8 MHz 0.5 1.0 LSB

Offset Error ADC Clock = 5 MHz -0.5 0.5 LSB

Gain Error ADC Clock = 5 MHz -0.5 0.5 LSB

Table 9-23. Transfer Characteristics in 8-bit Mode

Parameter Conditions Min. Typ. Max. Unit

Table 9-24. Transfer Characteristics in 10-bit Mode

Parameter Conditions Min. Typ. Max. Unit

Resolution 10 Bit

Absolute Accuracy ADC Clock = 5 MHz 3 LSB

Integral Non-linearity ADC Clock = 5 MHz 1.5 2 LSB

Differential Non-linearity
ADC Clock = 5 MHz 1 2 LSB

ADC Clock = 2.5 MHz 0.6 1 LSB

Offset Error ADC Clock = 5 MHz -2 2 LSB

Gain Error ADC Clock = 5MHz -2 2 LSB

50

32059L–AVR32–01/2012

AT32UC3B

9.9 USB Transceiver Characteristics

9.9.1 Electrical Characteristics

The USB on-chip buffers comply with the Universal Serial Bus (USB) v2.0 standard. All AC

parameters related to these buffers can be found within the USB 2.0 electrical specifications.

Table 9-25. Electrical Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

REXT

Recommended external USB series

resistor

In series with each USB pin with

±5%
39 Ω

51

32059L–AVR32–01/2012

AT32UC3B

9.10 JTAG Characteristics

9.10.1 JTAG Timing

Figure 9-6. JTAG Interface Signals

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers

manufactured in the same pro-cess technology. These values are not covered by test limits in

production.

JTAG2

JTAG3

JTAG1

JTAG4

JTAG0

TMS/TDI

TCK

TDO

JTAG5

JTAG6

JTAG7 JTAG8

JTAG9

JTAG10

Boundary

Scan Inputs

Boundary

Scan Outputs

Table 9-26. JTAG Timings(1)

Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period

VVDDIO from

3.0V to 3.6V,

maximum

external

capacitor =

40pF

23.2 ns

JTAG1 TCK High Half-period 8.8 ns

JTAG2 TCK Period 32.0 ns

JTAG3 TDI, TMS Setup before TCK High 3.9 ns

JTAG4 TDI, TMS Hold after TCK High 0.6 ns

JTAG5 TDO Hold Time 4.5 ns

JTAG6 TCK Low to TDO Valid 23.2 ns

JTAG7 Boundary Scan Inputs Setup Time 0 ns

JTAG8 Boundary Scan Inputs Hold Time 5.0 ns

JTAG9 Boundary Scan Outputs Hold Time 8.7 ns

JTAG10 TCK to Boundary Scan Outputs Valid 17.7 ns

52

32059L–AVR32–01/2012

AT32UC3B

9.11 SPI Characteristics

Figure 9-7. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 9-8. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Figure 9-9. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

SPCK

MISO

MOSI

SPI2

SPI0
SPI1

SPCK

MISO

MOSI

SPI5

SPI3
SPI4

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

53

32059L–AVR32–01/2012

AT32UC3B

Figure 9-10. SPI Slave mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

Notes: 1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40 pF.

2. tCPMCK: Master Clock period in ns.

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

Table 9-27. SPI Timings

Symbol Parameter Conditions Min. Max. Unit

SPI0
MISO Setup time before SPCK rises

(master)
3.3V domain(1) 22 +

(tCPMCK)/2(2) ns

SPI1
MISO Hold time after SPCK rises

(master)
3.3V domain(1) 0 ns

SPI2
SPCK rising to MOSI Delay

(master)
3.3V domain(1) 7 ns

SPI3
MISO Setup time before SPCK falls

(master)
3.3V domain(1) 22 +

(tCPMCK)/2(2) ns

SPI4
MISO Hold time after SPCK falls

(master)
3.3V domain(1) 0 ns

SPI5
SPCK falling to MOSI Delay

master)
3.3V domain(1) 7 ns

SPI6
SPCK falling to MISO Delay

(slave)
3.3V domain(1) 26.5 ns

SPI7
MOSI Setup time before SPCK rises

(slave)
3.3V domain(1) 0 ns

SPI8
MOSI Hold time after SPCK rises

(slave)
3.3V domain(1) 1.5 ns

SPI9
SPCK rising to MISO Delay

(slave)
3.3V domain(1) 27 ns

SPI10

MOSI Setup time before SPCK falls

(slave)
3.3V domain(1) 0 ns

SPI11

MOSI Hold time after SPCK falls

(slave)
3.3V domain(1) 1 ns

54

32059L–AVR32–01/2012

AT32UC3B

9.12 Flash Memory Characteristics

The following table gives the device maximum operating frequency depending on the field FWS

of the Flash FSR register. This field defines the number of wait states required to access the

Flash Memory. Flash operating frequency equals the CPU/HSB frequency.

Table 9-28. Flash Operating Frequency

Symbol Parameter Conditions Min. Typ. Max. Unit

FFOP Flash Operating Frequency
FWS = 0 33 MHz

FWS = 1 60 MHz

Table 9-29. Programming TIme

Symbol Parameter Conditions Min. Typ. Max. Unit

TFPP Page Programming Time 4 ms

TFFP Fuse Programming Time 0.5 ms

TFCE Chip Erase Time 4 ms

Table 9-30. Flash Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

NFARRAY Flash Array Write/Erase cycle 100K Cycle

NFFUSE General Purpose Fuses write cycle 1000 Cycle

TFDR Flash Data Retention Time 15 Year

55

32059L–AVR32–01/2012

AT32UC3B

10. Mechanical Characteristics

10.1 Thermal Considerations

10.1.1 Thermal Data

Table 10-1 summarizes the thermal resistance data depending on the package.

10.1.2 Junction Temperature

The average chip-junction temperature, TJ, in °C can be obtained from the following:

1.

2.

where:

� θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 10-1 on

page 55.

� θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in

Table 10-1 on page 55.

� θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.

� PD = device power consumption (W) estimated from data provided in the section ”Power

Consumption” on page 42.

