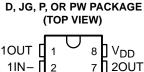
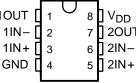
• Trimmed Offset Voltage:

TLC277 . . . 500 μ V Max at 25°C, V_{DD} = 5 V

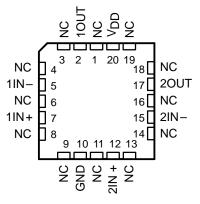
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 4 V to 16 V

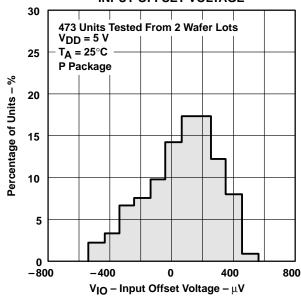

- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance . . . 10¹² Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity


description

The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching those of general-purpose BiFET devices.


These devices use Texas Instruments silicongate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications previously reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC272 (10 mV) to the high-precision TLC277 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.



FK PACKAGE (TOP VIEW)

NC - No internal connection

DISTRIBUTION OF TLC277 INPUT OFFSET VOLTAGE

LinCMOS is a trademark of Texas Instruments.

TEXAS INSTRUMENTS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

description (continued)

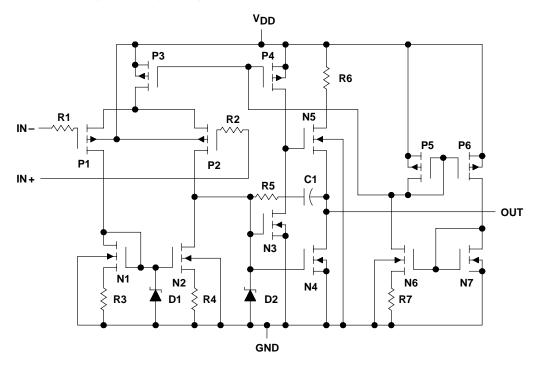
AVAILABLE OPTIONS

			PACKAGED DEVICES				
T _A	V _{IO} max AT 25°C	T 25°C OUTLINE CARRIER DIP DIP (FK) (JG) (P)		CHIP FORM (Y)			
0°C to 70°c	500 μV 2 mV 5 mV 10mV	TLC277CD TLC272BCD TLC272ACD TLC272CD	1111	 - -	TLC277CP TLC272BCP TLC272ACP TLC272CP	 TLC272CPW	— — — TLC272Y
-40°C to 85°C	500 μV 2 mV 5 mV 10 mV	TLC277ID TLC272BID TLC272AID TLC272ID	1111	- - -	TLC277IP TLC272BIP TLC272AIP TLC272IP		

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

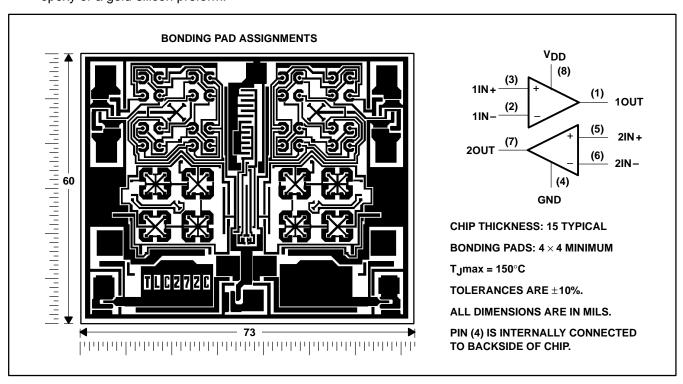
In general, many features associated with bipolar technology are available on LinCMOS™ operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.


The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.



equivalent schematic (each amplifier)

TLC272Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	±V _{DD}
Input voltage range, V _I (any input)	0.3 V to V _{DD}
Input current, I _I	±5 mĀ
output current, I _O (each output)	±30 mA
Total current into V _{DD}	45 mA
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	. See Dissipation Rating Table
Operating free-air temperature, T _A : C suffix	0°C to 70°C
I suffix	–40°C to 85°C
M suffix	–55°C to 125°C
Storage temperature range	–65°C to 150°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW	package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A
PW	525 mW	4.2 mW/°C	336 mW	N/A	N/A

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	M SUFFIX	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}		3	16	4	16	4	16	V
	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

