RENESAS

AN1279 Rev 0.00

Oct 30, 2006

ISL6539EVAL2

Dual Switching Regulator Solution Using the ISL6539

Introduction

The ISL6539 is capable of providing a complete solution for two independent switching regulators. The ISL6539 can be configured to operate as a dual switching regulator or as a DDR regulator. This application note will focus on the ISL6539 configured as a dual switching regulator. For information on the ISL6539 configured as a DDR regulator, refer to either the datasheet[1] or to application note AN1279.

As a dual regulator, the ISL6539 provides control and protection for two independent rails. The switching frequency is fixed at 300kHz for both regulators. The two channels can be phase shifted 180° in order to minimize interaction. The ISL6539 incorporates voltage-feed-forward ramp modulation, current mode control, and internal feedback compensation which provides fast response to input voltage and output load transients. A PGOOD signal also is provided for both channels.

Protection features include under-voltage and over-voltage protection as well as a programmable over-current protection feature that utilizes the $r_{DS(ON)}$ of the lower MOSFET. A more complete description of the ISL6539 can be found in the datasheet.

Quick Start Evaluation

The ISL6539EVAL2 board is shipped 'ready to use' right from the box. The box includes this application note, the ISL6539 datasheet, and the evaluation board.

The evaluation board supports testing with laboratory power supplies. Both regulated outputs can be exercised through external loads. There are posts available on the two regulated output rails for drawing a load and/or monitoring the voltages. Two LEDs indicates the status of the individual channel PGOOD signals. There are also four scope probe points that allow for in depth analysis. Four jumpers have also been provided for control and monitoring purposes.

Recommended Test Equipment

To test the full functionality of the ISL6539, the following equipment is recommended:

- Two laboratory power supplies
- Two Electronic Loads
- Four-channel Oscilloscope with probes
- Precision Digital Multimeters

CIRCUIT SET UP

Refer to Figure 1 for locations of the jumpers, connectors and components described in the following sections.

JUMPER SETTINGS

There are four jumpers on the board. Jumper JP1 is used to either enable or disable input voltage feed forward compensation. Jumper JP2 can be used to monitor the ISL6539 bias current by connecting an ammeter to the two jumper pins. If the bias current is not being monitored, this jumper must be shunted. Shunting jumper JP5 pulls the EN1 pin to VCC and is used to enable Channel 1. Shunting jumper JP6 enables Channel 2. Jumper J7 can be used to short the input rails of the two switching regulator channels. Table 1 provides a detailed description of the jumper descriptions and positions.

JUMPER	POSITION	FUNCTION			
JP1	Toward VINPRG*	This will tie VIN pin to the input voltage for feed forward compensation.			
	Away from VINPRG	This will tie VIN pin to GND, disabling input voltage feed forward compensation.			
JP2	Shunted*	An ammeter may be connected across these pins to measure IC and GATE Drive current			
JP5	Shunted*	CH1 enabled			
	Removed	CH1 disabled			
JP6	Shunted*	CH2 enabled			
	Removed	CH2 disabled			
JP7	Shunted*	The input rails for Channel 1 and Channel 2 are unified			
	Removed	The input rails for Channel 1 and Channel 2 are independent			
* Denotes default configuration					

TABLE 1. DETAILED DESCRIPTION OF THE JUMPER SETTINGS

CONNECTING LOADS

Both regulated output rails are capable of both sourcing load current and sinking load current. Follow the directions below for the proper method of loading each rail.

Loading VOUT1 - Sourcing Current: This is the output rail of the Channel 1 regulator. Connect the positive terminal of an electronic load to the VOUT1 post (J5). Connect the return terminal of the same load to the adjacent GND post (J8).

Loading VOUT1 - Sinking Current: To test this channel while the regulator sinks current, connect the positive terminal of an electronic load to the VIN1 post (J3). Connect the return terminal of the same load to the VOUT1 post (J5).

CAUTION: The return terminal of the load must float for this to work properly.