� TA = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a

cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second

equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 10-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air TQFP64 49.6
⋅C/W

θJC Junction-to-case thermal resistance TQFP64 13.5

θJA Junction-to-ambient thermal resistance Still Air TQFP48 51.1
⋅C/W

θJC Junction-to-case thermal resistance TQFP48 13.7

T
J

T
A

P
D

θ
JA

×()+=

T
J

T
A

P(
D

θ(
HEATSINK

× θ
JC

))+ +=

56

32059L–AVR32–01/2012

AT32UC3B

10.2 Package Drawings

Figure 10-1. TQFP-64 package drawing

Table 10-2. Device and Package Maximum Weight

Weight 300 mg

Table 10-3. Package Characteristics

Moisture Sensitivity Level Jedec J-STD-20D-MSL3

Table 10-4. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification e3

57

32059L–AVR32–01/2012

AT32UC3B

Figure 10-2. TQFP-48 package drawing

Table 10-5. Device and Package Maximum Weight

Weight 100 mg

Table 10-6. Package Characteristics

Moisture Sensitivity Level Jedec J-STD-20D-MSL3

Table 10-7. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification e3

58

32059L–AVR32–01/2012

AT32UC3B

Figure 10-3. QFN-64 package drawing

Table 10-8. Device and Package Maximum Weight

Weight 200 mg

Table 10-9. Package Characteristics

Moisture Sensitivity Level Jedec J-STD-20D-MSL3

Table 10-10. Package Reference

JEDEC Drawing Reference M0-220

JESD97 Classification e3

59

32059L–AVR32–01/2012

AT32UC3B

Figure 10-4. QFN-48 package drawing

Table 10-11. Device and Package Maximum Weight

Weight 100 mg

Table 10-12. Package Characteristics

Moisture Sensitivity Level Jedec J-STD-20D-MSL3

Table 10-13. Package Reference

JEDEC Drawing Reference M0-220

JESD97 Classification e3

60

32059L–AVR32–01/2012

AT32UC3B

10.3 Soldering Profile

Table 10-14 gives the recommended soldering profile from J-STD-20.

Note: It is recommended to apply a soldering temperature higher than 250°C.

A maximum of three reflow passes is allowed per component.

Table 10-14. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/s

Preheat Temperature 175°C ±25°C Min. 150°C, Max. 200°C

Temperature Maintained Above 217°C 60-150s

Time within 5⋅C of Actual Peak Temperature 30s

Peak Temperature Range 260°C

Ramp-down Rate 6°C/s

Time 25⋅C to Peak Temperature Max. 8mn

61

32059L–AVR32–01/2012

AT32UC3B

11. Ordering Information

Device Ordering Code Package Conditioning

Temperature Operating

Range

AT32UC3B0512 AT32UC3B0512-A2UES TQFP 64 - Industrial (-40°C to 85°C)

AT32UC3B0512-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0512-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UES QFN 64 - Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0512-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256 AT32UC3B0256-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0256-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0256-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0128 AT32UC3B0128-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0128-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B0128-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B0128-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B064 AT32UC3B064-A2UT TQFP 64 Tray Industrial (-40°C to 85°C)

AT32UC3B064-A2UR TQFP 64 Reel Industrial (-40°C to 85°C)

AT32UC3B064-Z2UT QFN 64 Tray Industrial (-40°C to 85°C)

AT32UC3B064-Z2UR QFN 64 Reel Industrial (-40°C to 85°C)

AT32UC3B1512 AT32UC3B1512-Z1UT QFN 48 - Industrial (-40°C to 85°C)

AT32UC3B1512-Z1UR QFN 48 - Industrial (-40°C to 85°C)

AT32UC3B1256 AT32UC3B1256-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1256-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1256-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1256-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1128 AT32UC3B1128-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1128-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B1128-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B1128-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

AT32UC3B164 AT32UC3B164-AUT TQFP 48 Tray Industrial (-40°C to 85°C)

AT32UC3B164-AUR TQFP 48 Reel Industrial (-40°C to 85°C)

AT32UC3B164-Z1UT QFN 48 Tray Industrial (-40°C to 85°C)

AT32UC3B164-Z1UR QFN 48 Reel Industrial (-40°C to 85°C)

62

32059L–AVR32–01/2012

AT32UC3B

12. Errata

12.1 AT32UC3B0512, AT32UC3B1512

12.1.1 Rev D

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an

interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel

interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first

PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register

(PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to

be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and

NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one

(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,

then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

63

32059L–AVR32–01/2012

AT32UC3B

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first

transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or

during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

2. Enable SPI.

3. Set the polarity CPOL of the line in the opposite value of the required one.

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software

Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI

module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered

when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is

disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer

is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the

SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will

be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than

VDDCORE max and disable the BOD.

13. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock

and not PBA Clock / 128.

Fix/Workaround

None.

14. Clock sources will not be stopped in STATIC sleep mode if the difference between

CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going

to a sleep mode where the system RC oscillator is turned off, then high speed clock sources

64

32059L–AVR32–01/2012

AT32UC3B

will not be turned off. This will result in a significantly higher power consumption during the

sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the

factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

15. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is dis-

abled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the Power Manager (PM) before going to any sleep mode where

the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1Mohm resistor.

16. SSC

17. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,

RFMR.FSOS = None (input).

Fix/Workaround

None.

18. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround

None.

19. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:

- Clock is CKDIV

- The START is selected on either a frame synchro edge or a level

- Frame synchro data is enabled

- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START

condition is performed on a generated frame synchro.

65

32059L–AVR32–01/2012

AT32UC3B

20. USB

21. UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or

every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to

prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode

before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID

Wrong PDCA behavior when using two PDCA channels with the same PID.

Fix/Workaround

The same PID should not be assigned to more than one channel.

2. Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral

handshake of the active channel will stall and the PDCA will not do any more transfers on

the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed

The TWI RXRDY flag in SR register is not reset when a software reset is performed.

Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data

TWI in master mode will continue to read data on the line even if the shift register and the

RHR register are full. This will generate an overrun error.

Fix/Workaround

To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte

before a STOP condition

In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP

condition (what the master is not supposed to do), the following TWI slave receiver mode

frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by

resetting the TWI.

Fix/Workaround

If the TWI is used as a slave transmitter with a master that acknowledges the last data byte

before a STOP condition, it is necessary to reset the TWI before entering slave receiver

mode.