$V_{\text{IO}} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(P MA) .1 10 .1 12 .9 5 6.5 30 2000 3000	0 2 mV
$V_{\text{IO}} \text{Input offset voltage} \begin{array}{ c c c c c }\hline \text{TLC272C} & R_{\text{S}} = 50~\Omega, & R_{\text{L}} = 10~\text{k}\Omega & \hline \text{Full range} \\\hline \\ V_{\text{O}} = 1.4~\text{V}, & V_{\text{IC}} = 0, & 25^{\circ}\text{C} & 0.0000000000000000000000000000000000$	12 0.9 § 6.5 30 2000	2 5 mV
$V_{\text{IO}} \text{Input offset voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9 5 6.5 30 2000	mV
$ V_{\text{IO}} \text{Input offset voltage} \begin{array}{ c c c c c c }\hline TLC272AC & R_{\text{S}} = 50 \ \Omega, & R_{\text{L}} = 10 \ \text{k}\Omega & \hline \\ \hline Full range & \hline \\ \hline TLC272BC & V_{\text{O}} = 1.4 \ \text{V}, & V_{\text{IC}} = 0, & 25^{\circ}C & 2 \\ \hline R_{\text{S}} = 50 \ \Omega, & R_{\text{L}} = 10 \ \text{k}\Omega & \hline \\ \hline TLC277C & V_{\text{O}} = 1.4 \ \text{V}, & V_{\text{IC}} = 0, & 25^{\circ}C & 2 \\ \hline R_{\text{S}} = 50 \ \Omega, & R_{\text{L}} = 10 \ \text{k}\Omega & \hline \\ \hline Full range & \hline \\ \hline \hline \hline Full range & \hline \hline \hline Full range & \hline \\ \hline \hline \hline Full range & \hline \hline \hline Full range & \hline \hline \hline \hline \hline \hline Full range & \hline \hline \hline \hline \hline \hline Full range & \hline \hline \hline \hline \hline \hline Full range & \hline Full range & \hline \hline \hline \hline \hline \hline \hline Full range & \hline $	6.5 30 2000	5
$ V_{\text{IO}} \text{Input offset voltage} \frac{\text{RS} = 50 \ \Omega,}{\text{RS} = 50 \ \Omega}, \frac{\text{RL} = 10 \ \text{k}\Omega}{\text{Full range}} \frac{\text{Full range}}{\text{25°C}} \frac{2}{\text{Sull range}} $ $ \frac{\text{VO} = 1.4 \ \text{V},}{\text{RS} = 50 \ \Omega}, \frac{\text{VIC} = 0,}{\text{RL} = 10 \ \text{k}\Omega} \frac{25 \text{°C}}{\text{Full range}} \frac{2}{\text{Full range}} $ $ \frac{\text{VO} = 1.4 \ \text{V},}{\text{RS} = 50 \ \Omega}, \frac{\text{VIC} = 0,}{\text{RL} = 10 \ \text{k}\Omega} \frac{25 \text{°C}}{\text{Full range}} \frac{2}{\text{Full range}} $	30 2000	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$R_S = 50 \Omega$, $R_L = 10 kΩ$ Full range $V_O = 1.4 V$, $V_{IC} = 0$, $R_L = 10 kΩ$ Full range $R_S = 50 \Omega$, $R_L = 10 kΩ$ Full range	3000)
TLC277C $R_S = 50 \Omega$, $R_L = 10 k\Omega$ Full range		
$R_S = 50 \Omega$, $R_L = 10 k\Omega$ Full range	00 500	μV
	1500)
α _{VIO} Temperature coefficient of input offset voltage	.8	μV/°C
α _{VIO} Temperature coefficient of input offset voltage 70°C	.0	μν/ Ο
).1 60	pA
Input offset current (see Note 4) $V_O = 2.5 \text{ V}, \qquad V_{ C} = 2.5 \text{ V}$	7 300)
).6 60	pA
I _{IB} Input bias current (see Note 4) 70°C	40 600) PA
	0.3	
Common-mode input voltage range	to I.2	V
VICR Common-mode input voltage range 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Full range to		V
3.5		
25°C 3.2 3	3.8	
V_{OH} High-level output voltage $V_{ID} = 100 \text{ mV}$, $R_L = 10 \text{ k}\Omega$ 0°C 3	3.8	V
70°C 3 3	3.8	
25°C	0 50)
V_{OL} Low-level output voltage $V_{ID} = -100 \text{ mV}, I_{OL} = 0$ 0°C	0 50) mV
70°C	0 50)
25°C 5	23	
AVD Large-signal differential voltage amplification $V_O = 0.25 \text{ V}$ to 2 V, $R_L = 10 \text{ k}\Omega$ 0°C 4	27	V/mV
	20	
25°C 65	80	
CMRR Common-mode rejection ratio $V_{IC} = V_{ICR}$ min 0°C 60	84	dB
	85	7
	95	
Supply-voltage rejection ratio $V_{DD} = 5 \text{ V to } 10 \text{ V}, V_{O} = 1.4 \text{ V}$ 0°C 60	94	dB
$(\Delta V)(\lambda V)(\lambda V)(\lambda V)(\lambda V)(\lambda V)(\lambda V)(\lambda V)(\lambda$	96	7
	.4 3.2	2
$V_{O} = 2.5 \text{ V},$ $V_{IC} = 2.5 \text{ V},$ 0°C	.6 3.6	6 mA
No load	.2 2.6	_