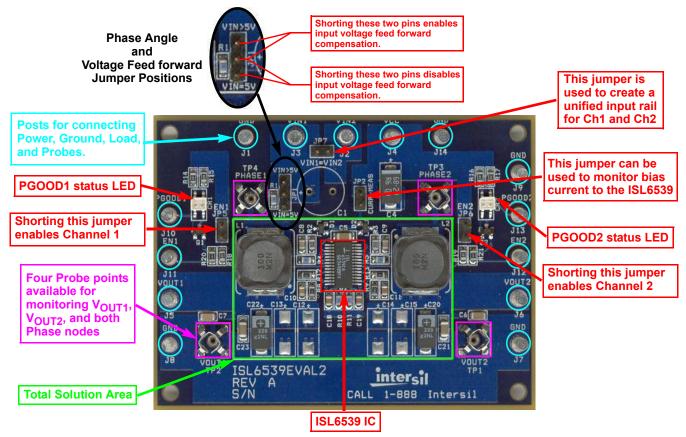


FIGURE 1. ISL6539EVAL1 BOARD

Loading VOUT2 - Sourcing Current: This is the output rail of the Channel 1 regulator. Connect the positive terminal of an electronic load to the VOUT2 post (J6). Connect the return terminal of the same load to the adjacent GND post (J7).

Loading VOUT2 - Sinking Current: To test this channel while the regulator sinks current, connect the positive terminal of an electronic load to the VIN2 post (J2). Connect the return terminal of the same load to the VOUT2 post (J6).

CAUTION: The return terminal of the load must float for this to work properly.

CONNECTING PROBES

Table 2 lists all the locations available for monitoring. The scope probe test points provide a low impedance ground connection and all GND posts can be utilized as a ground connection for probes.

ТҮРЕ	VOLTAGE	LOCATION				
POST	V _{OUT1}	J5				
	V _{OUT2}	J6				
	V _{PGOOD1}	J10				
	V _{PGOOD2}	J13				
	V _{CC}	J4				
	V _{EN1}	J11				
	V _{EN2}	J12				
	V _{IN1}	J3				
	V _{IN2}	J2				
	GND	J1, J7, J8, J9, J14				
SCOPE PROBE TEST	V _{OUT1}	TP2				
POINT	V _{OUT2}	TP1				
	V _{PHASE1}	TP4				
	V _{PHASE2}	TP3				
TABLE 2 PROBE TYPES AND LOCATIONS						

TABLE 2. PROBE TYPES AND LOCATIONS

CONNECTING POWER

Prior to connecting the power supplies to the evaluation board, the power supplies should either be turned off or the outputs should be disabled.

VCC Power Connection: Connect the positive terminal of a laboratory power supply to the VCC post (J4). Connect the return terminal of the same load to the adjacent GND post (J14). The VCC voltage should be 5V.

VIN1 Power Connection: Connect the positive terminal of a laboratory power supply to the VIN1 post (J3). Connect the return terminal of the same load to the adjacent GND post (J1). This supply can be set from a minimum of $1.2*V_{OUT1}$ to a maximum of 18V.

VIN2 Power Connection: Connect the positive terminal of a laboratory power supply to the VIN2 post (J2). Connect the return terminal of the same load to the adjacent GND post (J14). This supply can be set from a minimum of $1.2*V_{OUT2}$ to a maximum of 18V.

If Jumper JP7 is shorted, then only apply voltage at one of the input voltage posts. It should be noted that a single 5V supply can be used to apply power to all three of these rails simultaneously.

Operation

ENABLING REGULATORS

The two switching regulators can be enabled by simply shorting jumpers J5 and J6 to enable Channels 1 and 2, respectively. Alternatively, with the jumpers left open, an external signal generator can be used to enable either channel through the EN1 post (J11) or the EN2 post (J12).