66

32059L–AVR32–01/2012

AT32UC3B

7. TC

8. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock

between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle

for the upper channel. After the dummy cycle has been generated, indicated by the

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real

values.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie

the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the

increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before

returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system

stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an

MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be

handled in privileged mode.

4. USART

5. ISO7816 info register US_NER cannot be read

The NER register always returns zero.

Fix/Workaround

None.

6. ISO7816 Mode T1: RX impossible after any TX

RX impossible after any TX.

Fix/Workaround

SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware hand-

shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output

should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the

RTS output high when the Peripheral DMA receive buffer becomes full, use the normal

mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

67

32059L–AVR32–01/2012

AT32UC3B

the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the

USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART

CR so that RTS will be driven low.

8. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8

bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

even if the frame is correct and the USART has been disabled, reset by a soft reset and re-

enabled.

Fix/Workaround

None.

9. USART slave synchronous mode external clock must be at least 9 times lower in fre-

quency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the fre-

quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.

Fix/Workaround

When the USART is operating in slave synchronous mode with an external clock, provide a

signal on CLK that has a frequency at least 9 times lower than CLK_USART.

10. HMATRIX

11. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.

The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC

instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

68

32059L–AVR32–01/2012

AT32UC3B

12.1.2 Rev C

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an

interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel

interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first

PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register

(PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to

be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and

NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one

(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,

then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first

transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or

during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

2. Enable SPI.

3. Set the polarity CPOL of the line in the opposite value of the required one.

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

69

32059L–AVR32–01/2012

AT32UC3B

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software

Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI

module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered

when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is

disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer

is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the

SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will

be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than

VDDCORE max and disable the BOD.

13. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock

and not PBA Clock / 128.

Fix/Workaround

None.

14. VDDCORE power supply input needs to be 1.95V

When used in dual power supply, VDDCORE needs to be 1.95V.

Fix/Workaround

When used in single power supply, VDDCORE needs to be connected to VDDOUT, which is

configured on revision C at 1.95V (typ.).

15. Clock sources will not be stopped in STATIC sleep mode if the difference between

CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going

to a sleep mode where the system RC oscillator is turned off, then high speed clock sources

will not be turned off. This will result in a significantly higher power consumption during the

sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the

factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

70

32059L–AVR32–01/2012

AT32UC3B

16. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is dis-

abled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the Power Manager (PM) before going to any sleep mode where

the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1Mohm resistor.

17. SSC

18. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,

RFMR.FSOS = None (input).

Fix/Workaround

None.

19. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround

None.

20. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:

- Clock is CKDIV

- The START is selected on either a frame synchro edge or a level

- Frame synchro data is enabled

- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START

condition is performed on a generated frame synchro.

21. USB

22. UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or

every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to

prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode

before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

71

32059L–AVR32–01/2012

AT32UC3B

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID

Wrong PDCA behavior when using two PDCA channels with the same PID.

Fix/Workaround

The same PID should not be assigned to more than one channel.

2. Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral

handshake of the active channel will stall and the PDCA will not do any more transfers on

the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed

The TWI RXRDY flag in SR register is not reset when a software reset is performed.

Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data

TWI in master mode will continue to read data on the line even if the shift register and the

RHR register are full. This will generate an overrun error.

Fix/Workaround

To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte

before a STOP condition

In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP

condition (what the master is not supposed to do), the following TWI slave receiver mode

frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by

resetting the TWI.

Fix/Workaround

If the TWI is used as a slave transmitter with a master that acknowledges the last data byte

before a STOP condition, it is necessary to reset the TWI before entering slave receiver

mode.

7. TC

8. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock

between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle

for the upper channel. After the dummy cycle has been generated, indicated by the

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real

values.

72

32059L–AVR32–01/2012

AT32UC3B

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie

the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the

increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before

returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system

stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an

MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be

handled in privileged mode.

4. Flash

5. Reset vector is 80000020h rather than 80000000h

Reset vector is 80000020h rather than 80000000h.

Fix/Workaround

The flash program code must start at the address 80000020h. The flash memory range

80000000h-80000020h must be programmed with 00000000h.

- USART

1. ISO7816 info register US_NER cannot be read

The NER register always returns zero.

Fix/Workaround

None.

2. ISO7816 Mode T1: RX impossible after any TX

RX impossible after any TX.

Fix/Workaround

SOFT_RESET on RX+ Config US_MR + Config_US_CR.

3. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware hand-

shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output

should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the

RTS output high when the Peripheral DMA receive buffer becomes full, use the normal

mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the

USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

73

32059L–AVR32–01/2012

AT32UC3B

fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART

CR so that RTS will be driven low.

4. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8

bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

even if the frame is correct and the USART has been disabled, reset by a soft reset and re-

enabled.

Fix/Workaround

None.

5. USART slave synchronous mode external clock must be at least 9 times lower in fre-

quency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the fre-

quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.

Fix/Workaround

When the USART is operating in slave synchronous mode with an external clock, provide a

signal on CLK that has a frequency at least 9 times lower than CLK_USART.

6. HMATRIX

7. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.

The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC

instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

74

32059L–AVR32–01/2012

AT32UC3B

12.2 AT32UC3B0256, AT32UC3B0128, AT32UC3B064, AT32UC3B1256, AT32UC3B1128,
AT32UC3B164

All industrial parts labelled with -UES (for engineering samples) are revision B parts.

12.2.1 Rev I, J, K

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an

interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel

interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first

PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register

(PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to

be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and

NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one

(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,

then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first

transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or

during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

2. Enable SPI.

75

32059L–AVR32–01/2012

AT32UC3B

3. Set the polarity CPOL of the line in the opposite value of the required one.

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software

Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI

module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered

when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is

disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer

is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the

SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will

be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than

VDDCORE max and disable the BOD.

1. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock

and not PBA Clock / 128.

Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between

CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going

to a sleep mode where the system RC oscillator is turned off, then high speed clock sources

will not be turned off. This will result in a significantly higher power consumption during the

sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the

factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

76

32059L–AVR32–01/2012

AT32UC3B

14. SSC

15. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,

RFMR.FSOS = None (input).

Fix/Workaround

None.

16. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround

None.

17. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:

- Clock is CKDIV

- The START is selected on either a frame synchro edge or a level

- Frame synchro data is enabled

- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START

condition is performed on a generated frame synchro.