[†]Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

No		PARAMETER		TEST CONDI	TIONS	T _A †	TLC272 TLC272			UNIT
$V_{O} = V_{O} = V_{O$							MIN	TYP	MAX	
No			TI 00700	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
TLC272AC V _O = 1.4 V, V _{IC} = 0, R _L = 10 kΩ Full range Se ^C C 290 2000 R _L = 10 kΩ Full range Se ^C C 290 2000 R _L = 10 kΩ Full range Se ^C C 290 2000 R _L = 10 kΩ Full range Se ^C C 290 2000 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ Full range Se ^C C 250 800 R _L = 10 kΩ R _L			TLC272C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	
No			TI 007040	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	m۷
TLC272BC RS = 50 Ω RL = 10 kΩ Full range 3000 1000	. ,	land offertual to us	TLC272AC			Full range			6.5	
$ \frac{ \text{TLC2/2EV} }{ \text{TLC2/7CV}} = \frac{ \text{R}_{S} = 50 \Omega_{c} - \text{R}_{L} = 10 k\Omega_{c}}{ \text{R}_{S} = 50 \Omega_{c} - \text{R}_{L} = 10 k\Omega_{c}} = \frac{ \text{Se}_{C} C_{c} - \text{Se}_{D} - $	VIO	nput offset voltage	TI 007000	V _O = 1.4 V,	$V_{IC} = 0$,	25°C		290	2000	
TLC277C N _S = 50 Ω N _L = 10 kΩ Full range 1900 CV O Temperature coefficient of input offset voltage 1900 Input offset current (see Note 4) V _O = 5 V, V _I C = 5 V			TLC2/2BC	$R_S = 50 \Omega$,		Full range			3000	.,
Common-mode input voltage ViD = 100 mV, ViD = 100 kΩ ViD			T I 00 - -0	V _O = 1.4 V,	V _{IC} = 0,	25°C		250	800	μV
Temperature coefficient of input offset voltage To°C Z μV/°C Input offset current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V, VIC = 5 V Input bias current (see Note 4) VO = 5 V, VIC = 5 V,			ILC2//C		$R_L = 10 \text{ k}\Omega$	Full range			1900	
In In In In In In In In	α_{VIO}	Temperature coefficient of input of	ffset voltage					2		μV/°C
In In In In In In In In		Land offert comment (see Note 4)				25°C		0.1	60	4
In the property of the part	ΙΟ	Input offset current (see Note 4)		l.,,		70°C		7	300	pА
Vical Common-mode input voltage range (see Note 5) V V V V V V V V V				$V_O = 5 V$	AIC = 2A	25°C		0.7	60	
V _{ICR} Common-mode input voltage range (see Note 5) V	ΙΒ	Input bias current (see Note 4)				70°C		50	600	pA
VICR Common-mode input voltage range (see Note 5) V							-0.2	-0.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C				V
$V_{OH} \text{High-level output voltage} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \qquad \frac{8 8.5}{7.8 8.5} \qquad V$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \qquad \frac{0 50}{70^\circ \text{C}} \qquad \frac{50}{7.8 8.4} \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \qquad \frac{0 50}{70^\circ \text{C}} \qquad \frac{50}{70^\circ \text{C}} \qquad 5$	VICR		ge					9.2		
$V_{OH} \text{High-level output voltage} V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \frac{8}{7.8} \frac{8.5}{8.5} \qquad V$ $V_{OL} \text{Low-level output voltage} V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \frac{0}{7.8} \frac{8.4}{8.4} \qquad V$ $V_{OL} \text{Low-level output voltage} V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \frac{0}{50} \frac{50}{50} \text{mV}$ $V_{O} = 1 \text{V to 6 V}, R_L = 10 \text{k}\Omega \qquad \frac{25^\circ \text{C}}{70^\circ \text{C}} \frac{10}{36} \frac{36}{50} \frac{10}{50} \frac{36}{50} \frac{36}{$	1011	(see Note 3)				Full range				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1 dii range				v
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 70^{\circ}\text{C} & 7.8 & 8.4 \\ \hline 25^{\circ}\text{C} & 0 & 50 \\ \hline 70^{\circ}\text{C} & 0 & 50 \\ \hline \end{array} \qquad \text{mV} \qquad \begin{array}{c} 25^{\circ}\text{C} & 10 & 36 \\ \hline \hline 25^{\circ}\text{C} & 10 & 36 \\ \hline \hline 70^{\circ}\text{C} & 7.5 & 42 \\ \hline \hline 70^{\circ}\text{C} & 7.5 & 32 \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 85 \\ \hline \hline \end{array} \qquad \text{V/mV} \qquad \begin{array}{c} 70^{\circ}\text{C} & 7.5 & 42 \\ \hline \hline \hline 70^{\circ}\text{C} & 7.5 & 32 \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 85 \\ \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 88 \\ \hline \hline \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 88 \\ \hline \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 88 \\ \hline \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 94 \\ \hline \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 94 \\ \hline \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 94 \\ \hline \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 & 96 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 60 $						25°C	8	8.5		
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 70^{\circ}\text{C} & 7.8 & 8.4 \\ \hline 25^{\circ}\text{C} & 0 & 50 \\ \hline 0^{\circ}\text{C} & 0 & 50 \\ \hline 70^{\circ}\text{C} & 0 & 50 \\ \hline 70^{\circ}\text{C} & 0 & 50 \\ \hline 70^{\circ}\text{C} & 0 & 50 \\ \hline \end{array} \qquad \text{mV}$ $A_{VD} \text{Large-signal differential voltage amplification} \qquad V_{O} = 1 \text{V to 6 V}, R_{L} = 10 \text{k}\Omega \qquad \begin{array}{c} 25^{\circ}\text{C} & 10 & 36 \\ \hline 0^{\circ}\text{C} & 7.5 & 42 \\ \hline 70^{\circ}\text{C} & 7.5 & 32 \\ \hline 25^{\circ}\text{C} & 65 & 85 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 7.5 & 32 \\ \hline 0^{\circ}\text{C} & 60 & 88 \\ \hline \hline 0^{\circ}\text{C} & 60 & 88 \\ \hline \end{array} \qquad \begin{array}{c} 48 \\ \hline 0^{\circ}\text{C} & 60 & 94 \\ \hline \end{array} \qquad \begin{array}{c} 48 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 \\ \hline \end{array} \qquad \begin{array}{c} 0^{\circ}\text{C} & 1.9 & 4 $	Vон	High-level output voltage		V _{ID} = 100 mV,	$R_I = 10 \text{ k}\Omega$	0°C	7.8	8.5		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	"				_	70°C	7.8	8.4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OI} = 0$	0°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, •			<u>-</u>	70°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	10	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD	Large-signal differential voltage a	mplification	$V_{O} = 1 \text{ V to 6 V},$	$R_I = 10 \text{ k}\Omega$	0°C	7.5	42		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	''		·		_	70°C	7.5	32		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	65	85		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	CMRR Common-mode rejection ratio		V _{IC} = V _{ICR} min		0°C	60	88		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•		10 1011		70°C	60	88		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
To°C 60 96 To°C 60 96 To°C 1.9 4 To°C	ks//R			VDD = 5 V to 10 V.	VO = 1.4 V		60	94		dB
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ V_{IC		$(\Delta V_{DD}/\Delta V_{IO})$		- UUD - 5 v 10 10 v,	νO = 1.4 V	70°C	60	96		
$V_{O} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ $V_{IC} = 5 \text{ V},$ 0°C 2.3 4.4 mA					V _{IC} = 5 V,			1.9	4	+
No load	IDD	Supply current (two amplifiers)				-			4.4	mA
		,				70°C		1.6	3.4	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 5 V (unless otherwise noted)