APPLY POWER

The VIN power supplies must be turned on or enabled prior to turning on or enabling the VCC power supply. Likewise, they must always be disabled or turned off after disabling or turning of the VCC power supply. This rule does not apply if the VIN rails are to be supplied via the same power supply that is providing VCC.

The PGOOD status LEDs will give a visual indication of the V_{OUT1} and V_{OUT2} regulator levels. Table 3 describes the two states of the LEDs.

LED	CONDITION	RESULT
	Green	V _{OUT1} WITHIN PGOOD RANGE
CR1	Red	V _{OUT1} OUTSIDE PGOOD RANGE
	Green	V _{OUT2} WITHIN PGOOD RANGE
CR1	Red	V _{OUT1} OUTSIDE PGOOD RANGE

TABLE 3. PGOOD STATUS LED CONDITION INDICATOR

EXAMINE WAVEFORMS

Start up is immediate following Power On Reset (POR). Using an oscilloscope or other laboratory equipment, the ramp-up and/or regulation of the outputs and other aspects of the regulator operations can be studied. Loading of the outputs can be accomplished through the use of electronic loads. Any other method, however, will work as well.

Evaluation Board Design

General

The evaluation board is built on a 2-ounce, four layer printed circuit board. The board is designed to support a continuous load of 5A on both regulated output rails while operating at room temperature and under natural convection cooling.

The schematic, bill of material, and the layout plots for the ISL6539EVAL1 evaluation board on provided at the end of this application note.

Eval Board Performance

Power Up

When the VCC voltage exceeds the POR level, the ISL6539 will begin the soft-start procedure. Figure 2 shows the startup of both regulated rails from POR.

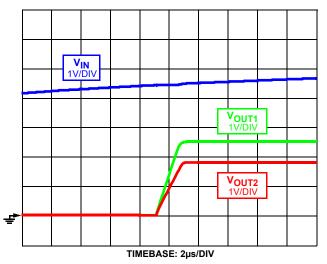


FIGURE 2. POR SOFT-START, VIN1 = VIN2 = VCC

Figure 3 shows the start up of both regulators via their respective enable inputs. Figure 3 also shows how the ISL6539 is capable of starting into a prebiased output rail. The V_{OUT1} rail has a 1V prebias prior to the enable being pulled high.

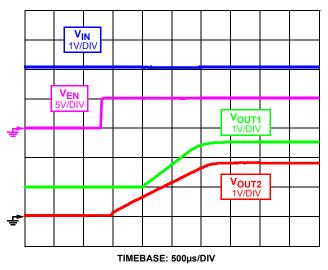


FIGURE 3. ENABLED SOFT-START, $V_{IN1} = V_{IN2} = V_{CC}$

Output Ripple

Figure 4 shows the ripple on both the regulator outputs. This capture illustrates the 180° phase shift between the two regulators.

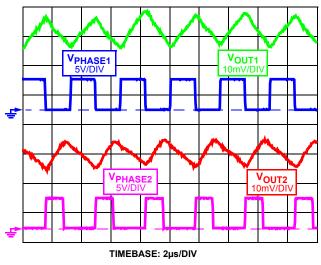


FIGURE 4. OUTPUT RIPPLE - 90° PHASE SHIFT, $V_{IN1} = V_{IN2}$

Transient Performance

Figure 5 shows the response of the regulators while each is being stressed by a separate transient load. This instance is shown with a unified input rail.

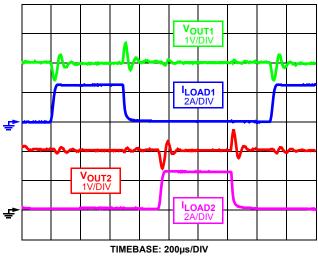


FIGURE 5. TRANSIENT LOAD ON V_{OUT1} AND V_{OUT2}, VIN1 = VIN2

Efficiency

Figure 6 shows the efficiency of the individual regulators. These efficiencies were measured while the complementary regulator was disabled. The power dissipation of the ISL6539 is not included in the efficiency curves.