18. USB

19. UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or

every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to

prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode

before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID

Wrong PDCA behavior when using two PDCA channels with the same PID.

Fix/Workaround

The same PID should not be assigned to more than one channel.

77

32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral

handshake of the active channel will stall and the PDCA will not do any more transfers on

the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed

The TWI RXRDY flag in SR register is not reset when a software reset is performed.

Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data

TWI in master mode will continue to read data on the line even if the shift register and the

RHR register are full. This will generate an overrun error.

Fix/Workaround

To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte

before a STOP condition

In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP

condition (what the master is not supposed to do), the following TWI slave receiver mode

frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by

resetting the TWI.

Fix/Workaround

If the TWI is used as a slave transmitter with a master that acknowledges the last data byte

before a STOP condition, it is necessary to reset the TWI before entering slave receiver

mode.

7. TC

8. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock

between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle

for the upper channel. After the dummy cycle has been generated, indicated by the

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real

values.

- OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz

The auxiliary trace does not work for CPU/HSB speed higher than 50MHz.

Fix/Workaround

Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

78

32059L–AVR32–01/2012

AT32UC3B

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie

the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the

increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before

returning from interrupts with RETE.

3. Privilege violation when using interrupts in application mode with protected system

stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an

MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be

handled in privileged mode.

4. USART

5. ISO7816 info register US_NER cannot be read

The NER register always returns zero.

Fix/Workaround

None.

6. ISO7816 Mode T1: RX impossible after any TX

RX impossible after any TX.

Fix/Workaround

SOFT_RESET on RX+ Config US_MR + Config_US_CR.

7. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware hand-

shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output

should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the

RTS output high when the Peripheral DMA receive buffer becomes full, use the normal

mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the

USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART

CR so that RTS will be driven low.

8. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8

bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

79

32059L–AVR32–01/2012

AT32UC3B

even if the frame is correct and the USART has been disabled, reset by a soft reset and re-

enabled.

Fix/Workaround

None.

9. USART slave synchronous mode external clock must be at least 9 times lower in fre-

quency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the fre-

quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.

Fix/Workaround

When the USART is operating in slave synchronous mode with an external clock, provide a

signal on CLK that has a frequency at least 9 times lower than CLK_USART.

10. HMATRIX

11. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.

The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,

UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands), the following flash read access may return corrupted data. This erratum does

not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands) must be issued from internal RAM. After the write operation, perform a dummy

flash page write operation (FLASHC WP). Content and location of this page is not important

and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It

is then safe to read and fetch code from the flash.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC

instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

80

32059L–AVR32–01/2012

AT32UC3B

12.2.2 Rev. G

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an

interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel

interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first

PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register

(PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to

be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and

NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one

(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,

then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first

transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or

during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

2. Enable SPI.

3. Set the polarity CPOL of the line in the opposite value of the required one.

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

81

32059L–AVR32–01/2012

AT32UC3B

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software

Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI

module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered

when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is

disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer

is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the

SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will

be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than

VDDCORE max and disable the BOD.

2. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock

and not PBA Clock / 128.

Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between

CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going

to a sleep mode where the system RC oscillator is turned off, then high speed clock sources

will not be turned off. This will result in a significantly higher power consumption during the

sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the

factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

14. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is dis-

abled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep

mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm

resistor.

82

32059L–AVR32–01/2012

AT32UC3B

15. SSC

16. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,

RFMR.FSOS = None (input).

Fix/Workaround

None.

17. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround

None.

18. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:

- Clock is CKDIV

- The START is selected on either a frame synchro edge or a level

- Frame synchro data is enabled

- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START

condition is performed on a generated frame synchro.

19. USB

20. UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or

every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to

prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode

before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID

Wrong PDCA behavior when using two PDCA channels with the same PID.

Fix/Workaround

The same PID should not be assigned to more than one channel.

83

32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral

handshake of the active channel will stall and the PDCA will not do any more transfers on

the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed

The TWI RXRDY flag in SR register is not reset when a software reset is performed.

Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data

TWI in master mode will continue to read data on the line even if the shift register and the

RHR register are full. This will generate an overrun error.

Fix/Workaround

To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte

before a STOP condition

In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP

condition (what the master is not supposed to do), the following TWI slave receiver mode

frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by

resetting the TWI.

Fix/Workaround

If the TWI is used as a slave transmitter with a master that acknowledges the last data byte

before a STOP condition, it is necessary to reset the TWI before entering slave receiver

mode.

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max

instead of 5V tolerant

The following GPIOs are not 5V tolerant: PA29 and PA30.

Fix/Workaround

None.

- TC

1. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock

between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle

for the upper channel. After the dummy cycle has been generated, indicated by the

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real

values.

84

32059L–AVR32–01/2012

AT32UC3B

- OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz

The auxiliary trace does not work for CPU/HSB speed higher than 50MHz.

Fix/Workaround

Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie

the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the

increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before

returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system

stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using

rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the

mode bits to the desired value must be done using a single mtsr instruction so it is done

atomically. Even if this step is generally described as not safe in the UC technical reference

manual, it is safe in this very specific case.

2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system

stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an

MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be

handled in privileged mode.

5. USART

6. ISO7816 info register US_NER cannot be read

The NER register always returns zero.

Fix/Workaround

None.

7. ISO7816 Mode T1: RX impossible after any TX

RX impossible after any TX.

Fix/Workaround

SOFT_RESET on RX+ Config US_MR + Config_US_CR.

85

32059L–AVR32–01/2012

AT32UC3B

8. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware hand-

shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output

should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the

RTS output high when the Peripheral DMA receive buffer becomes full, use the normal

mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the

USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART

CR so that RTS will be driven low.

9. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8

bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

even if the frame is correct and the USART has been disabled, reset by a soft reset and re-

enabled.

Fix/Workaround

None.

10. USART slave synchronous mode external clock must be at least 9 times lower in fre-

quency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the fre-

quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.

Fix/Workaround

When the USART is operating in slave synchronous mode with an external clock, provide a

signal on CLK that has a frequency at least 9 times lower than CLK_USART.

11. HMATRIX

12. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.