No = 1.4 V, No = 1.4 V, Rg = 50 Ω, Rg = 10 kΩ Full range 110 k		PARAMETER		TEST COND	ITIONS	T _A †		2I, TLC2 2BI, TL0		UNIT
No N						``	MIN	TYP	MAX	
No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset voltage No input offset current (see Note 4) No			TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
No N			TLC2/2I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	
No N			TI 007041	V _O = 1.4 V,	$V_{IC} = 0$	25°C		0.9	5	mv
TLC272Bl Rg = 50 Ω, R = 10 kB, R = 10 k	l.,		TLC2/2AI	$R_S = 50 \Omega$,		Full range			7	
Mathematical Results Mathematical Result	VIO	input offset voltage	TI 0070DI	V _O = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
TLC2771 VO = 1.4 V, RS = 50 Ω, RL = 10 kΩ Full range 25°C 200 500 Temperature coefficient of input offset voltage 25°C 85°C 1.8 μV/°C Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V Input bias current (see Note 4) V			TLC2/2BI			Full range			3500	
αVIO Temperature coefficient of input offset voltage R _S = 50 Ω, R _L = 10 kΩ Full range (25°C to 85°C) 2.88°C (24 to 15) μ/V/°C I _{IO} Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V 25°C (24 to 15) 0.0 to 60 (24 to 15) pA I _{IB} Input bias current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V 25°C (24 to 15) 0.0 to 60 (24 to 15) pA VORA (see Note 5) Common-mode input voltage range (see Note 5) VIC = 100 mV, VIC = 100 mV			TI 00771	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μν
Input offset current (see Note 4) VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V Easier Common-mode input voltage VID = 100 mV, VID = 100			TLC2//I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2000	
Input bifset current (see Note 4) V _O = 2.5 V, V _{IC} = 2.5 V V _{IC} =	$\alpha_{ extsf{VIO}}$	Temperature coefficient of input	offset voltage					1.8		μV/°C
In In In In In In In In	1	Input offset surrent (see Note 4)				25°C		0.1	60	~ A
Input bias current (see Note 4) 25°C 0.6 60 85°C 200 35 pA	чо	input offset current (see Note 4)		V- 05V	V 0.5.V	85°C		24	15	рА
Vicra Common-mode input voltage range (see Note 5) Vight High-level output voltage Vight Low-level output voltage Vight Lo				VO = 2.5 V,	VIC = 2.5 V	25°C		0.6	60	A
$V_{ICR} = \begin{array}{c} Common-mode input voltage range \\ (see Note 5) \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage range \\ (see Note 5) \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage \\ (see Note 5) \end{array} \\ \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage \\ (see Note 5) \end{array} \\ \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input voltage \\ V_{ID} = 100 \text{mV}, \end{array} \\ \begin{array}{c} V_{ID} = 100 \text$	IB	Input bias current (see Note 4)				85°C		200	35	рА
$\begin{array}{c} \text{Common-mode input voltage range} \\ \text{(see Note 5)} \\ \hline \\ \text{VOH} \\ \text{High-level output voltage} \\ \hline \\ \text{VOH} \\ \text{High-level output voltage} \\ \hline \\ \text{VOL} \\ \text{Low-level output voltage} \\ \hline \\ \text{VID} = 100 \text{mV}, \\ \text{VID} = 100 \text{mV}, \\ \text{VID} = -100 \text{mV}, \\ \text{IOL} = 0 \\ \hline \\ \text{VID} = -100 \text{mV}, \\ \text{RL} = 10 \text{k}\Omega \\ \hline \\ \text{RS}^{\circ}\text{C} \\ \text{SS}^{\circ}\text{C} \\ \text{SS}^{\circ}\text{C}$							-0.2	-0.3		
Vocation						25°C				V
$V_{OH} \text{High-level output voltage} \qquad \qquad V_{ID} = 100 \text{mV}, \qquad R_L = 10 \text{k}\Omega \qquad \qquad V_{OH} \qquad V_{ID} = 100 \text{mV}, \qquad R_L = 10 \text{k}\Omega \qquad \qquad V_{OH} \qquad V_{ID} = 100 \text{mV}, \qquad R_L = 10 \text{k}\Omega \qquad \qquad V_{OH} \qquad \qquad V_{OH} \qquad V_{ID} = 100 \text{mV}, \qquad V_{ID} = 100 m$	VICR		nge					4.2		
$V_{OH} \text{High-level output voltage} \qquad V_{ID} = 100 \text{mV}, R_L = 10 \text{k}\Omega \qquad \frac{25^\circ \text{C}}{3.2} \frac{3.8}{3.8} \qquad V$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^\circ \text{C}}{85^\circ \text{C}} \frac{3}{3} \frac{3.8}{3.8} \qquad V$ $V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^\circ \text{C}}{85^\circ \text{C}} \frac{0}{3} \frac{50}{3.8} \qquad \text{mV}$ $A_{VD} \text{Large-signal differential voltage amplification} \qquad V_{O} = 1 \text{V to 6 V}, R_L = 10 \text{k}\Omega \qquad \frac{25^\circ \text{C}}{85^\circ \text{C}} \frac{5}{3.5} \frac{32}{32} \qquad \text{V/mV}$ $CMRR \text{Common-mode rejection ratio} \qquad V_{IC} = V_{ICR} \text{min} \qquad \frac{25^\circ \text{C}}{85^\circ \text{C}} \frac{65}{60} \frac{80}{85^\circ \text{C}} \qquad \frac{60}{86} \qquad \frac{81}{85^\circ \text{C}} \qquad \frac{60}{86} \qquad \frac{81}{85^\circ \text{C}} \qquad \frac{60}{86} \qquad \frac{95}{85^\circ \text{C}} \qquad \frac{1.4}{85^\circ \text{C}} \qquad \frac{3.2}{85^\circ \text{C}} \qquad \frac{3.8}{85^\circ \text{C}} \qquad \frac{3.8}{3.8} \qquad \frac{3.8}{3.8} \qquad V$ $V_{DD} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \qquad \frac{25^\circ \text{C}}{85^\circ \text{C}} \qquad \frac{65}{80} \qquad \frac{95}{85^\circ \text{C}} \qquad \frac{65}{80} \qquad \frac{3.8}{85^\circ \text{C}} \qquad \frac{3.8}{85^$	1011	(see Note 5)				Full range				V