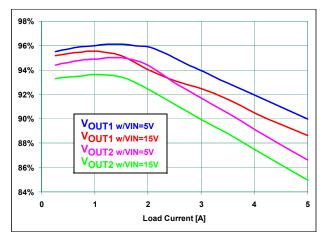


FIGURE 6. EFFICIENCY

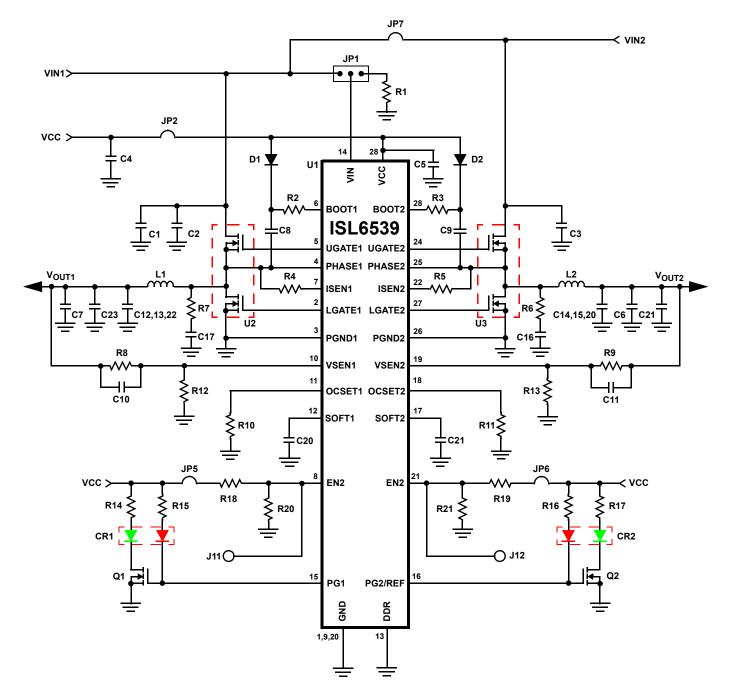
ISL6539EVAL2 Customization

There are numerous ways in which a designer might modify the ISL6539EVAL2 evaluation board for differing requirements. Some of the changes which are possible include:

- The output inductors, L1 and L2, for the V_{OUT1} and V_{OUT2} regulators, respectively.
- The input capacitance may be changed. The evaluation board is shipped with two 10µF ceramic capacitors, C2 and C3, as the input capacitance. A spot has been set aside for the installation of a 10mm diameter through hole aluminum electrolytic capacitor in location C1.
- The output capacitance of either regulator may be modified. The evaluation board is shipped with one 220µF capacitor on the output of each regulator. There are two empty locations, C12 and C13, available for the V_{OUT1} regulator and two empty locations, C14 and C15, available for the V_{OUT2} regulator.
- The overcurrent trip point of both the V_{OUT1} and V_{OUT2} regulators, programmed through the OCSET resistors, R10 and R11, respectively. Refer to the ISL6539 datasheet for details on this.
- Changing the value of C18 and C19 will alter the rise time of the outputs during soft-start. Refer to the ISL6539 datasheet for details on this.
- The load capacity for either rail can be increased by exchanging the MOSFETs, U2 and U3, for ones with higher current handling capabilities. The ISEN resistor values, R4 and R5, may need to be modified if this is done. The overcurrent resistor values, R10 and R11, would also have to be reviewed. Refer to the ISL6539 datasheet for details on calculating the values of these resistors.
- The output voltage of the V_{OUT1} regulator may be modified by changing resistor R12 and the output voltage of V_{OUT2} may be modified by changing resistor R13. Refer to the ISL6539 datasheet for details on this.