The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,

UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands), the following flash read access may return corrupted data. This erratum does

not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands) must be issued from internal RAM. After the write operation, perform a dummy

flash page write operation (FLASHC WP). Content and location of this page is not important

and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It

is then safe to read and fetch code from the flash.

86

32059L–AVR32–01/2012

AT32UC3B

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC

instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

87

32059L–AVR32–01/2012

AT32UC3B

12.2.3 Rev. F

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an

interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel

interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first

PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register

(PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. SPI

5. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to

be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

6. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and

NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one

(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,

then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

7. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first

transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or

during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

2. Enable SPI.

3. Set the polarity CPOL of the line in the opposite value of the required one.

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

88

32059L–AVR32–01/2012

AT32UC3B

8. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software

Reset bit in the Control Register (CR.SWRST).

9. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI

module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

10. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered

when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is

disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer

is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the

SPI and PDCA.

11. Power Manager

12. If the BOD level is higher than VDDCORE, the part is constantly reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will

be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than

VDDCORE max and disable the BOD.

3. When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock

and not PBA Clock / 128.

Fix/Workaround

None.

13. Clock sources will not be stopped in STATIC sleep mode if the difference between

CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going

to a sleep mode where the system RC oscillator is turned off, then high speed clock sources

will not be turned off. This will result in a significantly higher power consumption during the

sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the

factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

14. Increased Power Consumption in VDDIO in sleep modes

If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is dis-

abled, this will lead to an increased power consumption in VDDIO.

Fix/Workaround

Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep

mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm

resistor.

89

32059L–AVR32–01/2012

AT32UC3B

15. SSC

16. Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge,

RFMR.FSOS = None (input).

Fix/Workaround

None.

17. TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround

None.

18. Frame Synchro and Frame Synchro Data are delayed by one clock cycle

The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:

- Clock is CKDIV

- The START is selected on either a frame synchro edge or a level

- Frame synchro data is enabled

- Transmit clock is gated on output (through CKO field)

Fix/Workaround

Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START

condition is performed on a generated frame synchro.

19. USB

20. UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or

every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to

prevent any "extra" token.

- ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode

before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

- PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID

Wrong PDCA behavior when using two PDCA channels with the same PID.

Fix/Workaround

The same PID should not be assigned to more than one channel.

90

32059L–AVR32–01/2012

AT32UC3B

2. Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral

handshake of the active channel will stall and the PDCA will not do any more transfers on

the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

3. TWI

4. The TWI RXRDY flag in SR register is not reset when a software reset is performed

The TWI RXRDY flag in SR register is not reset when a software reset is performed.

Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

5. TWI in master mode will continue to read data

TWI in master mode will continue to read data on the line even if the shift register and the

RHR register are full. This will generate an overrun error.

Fix/Workaround

To prevent this, read the RHR register as soon as a new RX data is ready.

6. TWI slave behaves improperly if master acknowledges the last transmitted data byte

before a STOP condition

In I2C slave transmitter mode, if the master acknowledges the last data byte before a STOP

condition (what the master is not supposed to do), the following TWI slave receiver mode

frame may contain an inappropriate clock stretch. This clock stretch can only be stopped by

resetting the TWI.

Fix/Workaround

If the TWI is used as a slave transmitter with a master that acknowledges the last data byte

before a STOP condition, it is necessary to reset the TWI before entering slave receiver

mode.

7. GPIO

8. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max

instead of 5V tolerant

The following GPIOs are not 5V tolerant: PA29 and PA30.

Fix/Workaround

None.

9. Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant

Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20,

PB21, PB22, PB23, PB27, PB28.

Fix/Workaround

None.

10. TC

11. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock

between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle

for the upper channel. After the dummy cycle has been generated, indicated by the

91

32059L–AVR32–01/2012

AT32UC3B

SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real

values.

- OCD

1. The auxiliary trace does not work for CPU/HSB speed higher than 50MHz

The auxiliary trace does not work for CPU/HSB speed higher than 50MHz.

Fix/Workaround

Do not use the auxiliary trace for CPU/HSB speed higher than 50MHz.

- Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie

the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the

increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

2. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before

returning from interrupts with RETE.

3. RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system

stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using

rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the

mode bits to the desired value must be done using a single mtsr instruction so it is done

atomically. Even if this step is generally described as not safe in the UC technical reference

manual, it is safe in this very specific case.

2. Execute the RETE instruction.

4. Privilege violation when using interrupts in application mode with protected system

stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an

MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be

handled in privileged mode.

5. USART

6. ISO7816 info register US_NER cannot be read

The NER register always returns zero.

Fix/Workaround

None.

92

32059L–AVR32–01/2012

AT32UC3B

7. ISO7816 Mode T1: RX impossible after any TX

RX impossible after any TX.

Fix/Workaround

SOFT_RESET on RX+ Config US_MR + Config_US_CR.

8. The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware hand-

shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output

should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the

RTS output high when the Peripheral DMA receive buffer becomes full, use the normal

mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when

the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the

USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-

fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART

CR so that RTS will be driven low.

9. Corruption after receiving too many bits in SPI slave mode

If the USART is in SPI slave mode and receives too much data bits (ex: 9bitsinstead of 8

bits) by the SPI master, an error occurs. After that, the next reception may be corrupted

even if the frame is correct and the USART has been disabled, reset by a soft reset and re-

enabled.

Fix/Workaround

None.

10. USART slave synchronous mode external clock must be at least 9 times lower in fre-

quency than CLK_USART

When the USART is operating in slave synchronous mode with an external clock, the fre-

quency of the signal provided on CLK must be at least 9 times lower than CLK_USART.

Fix/Workaround

When the USART is operating in slave synchronous mode with an external clock, provide a

signal on CLK that has a frequency at least 9 times lower than CLK_USART.

11. HMATRIX

12. In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.

The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

- FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,

UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands), the following flash read access may return corrupted data. This erratum does

not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands) must be issued from internal RAM. After the write operation, perform a dummy

flash page write operation (FLASHC WP). Content and location of this page is not important

93

32059L–AVR32–01/2012

AT32UC3B

and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It

is then safe to read and fetch code from the flash.

- DSP Operations

1. Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC

instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

94

32059L–AVR32–01/2012

AT32UC3B

12.2.4 Rev. B

- PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an

interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel

interrupt is enabled.