$\begin{array}{c} V_{OH} \mbox{High-level output voltage} \\ V_{OL} \mbox{Low-level output voltage} \\ \mbox{V}_{OL} \mbox{Low-level output voltage} \\ \mbox{V}_{ID} = -100 \ \mbox{mV}, \qquad I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ \mbox{mV}, \qquad I_{OL} = 0 \\ \mbox{V}_{ID} = -100 \ \mbox{mV}, \qquad I_{OL} = 0 \\ \mbox{R}_{O} = 0 \\ \mbox{So}^{\circ} C \\ So$						i un range				V
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \frac{25^{\circ}\text{C}}{-40^{\circ}\text{C}} \qquad 0 50 \\ \hline 85^{\circ}\text{C} \qquad 65 80 \\ \hline 86^{\circ}\text{C} \qquad 60 86 \\ \hline 85^{\circ}\text{C} \qquad 60 96 \\ \hline 85^{\circ}\text{C} \qquad 60 96 \\ \hline 1.4 \qquad 3.2 \\ \hline 1DD \qquad \text{Supply current (two amplifiers)} \qquad V_{O} = 2.5 \text{V}, \\ No load \qquad V_{IC} = 2.5 \text{V}, \\ No load \qquad No$						25°C	3.2	3.8		
$V_{OL} \text{Low-level output voltage} \qquad V_{ID} = -100 \text{mV}, I_{OL} = 0 \qquad \begin{array}{c} 85^{\circ}\text{C} & 3 & 3.8 \\ \hline 25^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 0 & 50 \\ \hline 85^{\circ}\text{C} & 0 & 50 \\ \hline \end{array} \qquad \text{mV}$ $A_{VD} \text{Large-signal differential voltage amplification} \qquad V_{O} = 1 \text{V to 6 V}, R_{L} = 10 \text{k}\Omega \qquad \begin{array}{c} 25^{\circ}\text{C} & 5 & 23 \\ \hline -40^{\circ}\text{C} & 3.5 & 32 \\ \hline 85^{\circ}\text{C} & 3.5 & 32 \\ \hline 85^{\circ}\text{C} & 3.5 & 19 \\ \hline \hline 85^{\circ}\text{C} & 65 & 80 \\ \hline -40^{\circ}\text{C} & 60 & 81 \\ \hline 85^{\circ}\text{C} & 60 & 86 \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 95 \\ \hline \hline 80 & 0 & 0 \\ \hline \hline 85^{\circ}\text{C} & 60 & 86 \\ \hline \hline \end{array} \qquad \text{dB}$ $k_{SVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ \text{($\Delta V_{DD}/\Delta V_{IO}$)} & V_{DD} = 5 \text{V to 10 V}, V_{O} = 1.4 \text{V} \\ \hline \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 95 \\ \hline \hline -40^{\circ}\text{C} & 60 & 92 \\ \hline \hline 85^{\circ}\text{C} & 60 & 96 \\ \hline \hline \end{array} \qquad \text{dB}$ $I_{DD} \text{Supply current (two amplifiers)} \qquad \begin{array}{c} V_{O} = 2.5 \text{V}, \\ N_{O} \text{load} \\ \end{array} \qquad \begin{array}{c} V_{IC} = 2.5 \text{V}, \\ N_{O} \text{load} \\ \end{array} \qquad \begin{array}{c} V_{IC} = 2.5 \text{V}, \\ N_{O} \text{load} \\ \end{array} \qquad \begin{array}{c} 0.5 \text{C} & 0.3 \text{C} \\ 0.5 \text{C} & 0.3 \text$	Vон	High-level output voltage		V _{ID} = 100 mV,	$R_I = 10 \text{ k}\Omega$	-40°C	3	3.8		V
$\begin{array}{c} V_{OL} \ \ \ \ \ \ \ \ $	0.1	0 1 0		, ,	_	85°C	3	3.8		
						25°C		0	50	
$A_{VD} = 1 \ V \ V_{O} = 1 \ V_{$	VOL	Low-level output voltage		$V_{1D} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	"				OL .	85°C		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25°C	5	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AVD	Large-signal differential voltage	amplification	$V_{O} = 1 \text{ V to 6 V},$	$R_I = 10 \text{ k}\Omega$	-40°C	3.5	32		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'-				_	85°C	3.5	19		
						25°C	65	80		
$ \text{KSVR} \begin{array}{c} \text{Supply-voltage rejection ratio} \\ \text{($\Delta V_{DD}/\Delta V_{IO})} \end{array} \qquad \begin{array}{c} \text{V}_{DD} = 5 \text{ V to 10 V}, \text{V}_{O} = 1.4 \text{ V} \\ \hline \\ \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} 25^{\circ}\text{C} & 65 & 95 \\ \hline \\ -40^{\circ}\text{C} & 60 & 92 \\ \hline \\ 85^{\circ}\text{C} & 60 & 96 \\ \hline \\ \text{W}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{V}_{DC} = 2.5 \text{ V}, \\ \text{No load} \end{array} \qquad \begin{array}{c} \text{NO load} \end{array} \qquad \begin{array}{c} \text{NO load} \end{array} \qquad \begin{array}{c} \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \text{NO load} \qquad \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad \begin{array}{c} \text{NO load} \qquad NO lo$	CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		-40°C	60	81		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•				85°C	60	86		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							65	95		
Supply current (two amplifiers) VO = 2.5 V, No load VIC = 2.5	ksvr			$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	-40°C	60	92		dB
$V_O = 2.5 \text{ V},$ $V_{IC} = 2.5 \text{ V},$ V		(ΔVDD/ΔVIO)			, VO = 1.4 V	85°C	60	96		
No load						25°C		1.4	3.2	
INU IUAU	IDD	Supply current (two amplifiers)		_	$V_{IC} = 2.5 V,$	-40°C		1.9	4.4	mA
				INU IUAU		85°C		1.1	2.4	

