# 2N5638, 2N5639

2N5638 is a Preferred Device

## JFET Chopper Transistors N-Channel – Depletion

N–Channel Junction Field Effect Transistors, depletion mode (Type A) designed for chopper and high–speed switching applications.

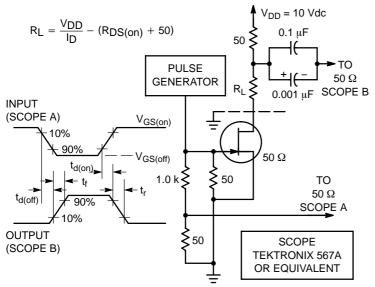
### Features

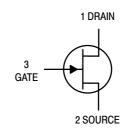
- Low Drain–Source "ON" Resistance:  $RDS(on) = 30\Omega$  for 2N5638 RDS(on) =  $60\Omega$  for 2N5639
- Low Reverse Transfer Capacitance
  - $C_{rss} = 4.0 \text{ pF}$  (Max) @ f = 1.0 MHz
- Fast Switching Characteristics  $-t_r = 5.0 \text{ ns} (Max) (2N5638)$
- Pb–Free Packages are Available\*

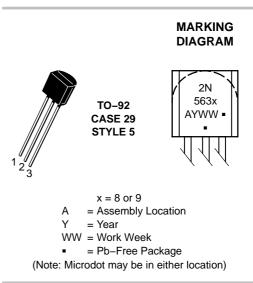
### MAXIMUM RATINGS

| Rating                                                                   | Symbol           | Value       | Unit        |
|--------------------------------------------------------------------------|------------------|-------------|-------------|
| Drain-Source Voltage                                                     | V <sub>DS</sub>  | 30          | Vdc         |
| Drain-Gate Voltage                                                       | V <sub>DG</sub>  | 30          | Vdc         |
| Reverse Gate – Source Voltage                                            | V <sub>GSR</sub> | 30          | Vdc         |
| Forward Gate Current                                                     | I <sub>GF</sub>  | 10          | mAdc        |
| Total Device Dissipation<br>@ T <sub>A</sub> = 25°C<br>Derate above 25°C | PD               | 310<br>2.82 | mW<br>mW/°C |
| Storage Temperature Range                                                | T <sub>stg</sub> | -65 to +150 | °C          |
| Operating Junction Temp Range                                            | TJ               | -65 to +135 | °C          |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.





Figure 1. Switching Times Test Circuit


\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



### **ON Semiconductor®**

http://onsemi.com





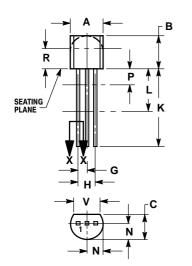
### **ORDERING INFORMATION**

| Device      | Package            | Shipping <sup>†</sup> |
|-------------|--------------------|-----------------------|
| 2N5638RLRA  | TO-92              | 2000/Tape & Reel      |
| 2N5638RLRAG | TO-92<br>(Pb-Free) | 2000/Tape & Reel      |
| 2N5639      | TO-92              | 1000 Units/Box        |
| 2N5639G     | TO-92<br>(Pb-Free) | 1000 Units/Box        |
| 2N5369RLRA  | TO-92              | 2000/Tape & Reel      |
| 2N5369RLRAG | TO-92<br>(Pb-Free) | 2000/Tape & Reel      |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