2. PWN counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first

PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period.

- Consecutive periods are 0x0001, 0x0002, ..., period.

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register

(PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

4. PWM channel status may be wrong if disabled before a period has elapsed

Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit

for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if

the channel was disabled before the period elapsed. It will then read '0' as expected.

Fix/Workaround

Reading the PWM channel status of a disabled channel is only correct after a PWM period

has elapsed.

5. The following alternate C functions PWM[4] on PA16 and PWM[6] on PA31 are not

available on Rev B

The following alternate C functions PWM[4] on PA16 and PWM[6] on PA31 are not available

on Rev B.

Fix/Workaround

Do not use these PWM alternate functions on these pins.

6. SPI

7. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to

be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

95

32059L–AVR32–01/2012

AT32UC3B

8. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and

NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one

(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,

then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

9. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first

transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or

during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

2. Enable SPI.

3. Set the polarity CPOL of the line in the opposite value of the required one.

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register.

Transfers can now begin and RXREADY will now behave as expected.

10. SPI CSNAAT bit 2 in register CSR0...CSR3 is not available

SPI CSNAAT bit 2 in register CSR0...CSR3 is not available.

Fix/Workaround

Do not use this bit.

11. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software

Reset bit in the Control Register (CR.SWRST).

- Power Manager

1. PLL Lock control does not work

PLL lock Control does not work.

Fix/Workaround

In PLL Control register, the bit 7 should be set in order to prevent unexpected behavior.

2. Wrong reset causes when BOD is activated

Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the

reset source even though the part was reset by another source.

Fix/Workaround

Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.

3. System Timer mask (Bit 16) of the PM CPUMASK register is not available

System Timer mask (Bit 16) of the PM CPUMASK register is not available.

Fix/Workaround

Do not use this bit.

96

32059L–AVR32–01/2012

AT32UC3B

- SSC

1. SSC does not trigger RF when data is low

The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or

RCMR respectively.

Fix/Workaround

Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the GPIO.

- USB

1. USB No end of host reset signaled upon disconnection

In host mode, in case of an unexpected device disconnection whereas a usb reset is being

sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at

the end of the reset.

Fix/Workaround

A software workaround consists in testing (by polling or interrupt) the disconnection

(UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid

being stuck.

2. USBFSM and UHADDR1/2/3 registers are not available

Do not use USBFSM register.

Fix/Workaround

Do not use USBFSM register and use HCON[6:0] field instead for all the pipes.

- Cycle counter

1. CPU Cycle Counter does not reset the COUNT system register on COMPARE match.

The device revision B does not reset the COUNT system register on COMPARE match. In

this revision, the COUNT register is clocked by the CPU clock, so when the CPU clock

stops, so does incrementing of COUNT.

Fix/Workaround

None.

- ADC

1. ADC possible miss on DRDY when disabling a channel

The ADC does not work properly when more than one channel is enabled.

Fix/Workaround

Do not use the ADC with more than one channel enabled at a time.

2. ADC OVRE flag sometimes not reset on Status Register read

The OVRE flag does not clear properly if read simultaneously to an end of conversion.

Fix/Workaround

None.

3. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode

before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

97

32059L–AVR32–01/2012

AT32UC3B

- USART

1. USART Manchester Encoder Not Working

Manchester encoding/decoding is not working.

Fix/Workaround

Do not use manchester encoding.

2. USART RXBREAK problem when no timeguard

In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0

and the break character is located just after the stop bit.

Fix/Workaround

If the NBSTOP is 1, timeguard should be different from 0.

3. USART Handshaking: 2 characters sent / CTS rises when TX

If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty,

the TXHOLDING is also transmitted.

Fix/Workaround

None.

4. USART PDC and TIMEGUARD not supported in MANCHESTER

Manchester encoding/decoding is not working.

Fix/Workaround

Do not use manchester encoding.

5. USART SPI mode is non functional on this revision

USART SPI mode is non functional on this revision.

Fix/Workaround

Do not use the USART SPI mode.

- HMATRIX

1. HMatrix fixed priority arbitration does not work

Fixed priority arbitration does not work.

Fix/Workaround

Use Round-Robin arbitration instead.

- Clock characteristic

1. PBA max frequency

The Peripheral bus A (PBA) max frequency is 30MHz instead of 60MHz.

Fix/Workaround

Do not set the PBA maximum frequency higher than 30MHz.

- FLASHC

1. The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C

on revB instead of 0xFFFE1410

The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C on

revB instead of 0xFFFE1410.

Fix/Workaround

None.

98

32059L–AVR32–01/2012

AT32UC3B

2. The command Quick Page Read User Page(QPRUP) is not functional

The command Quick Page Read User Page(QPRUP) is not functional.

Fix/Workaround

None.

3. PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0]

on revision B instead of WriteData[7:0], ByteAddress[2:0]

PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on

revision B instead of WriteData[7:0], ByteAddress[2:0].

Fix/Workaround

None.

4. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,

UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).

After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands), the following flash read access may return corrupted data. This erratum does

not affect write operations to regular flash memory.

Fix/Workaround

The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF

commands) must be issued from internal RAM. After the write operation, perform a dummy

flash page write operation (FLASHC WP). Content and location of this page is not important

and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It

is then safe to read and fetch code from the flash.

5.

- RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the

RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the

HSB clock

Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC

peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock.

Fix/Workaround

Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of

four or more relative to the HSB clock.

2. The RTC CLKEN bit (bit number 16) of CTRL register is not available

The RTC CLKEN bit (bit number 16) of CTRL register is not available.

Fix/Workaround

Do not use the CLKEN bit of the RTC on Rev B.

99

32059L–AVR32–01/2012

AT32UC3B

- OCD

1. Stalled memory access instruction writeback fails if followed by a HW breakpoint

Consider the following assembly code sequence:

A

B

If a hardware breakpoint is placed on instruction B, and instruction A is a memory access

instruction, register file updates from instruction A can be discarded.

Fix/Workaround

Do not place hardware breakpoints, use software breakpoints instead. Alternatively, place a

hardware breakpoint on the instruction before the memory access instruction and then sin-

gle step over the memory access instruction.

- Processor and Architecture

1. Local Bus to fast GPIO not available on silicon Rev B

Local bus is only available for silicon RevE and later.