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	T _A †	TLC27	2I, TLC2 2BI, TLC		UNIT
						MIN	TYP	MAX	
		TI 00701	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC272I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			13	>/
		TI 007041	$V_0 = 1.4 \text{ V},$	V _{IC} = 0,	25°C		0.9	5	mV
l.,	Input offeet voltage	TLC272AI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			7	
VIO	Input offset voltage	TI 0070DI	V _O = 1.4 V,	V _{IC} = 0,	25°C		290	2000	
		TLC272BI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3500	.,
		TI 00771	$V_0 = 1.4 \text{ V},$	V _{IC} = 0,	25°C		250	800	μV
		TLC277I	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			2900	
α_{VIO}	Temperature coefficient of input of	offset voltage			25°C to 85°C		2		μV/°C
1	Innut affect comment (and Nate 4)				25°C		0.1	60	A
liO	Input offset current (see Note 4)			.,	85°C		26	1000	рA
	January Indian Aller Aller Aller Aller		$V_0 = 5 V$,	$V_{IC} = 5 V$	25°C		0.7	60	A
ΙΒ	Input bias current (see Note 4)				85°C		220	2000	рA
						-0.2	-0.3		
					25°C	to	to		V
VICR	Common-mode input voltage range (see Note 5)					9	9.2		
					Full range	-0.2 to			V
				i un rungo	8.5			·	
					25°C	8	8.5		
Voн	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	-40°C	7.8	8.5		V
					85°C	7.8	8.5		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
"-				01	85°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage a	amplification	$V_0 = 1 \text{ V to 6 V},$	$R_L = 10 \text{ k}\Omega$	-40°C	7	46		V/mV
				_	85°C	7	31		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		-40°C	60	87		dB
	·				85°C	60	88		
					25°C	65	95		
ksvr	Supply-voltage rejection ratio		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	-40°C	60	92		dB
]	$(\Delta V_{DD}/\Delta V_{IO})$, VO – 1.4 V	85°C	60	96		
					25°C		1.4	4	+
I_{DD}	Supply current (two amplifiers)		V _O = 5 V, No load	$V_{IC} = 5 V$	-40°C		2.8	5	mA
			INO IOAU		85°C		1.5	3.2	