Conclusion

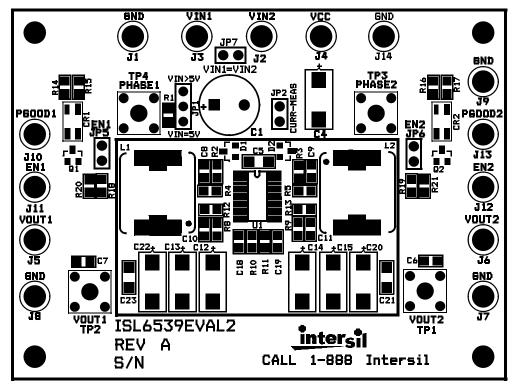
The ISL6539EVAL2 is a versatile platform that allows designers to gain a full understanding of the functionality of the ISL6539 when serving as a dual voltage regulator. The board is also flexible enough to allow the designer to modify the board for differing requirements. The following pages provide a schematic, bill of materials, and layout drawings to support implementation of this solution.


References

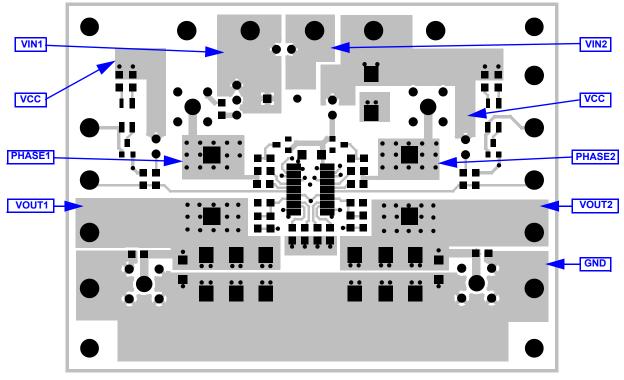
For Intersil documents available on the web, see http://www.intersil.com/

[1] *ISL6539 Data Sheet,* Intersil Corporation, File No. FN9144.

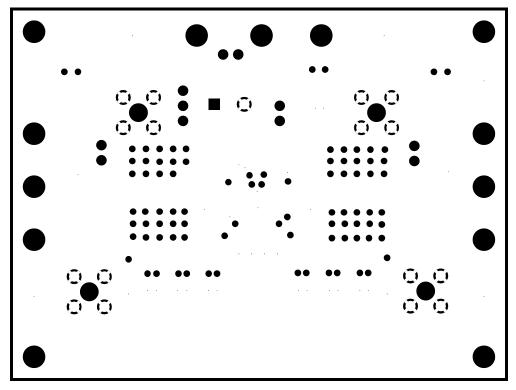
ISL6539EVAL2 Schematic

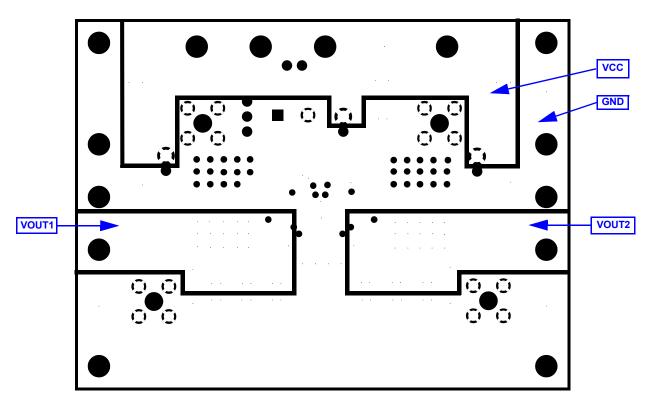


ISL6539EVAL2 Bill of Materials (BOM)