Fix/Workaround

Do not use if silicon revision older than F.

2. Memory Protection Unit (MPU) is non functional

Memory Protection Unit (MPU) is non functional.

Fix/Workaround

Do not use the MPU.

3. Bus error should be masked in Debug mode

If a bus error occurs during debug mode, the processor will not respond to debug com-

mands through the DINST register.

Fix/Workaround

A reset of the device will make the CPU respond to debug commands again.

4. Read Modify Write (RMW) instructions on data outside the internal RAM does not

work

Read Modify Write (RMW) instructions on data outside the internal RAM does not work.

Fix/Workaround

Do not perform RMW instructions on data outside the internal RAM.

5. Need two NOPs instruction after instructions masking interrupts

The instructions following in the pipeline the instruction masking the interrupt through SR

may behave abnormally.

Fix/Workaround

Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR

6. Clock connection table on Rev B

Here is the table of Rev B

100

32059L–AVR32–01/2012

AT32UC3B

Figure 12-1. Timer/Counter clock connections on RevB

7. Spurious interrupt may corrupt core SR mode to exception

If the rules listed in the chapter `Masking interrupt requests in peripheral modules' of the

AVR32UC Technical Reference Manual are not followed, a spurious interrupt may occur. An

interrupt context will be pushed onto the stack while the core SR mode will indicate an

exception. A RETE instruction would then corrupt the stack.

Fix/Workaround

Follow the rules of the AVR32UC Technical Reference Manual. To increase software

robustness, if an exception mode is detected at the beginning of an interrupt handler,

change the stack interrupt context to an exception context and issue a RETE instruction.

8. CPU cannot operate on a divided slow clock (internal RC oscillator)

CPU cannot operate on a divided slow clock (internal RC oscillator).

Fix/Workaround

Do not run the CPU on a divided slow clock.

9. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set,

i.e. the pointer is always updated. This happens even if the ++ field is cleared. Specifically,

the increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

10. RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before

returning from interrupts with RETE.

11. Exceptions when system stack is protected by MPU

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system

stack is not readable in unprivileged mode.

Fix/Workaround

Workaround 1: Make system stack readable in unprivileged mode,

or

Workaround 2: Return from supervisor mode using rete instead of rets. This requires: 1.

Changing the mode bits from 001b to 110b before issuing the instruction.

Updating the mode bits to the desired value must be done using a single mtsr instruction so

Source Name Connection

Internal TIMER_CLOCK1 32KHz Oscillator

TIMER_CLOCK2 PBA Clock / 4

TIMER_CLOCK3 PBA Clock / 8

TIMER_CLOCK4 PBA Clock / 16

TIMER_CLOCK5 PBA Clock / 32

External XC0

XC1

XC2

101

32059L–AVR32–01/2012

AT32UC3B

it is done atomically. Even if this step is described in general as not safe in the UC technical

reference guide, it is safe in this very specific case.

2. Execute the RETE instruction.

102

32059L–AVR32–01/2012

AT32UC3B

13. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The

referring revision in this section are referring to the document revision.