[†] Full range is –40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 5 V (unless otherwise noted)

	24244555		TEGT 0011D	ITIONIO	- +	TLC27	2M, TLC	277M	
	PARAMETER		TEST COND	IIIONS	T _A †	MIN	TYP	MAX	UNIT
		TI 007014	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	>/
V	lanut affaat valta sa	TLC272M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
V _{IO}	Input offset voltage	TLC277M	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	/
		TLC2//IVI	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3750	μV
αΛΙΟ	Temperature coefficient of input or voltage	offset			25°C to 125°C		2.1		μV/°C
L	Input offset surrent (see Note 4)				25°C		0.1	60	pА
10	Input offset current (see Note 4)		V- 05V	V:- 0.5.V	125°C		1.4	15	nA
1	Innuit bigg gurrant (aga Nota 4)		V _O = 2.5 V	$V_{IC} = 2.5 V$	25°C		0.6	60	pА
lΒ	Input bias current (see Note 4)				125°C		9	35	nA
	Common-mode input voltage ran	qe			25°C	0 to 4	-0.3 to 4.2		٧
VICR	(see Note 5)				Full range	0 to 3.5			V
					25°C	3.2	3.8		
∨он	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	3	3.8		V	
					125°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	IOT = 0	−55°C		0	50	mV
					125°C		0	50	
					25°C	5	23		
A_{VD}	Large-signal differential voltage a	mplification	$V_0 = 0.25 \text{ V to 2 V}$	$R_L = 10 \text{ k}\Omega$	−55°C	3.5	35		V/mV
					125°C	3.5	16		
					25°C	65	80		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	81		dB
					125°C	60	84		
	Cupply voltage rejection reti-				25°C	65	95		
k _{SVR}	Supply-voltage rejection ratio (ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	−55°C	60	90		dB
	(00/10/				125°C	60	97		
			V- 25V	V:- 25V	25°C		1.4	3.2	
I_{DD}	Supply current (two amplifiers)		$V_O = 2.5 \text{ V}, V_I$ No load	$V_{IC} = 2.5 V,$	−55°C		2	5	mA
					125°C		1	2.2	

[†] Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

PARAMETER		TEST COND	ITIONS	T _A †	TLC272	M, TLC	277M	UNIT	
	PARAMETER		TEST COND	ITIONS	'A'	MIN	TYP	MAX	UNII
		TI COZOM	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		1.1	10	m\/
V	lanut offeet volteere	TLC272M	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
V _{IO}	Input offset voltage	TLC277M	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		250	800	
		I LC2//W	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μV
ανιο	Temperature coefficient of input voltage	offset			25°C to 125°C		2.2		μV/°C
	lamed offert summed (as a Nata 4)				25°C		0.1	60	pА
lo	Input offset current (see Note 4)				125°C		1.8	15	nA
	legat bles suggest (see Note 4)		$V_{O} = 5 V,$	AIC = 2 A	25°C		0.7	60	pA
lΒ	Input bias current (see Note 4)				125°C		10	35	nA
V/	Common-mode input voltage ra	nge			25°C	0 to 9	-0.3 to 9.2		V
VICR (see Note 5)	(see Note 5)				Full range	0 to 8.5			٧
					25°C	8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	−55°C	7.8	8.5		V
				125°C	7.8	8.4			
					25°C		0	50	
V_{OL}	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	I _{OL} = 0	−55°C		0	50	mV
					125°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage amplification		$V_0 = 1 V to 6 V$,	$R_L = 10 \text{ k}\Omega$	−55°C	7	50		V/mV
	ampimoation				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		V _{IC} = V _{ICR} min		−55°C	60	87		dB
					125°C	60	86		
_	•			_	25°C	65	95		
k _{SVR}	Supply-voltage rejection ratio (ΔVDD/ΔVIO)		$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	−55°C	60	90		dB
	(¬,DD,¬,				125°C	60	97		
			.,,		25°C		1.9	4	
I_{DD}	Supply current (two amplifiers)		$V_O = 5 \text{ V},$ V No load	$V_{IC} = 5 V$,	−55°C		3	6	mA
			110 1000		125°C		1.3	2.8	