QTY	REFERENCE	DESCRIPTION	VENDOR	MFG. PART NO.
2	C2, C3	CAPACITOR, SMD, 1812, 10µF, 25V, 20%, X5R	TAIYO YUDEN	TMK432BJ106MM
1	C4	CAPACITOR TANT, LOW ESR, SMD, D, 68µF, 16V, 10%	KEMET	T494D686K016AS
3	C5, C21, C23	CAPACITOR, SMD,1206, 4.7µF, 10V, 10%, X7R	VENKEL	C1206X7R100475KNE
2	C6, C7	CAPACITOR, SMD, 1206, 1µF, 10V, 10%, X7R	KEMET	C1206C105K8RAC
2	C8, C9	CAPACITOR, SMD, 0805, 0.15µF, 25V, 10%, X7R	PANASONIC	ECJ-2YB1E154K
4	C10, C11, C18, C19	CAPACITOR, SMD, 0805, 0.01µF, 50V, 10%, X7R	PANASONIC	ECJ-2VB1H103K
2	C20, C22	CAPACITOR TANT, LOW ESR, SMD, D2, 220µF, 4V, 20%	SANYO	4TPC220M
2	CR1, CR2	LED, SMD, 3x2.5mm, 4P, RED/GRN,12/20MCD, 2V	LUMEX	SSL-LXA3025IGC-TR
2	D1, D2	DIODE-SCHOTTKY, SMD, SOT323, 3P, 30V, 0.2A	ON-SEMICONDUCTOR	BAT54WT1-T
2	L1, L2	COIL-PWR INDUCTOR, SMD, 12mm, 4.7µH,20%, 5.7	SUMIDA	CDRH124-4R7MC
2	Q1, Q2	TRANSISTOR, N-CHANNEL, 3P, SOT23,100V, 0.17A	ON-SEMICONDUCTOR	BSS123LT1-T
3	R1, R10, R11	RESISTOR, SMD, 0805, 100k, 1/10W, 1%, TF	PANASONIC	ERJ-6ENF1003V
2	R2, R3	RESISTOR, SMD, 0805, 0Ω, 1/10W, TF	PANASONIC	ERJ-6GEY0R00V
2	R4, R5	RESISTOR, SMD, 0805, 2k, 1/10W, 1%, TF	PANASONIC	ERJ-6ENF2001V
1	R8	RESISTOR, SMD, 0805, 17.8k, 1/10W, 1%, TF	PANASONIC	ERJ-6ENF1782V
5	R9, R12, R13, R20, R21	RESISTOR, SMD, 0805, 10k, 1/10W, 1%, TF	PANASONIC	ERJ-6ENF1002V
6	R14 - R19	RESISTOR, SMD, 0805, 680Ω, 1/10W, 5%, TF	PANASONIC	ERJ-6GEYJ681V
1	U1	IC, DUAL SWITCHER, 30V, 28PIN, QSOP, DDR OPTION	INTERSIL	ISL6539CA
2	U2, U3	MOSFET, DUAL, N-CHANNEL, LOGIC, 8P, SOIC, 30V, 6A	FAIRCHILD	FDS6912A

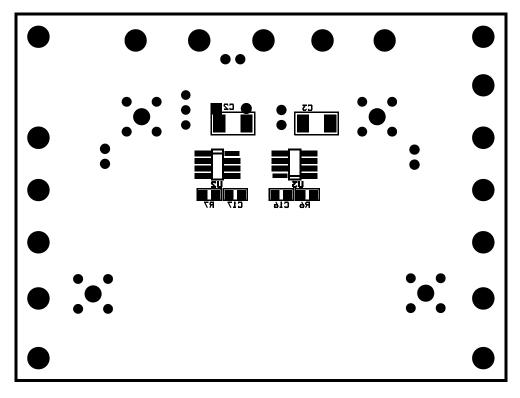
ISL6539EVAL2 Printed Circuit Board Layers


ISL6539EVAL2 - TOP SILK SCREEN AND SOLDERMASK


ISL6539EVAL2 - TOP COPPER LAYER

ISL6539EVAL2 Printed Circuit Board Layers (Continued)

ISL6539EVAL2 - LAYER 2 - GROUND


ISL6539EVAL2 - LAYER 3 - POWER

ISL6539EVAL2 - BOTTOM LAYER

ISL6539EVAL2 - BOTTOM SILK SCREEN AND SOLDER MASK

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics oroducts outside of such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Plea e contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germar Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amco Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tei: +822-558-3737, Fax: +822-558-5338