13.1 Rev. L– 01/2012

13.2 Rev. K– 02/2011

13.3 Rev. J– 12/2010

13.4 Rev. I – 06/2010

13.5 Rev. H – 10/2009

1. Updated Mechanical Characteristics section.

1. Updated USB section.

2. Updated Configuration Summary section.

3. Updated Electrical Characteristics section.

4. Updated Errata section.

1. Updated USB section.

2. Updated USART section.

3. Updated TWI section.

4. Updated PWM section.

5. Updated Electrical Characteristics section.

1. Updated SPI section.

2 Updated Electrical Characteristics section.

1. Update datasheet architecture.

2 Add AT32UC3B0512 and AT32UC3B1512 devices description.

103

32059L–AVR32–01/2012

AT32UC3B

13.6 Rev. G – 06/2009

13.7 Rev. F – 04/2008

13.8 Rev. E – 12/2007

13.9 Rev. D – 11/2007

13.10 Rev. C – 10/2007

13.11 Rev. B – 07/2007

1. Open Drain Mode removed from GPIO section.

2 Updated Errata section.

1. Updated Errata section.

1. Updated Memory Protection section.

1. Updated Processor Architecture section.

2. Updated Electrical Characteristics section.

1. Updated Features sections.

2. Updated block diagram with local bus figure

3. Add schematic for HMatrix master/slave connection.

4. Updated Features sections with local bus.

5. Added SPI feature to USART section.

6. Updated USBB section.

7. Updated ADC trigger selection in ADC section.

8. Updated JTAG and Boundary Scan section with programming procedure.

9. Add description for silicon revision D

1. Updated registered trademarks

2. Updated address page.

104

32059L–AVR32–01/2012

AT32UC3B

13.12 Rev. A – 05/2007

1. Initial revision.

105

32059L–AVR32–01/2012

AT32UC3B

Table of Contents

1 Description ... 3

2 Overview ... 4

2.1 Blockdiagram ...4

3 Configuration Summary .. 5

4 Package and Pinout ... 6

4.1 Package ...6

4.2 Peripheral Multiplexing on I/O lines ...7

4.3 High Drive Current GPIO ...10

5 Signals Description ... 10

5.1 JTAG pins ..13

5.2 RESET_N pin ..14

5.3 TWI pins ..14

5.4 GPIO pins ..14

5.5 High drive pins ...14

5.6 Power Considerations ...14

6 Processor and Architecture .. 17

6.1 Features ..17

6.2 AVR32 Architecture ...17

6.3 The AVR32UC CPU ..18

6.4 Programming Model ..22

6.5 Exceptions and Interrupts ..26

6.6 Module Configuration ..30

7 Memories .. 31

7.1 Embedded Memories ..31

7.2 Physical Memory Map ...31

7.3 Peripheral Address Map ..32

7.4 CPU Local Bus Mapping ...33

8 Boot Sequence ... 34

8.1 Starting of clocks ...34

8.2 Fetching of initial instructions ..34

9 Electrical Characteristics .. 35

9.1 Absolute Maximum Ratings* ...35

106

32059L–AVR32–01/2012

AT32UC3B

9.2 DC Characteristics ...36

9.3 Regulator Characteristics ..38

9.4 Analog Characteristics ...38

9.5 Power Consumption ..42

9.6 System Clock Characteristics ..45

9.7 Oscillator Characteristics ...46

9.8 ADC Characteristics ..48

9.9 USB Transceiver Characteristics ...50

9.10 JTAG Characteristics ...51

9.11 SPI Characteristics ..52

9.12 Flash Memory Characteristics ...54

10 Mechanical Characteristics ... 55

10.1 Thermal Considerations ..55

10.2 Package Drawings ...56

10.3 Soldering Profile ..60

11 Ordering Information ... 61

12 Errata ... 62

12.1 AT32UC3B0512, AT32UC3B1512 ..62

12.2 AT32UC3B0256, AT32UC3B0128, AT32UC3B064, AT32UC3B1256,

AT32UC3B1128, AT32UC3B164 74

13 Datasheet Revision History .. 102

13.1 Rev. L– 01/2012 ..102

13.2 Rev. K– 02/2011 ..102

13.3 Rev. J– 12/2010 ..102

13.4 Rev. I – 06/2010 ..102

13.5 Rev. H – 10/2009 ...102

13.6 Rev. G – 06/2009 ..103

13.7 Rev. F – 04/2008 ...103

13.8 Rev. E – 12/2007 ...103

13.9 Rev. D – 11/2007 ...103

13.10 Rev. C – 10/2007 ...103

13.11 Rev. B – 07/2007 ...103

13.12 Rev. A – 05/2007 ...104

32059L–AVR32–01/2012

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: (+1)(408) 441-0311

Fax: (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5

418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus

Parkring 4

D-85748 Garching b. Munich

GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

16F, Shin Osaki Kangyo Bldg.

1-6-4 Osaka Shinagawa-ku

Tokyo 104-0032

JAPAN

Tel: (+81) 3-6417-0300

Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof AVR®, Qtouch®, Adjacent Key Suppression®, AKS®, and others are registered trade-

marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

	Features
	1. Description
	2. Overview
	2.1 Blockdiagram

	3. Configuration Summary
	4. Package and Pinout
	4.1 Package
	4.2 Peripheral Multiplexing on I/O lines
	4.2.1 Multiplexed signals
	4.2.2 JTAG Port Connections
	4.2.3 Nexus OCD AUX port connections
	4.2.4 Oscillator Pinout

	4.3 High Drive Current GPIO

	5. Signals Description
	5.1 JTAG pins
	5.2 RESET_N pin
	5.3 TWI pins
	5.4 GPIO pins
	5.5 High drive pins
	5.6 Power Considerations
	5.6.1 Power Supplies
	5.6.2 Voltage Regulator
	5.6.2.1 Single Power Supply
	5.6.2.2 Dual Power Supply

	5.6.3 Analog-to-Digital Converter (ADC) reference.

	6. Processor and Architecture
	6.1 Features
	6.2 AVR32 Architecture
	6.3 The AVR32UC CPU
	6.3.1 Pipeline Overview
	6.3.2 AVR32A Microarchitecture Compliance
	6.3.3 Java Support
	6.3.4 Memory Protection
	6.3.5 Unaligned Reference Handling
	6.3.6 Unimplemented Instructions
	6.3.7 CPU and Architecture Revision

	6.4 Programming Model
	6.4.1 Register File Configuration
	6.4.2 Status Register Configuration
	6.4.3 Processor States
	6.4.3.1 Normal RISC State
	6.4.3.2 Debug State

	6.4.4 System Registers

	6.5 Exceptions and Interrupts
	6.5.1 System Stack Issues
	6.5.2 Exceptions and Interrupt Requests
	6.5.3 Supervisor Calls
	6.5.4 Debug Requests
	6.5.5 Entry Points for Events

	6.6 Module Configuration

	7. Memories
	7.1 Embedded Memories
	7.2 Physical Memory Map
	7.3 Peripheral Address Map
	7.4 CPU Local Bus Mapping

	8. Boot Sequence
	8.1 Starting of clocks
	8.2 Fetching of initial instructions

	9. Electrical Characteristics
	9.1 Absolute Maximum Ratings*
	9.2 DC Characteristics
	9.3 Regulator Characteristics
	9.4 Analog Characteristics
	9.4.1 ADC Reference
	9.4.2 BOD
	9.4.3 Reset Sequence
	9.4.4 RESET_N Characteristics

	9.5 Power Consumption
	9.5.1 Power Consumtion for Different Sleep Modes

	9.6 System Clock Characteristics
	9.6.1 CPU/HSB Clock Characteristics
	9.6.2 PBA Clock Characteristics
	9.6.3 PBB Clock Characteristics

	9.7 Oscillator Characteristics
	9.7.1 Slow Clock RC Oscillator
	9.7.2 32 KHz Oscillator
	9.7.3 Main Oscillators
	9.7.4 Phase Lock Loop

	9.8 ADC Characteristics
	9.9 USB Transceiver Characteristics
	9.9.1 Electrical Characteristics

	9.10 JTAG Characteristics
	9.10.1 JTAG Timing

	9.11 SPI Characteristics
	9.12 Flash Memory Characteristics

	10. Mechanical Characteristics
	10.1 Thermal Considerations
	10.1.1 Thermal Data
	10.1.2 Junction Temperature

	10.2 Package Drawings
	10.3 Soldering Profile

	11. Ordering Information
	12. Errata
	12.1 AT32UC3B0512, AT32UC3B1512
	12.1.1 Rev D
	12.1.2 Rev C

	12.2 AT32UC3B0256, AT32UC3B0128, AT32UC3B064, AT32UC3B1256, AT32UC3B1128, AT32UC3B164
	12.2.1 Rev I, J, K
	12.2.2 Rev. G
	12.2.3 Rev. F
	12.2.4 Rev. B

	13. Datasheet Revision History
	13.1 Rev. L– 01/2012
	13.2 Rev. K– 02/2011
	13.3 Rev. J– 12/2010
	13.4 Rev. I – 06/2010
	13.5 Rev. H – 10/2009
	13.6 Rev. G – 06/2009
	13.7 Rev. F – 04/2008
	13.8 Rev. E – 12/2007
	13.9 Rev. D – 11/2007
	13.10 Rev. C – 10/2007
	13.11 Rev. B – 07/2007
	13.12 Rev. A – 05/2007

	Table of Contents