### 2N5638, 2N5639


### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                                                                                                                                                                                                                   |                                                                                 | Symbol                       | Min         | Max                      | Unit         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|-------------|--------------------------|--------------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                              |                                                                                 |                              | •           | •                        | •            |
| Gate – Source Breakdown Voltage $(I_G = -1.0 \ \mu Adc, \ V_{DS} = 0)$                                                                                                                                                                                                                                                                           |                                                                                 | V <sub>(BR)GSS</sub>         | 35          | -                        | Vdc          |
| $ \begin{array}{l} \mbox{Gate Reverse Current} \\ (V_{GS} = -15 \mbox{ Vdc},  V_{DS} = 0) \\ (V_{GS} = -15 \mbox{ Vdc},  V_{DS} = 0,  T_A = 100^{\circ}\mbox{C}) \end{array} $                                                                                                                                                                   |                                                                                 | I <sub>GSS</sub>             | -           | 1.0<br>1.0               | nAdc<br>μAdc |
| $ \begin{array}{l} \mbox{Drain-Cutoff Current} \\ (V_{DS} = 15 \mbox{ Vdc}, V_{GS} = -12 \mbox{ Vdc}) \\ (V_{DS} = 15 \mbox{ Vdc}, V_{GS} = -12 \mbox{ Vdc}, T_A = 100^{\circ}\mbox{C}) \\ (V_{DS} = 15 \mbox{ Vdc}, V_{GS} = -8.0 \mbox{ Vdc}) \\ (V_{DS} = 15 \mbox{ Vdc}, V_{GS} = -8.0 \mbox{ Vdc}, T_A = 100^{\circ}\mbox{C}) \end{array} $ | 2N5638<br>2N5638<br>2N5639<br>2N5639<br>2N5639                                  | I <sub>D(off)</sub>          | -           | 1.0<br>1.0<br>1.0<br>1.0 | μAdc         |
| ON CHARACTERISTICS                                                                                                                                                                                                                                                                                                                               |                                                                                 |                              | •           | •                        | •            |
| Zero-Gate-Voltage Drain Current (Note 1) $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0)$                                                                                                                                                                                                                                                                 | 2N5638<br>2N5639                                                                | I <sub>DSS</sub>             | 50<br>25    |                          | mAdc         |
| $\label{eq:rescaled} \begin{array}{l} \text{Drain-Source "ON" Voltage} \\ (I_D = 12 \text{ mAdc}, \text{V}_{\text{GS}} = 0) \\ (I_D = 6.0 \text{ mAdc}, \text{V}_{\text{GS}} = 0) \end{array}$                                                                                                                                                   | 2N5638<br>2N5639                                                                | V <sub>DS(on)</sub>          |             | 0.5<br>0.5               | Vdc          |
| Static Drain–Source "ON" Resistance<br>( $I_D = 1.0 \text{ mAdc}, V_{GS} = 0$ )                                                                                                                                                                                                                                                                  | 2N5638<br>2N5639                                                                | R <sub>DS(on)</sub>          |             | 30<br>60                 | Ω            |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                                                                                                                                                                                     |                                                                                 |                              |             |                          |              |
| Static Drain–Source "ON" Resistance $(V_{GS} = 0, I_D = 0, f = 1.0 \text{ kHz})$                                                                                                                                                                                                                                                                 | 2N5638<br>2N5639                                                                | R <sub>DS(on)</sub>          |             | 30<br>60                 | Ω            |
| Input Capacitance<br>( $V_{DS} = 0, V_{GS} = -12 \text{ Vdc}, f = 1.0 \text{ MHz}$ )                                                                                                                                                                                                                                                             |                                                                                 | C <sub>iss</sub>             | -           | 10                       | pF           |
| Reverse Transfer Capacitance<br>( $V_{DS} = 0$ , $V_{GS} = -12$ Vdc, f = 1.0 MHz)                                                                                                                                                                                                                                                                |                                                                                 | C <sub>rss</sub>             | -           | 4.0                      | pF           |
| SWITCHING CHARACTERISTICS (V <sub>DD</sub> = 10 Vdc,                                                                                                                                                                                                                                                                                             | $V_{GS(on)} = 0$ , $V_{GS(off)} = -10$ Vdc, F                                   | $R_{G'} = 50 \ \Omega$ . See | Figure 1 on | page 1)                  |              |
| Turn–On Delay Time                                                                                                                                                                                                                                                                                                                               | $I_{D(on)} = 12 \text{ mAdc}, 2N5638$<br>$I_{D(on)} = 6.0 \text{ mAdc}, 2N5639$ | t <sub>d(on)</sub>           |             | 4.0<br>6.0               | ns           |
| Rise Time                                                                                                                                                                                                                                                                                                                                        | $I_{D(on)}$ = 12 mAdc, 2N5638<br>$I_{D(on)}$ = 6.0 mAdc, 2N5639                 | t <sub>r</sub>               |             | 5.0<br>8.0               | ns           |
| Turn–Off Delay Time                                                                                                                                                                                                                                                                                                                              | $I_{D(on)}$ = 12 mAdc, 2N5638<br>$I_{D(on)}$ = 6.0 mAdc, 2N5639                 | t <sub>d(off)</sub>          |             | 5.0<br>10                | ns           |
| Fall Time                                                                                                                                                                                                                                                                                                                                        | I <sub>D(on)</sub> = 12 mAdc, 2N5638<br>I <sub>D(on)</sub> = 6.0 mAdc, 2N5639   | t <sub>f</sub>               |             | 10<br>20                 | ns           |

1. Pulse Width  $\leq$  300 µs, Duty Cycle  $\leq$  3.0%.

### PACKAGE DIMENSIONS

**TO-92 (TO-226)** CASE 29–11 ISSUE AL





#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
  CONTOUR OF PACKAGE BEYOND DIMENSION R
- IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

|     | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
| DIM | MIN    | MAX   | MIN         | MAX   |
| Α   | 0.175  | 0.205 | 4.45        | 5.20  |
| В   | 0.170  | 0.210 | 4.32        | 5.33  |
| C   | 0.125  | 0.165 | 3.18        | 4.19  |
| D   | 0.016  | 0.021 | 0.407       | 0.533 |
| G   | 0.045  | 0.055 | 1.15        | 1.39  |
| Н   | 0.095  | 0.105 | 2.42        | 2.66  |
| J   | 0.015  | 0.020 | 0.39        | 0.50  |
| K   | 0.500  |       | 12.70       |       |
| L   | 0.250  |       | 6.35        |       |
| Ν   | 0.080  | 0.105 | 2.04        | 2.66  |
| Ρ   |        | 0.100 |             | 2.54  |
| R   | 0.115  |       | 2.93        |       |
| ٧   | 0.135  |       | 3.43        |       |

STYLE 5: PIN 1. DRAIN 2. SOURCE

3. GATE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death application is which the failure of the social correging the design or manufacture of the part. SCILC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.