[†]Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST COM	DITIONS	Т	LC272Y		UNIT
	PARAMETER	TEST CONI	SITIONS	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ R _S = 50 Ω ,	V _{IC} = 0, R _L = 10 kΩ		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
IIO	Input offset current (see Note 4)	V 05V	V 05V		0.1		pA
I _{IB}	Input bias current (see Note 4)	$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 V$		0.6		pA
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		٧
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$		0	50	mV
AVD	Large-signal differential voltage amplification	V _O = 0.25 V to 2 V	$R_L = 10 \text{ k}\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		1.4	3.2	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST COM	DITIONS	Т	LC272Y		UNIT
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage	$V_{O} = 1.4 \text{ V},$ $R_{S} = 50 \Omega,$	$V_{IC} = 0$, $R_L = 10 \text{ k}\Omega$		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
lο	Input offset current (see Note 4)	V 5V			0.1		pА
I _{IB}	Input bias current (see Note 4)	$V_O = 5 V$	$V_{IC} = 5 V$		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$	R _L = 10 kΩ	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	I _{OL} = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_0 = 1 \text{ V to 6 V},$	R _L = 10 kΩ	10	36		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		65	85		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	V _O = 1.4 V	65	95		dB
I _{DD}	Supply current (two amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		1.9	4	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E – OCTOBER 1987 – REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TLC272C, TLC272AC, TLC272BC, TLC277C			UNIT
				, ,	MIN	TYP	MAX	
				25°C		3.6		
			V _{IPP} = 1 V	0°C		4		
	Olever made and condition made	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 1		70°C		3		\// -
SR	Slew rate at unity gain			25°C		2.9		V/μs
			V _{IPP} = 2.5 V	0°C		3.1		
				70°C		2.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		25°C		320		
ВОМ				0°C		340		kHz
			See Figure 1	70°C		260		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	0°C		2		MHz
		See rigure 3		70°C		1.3		
			, _	25°C		46°		
φm	Phase margin	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	0°C		47°		
		OL – 20 μι⁻,	oce i iguie 3	70°C		43°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	TA	TLC272C, TLC272AC, TLC272BC, TLC277C			UNIT	
					MIN	TYP	MAX	
				25°C		5.3		
	Slew rate at unity gain		V _{IPP} = 1 V	0°C		5.9		
		$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 1		70°C		4.3		\//··-
SR	Slew rate at unity gain			25°C		4.6		V/μs
			V _{IPP} = 5.5 V	0°C		5.1		
				70°C		3.8		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		25°C		200		kHz
ВОМ			C _L = 20 pF, See Figure 1	0°C		220		
				70°C		140		
				25°C		2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	0°C		2.5		MHz
		See rigure 3		70°C		1.8		
			,	25°C		49°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	0°C		50°		
		OL - 20 pr ,	Sec Figure 3	70°C		46°		

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, V_{DD} = 5 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT
				• •	MIN	TYP	MAX	
				25°C		3.6		
			V _{IPP} = 1 V	−40°C		4.5		
0.0	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 1		85°C		2.8		\// -
SR				25°C		2.9		V/μs
			V _{IPP} = 2.5 V	−40°C		3.5		
				85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		25°C		320		
ВОМ			C _L = 20 pF, See Figure 1	−40°C		380		kHz
				85°C		250		
				25°C		1.7		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	−40°C		2.6		MHz
		See rigule 3		85°C		1.2		
		V _I = 10 mV, C _L = 20 pF,	f = B ₁ ,	25°C		46°		
φm	Phase margin			−40°C		49°		
		OL = 20 pr ,	occ rigule 3	85°C		43°		

operating characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT
				,,	MIN	TYP	MAX	
				25°C		5.3		
			V _{IPP} = 1 V	−40°C		6.8		
CD	Classical and section and	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 1		85°C		4		\// -
SR	Slew rate at unity gain		V _{IPP} = 5.5 V	25°C		4.6		V/μs
				−40°C		5.8		
				85°C		3.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√Hz
			C _L = 20 pF, See Figure 1	25°C		200		
Вом	Maximum output-swing bandwidth			−40°C		260		kHz
				85°C		130		
				25°C		2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−40°C		3.1		MHz
		Gee Figure 3		85°C		1.7		
				25°C		49°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−40°C		52°		
		OL – 20 pr.,	oce rigule 3	85°C		46°		

SLOS091E – OCTOBER 1987 – REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	DADAMETED	TEOT 00	NDITIONS	-	TLC27			
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		3.6		
			V _{IPP} = 1 V	−55°C		4.7		
0.0	Class rate at smits and	$R_L = 10 \text{ k}\Omega$		125°C		2.3		\ \// -
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/μs
		Goo'i igaro'i	V _{IPP} = 2.5 V	−55°C		3.7		
				125°C		2		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		25°C		320		
Вом			C _L = 20 pF,	−55°C		400		kHz
			See rigure r	125°C		230		
				25°C		1.7		
В ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 pF$,	−55°C		2.9		MHz
		See Figure 3		125°C		1.1		
				25°C		46°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$	f = B ₁ , See Figure 3	−55°C		49°		
	-	OL - 20 PF,	oce i igule o	125°C		41°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	т.	TLC272M, TLC277M			
	PARAMETER	1231 00	NDITIONS	T _A	MIN	TYP	MAX	UNIT
				25°C		5.3		
			V _{IPP} = 1 V	−55°C		7.1		
	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$		125°C		3.1		\// -
SR		C _L = 20 pF, See Figure 1		25°C		4.6		V/μs
		gare :	V _{IPP} = 5.5 V	−55°C		6.1		
				125°C		2.7		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		25°C		200		
ВОМ				−55°C		280		kHz
			Occ riguic r	125°C		110		
				25°C		2.2		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	$C_L = 20 \text{ pF},$	−55°C		3.4		MHz
		Gee rigure 3		125°C		1.6		
				25°C		49°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 3	−55°C		52°		
		OL = 20 pr,	ecc i iguic o	125°C		44°		

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics, V_{DD} = 5 V, T_A = 25°C

	PARAMETER		TEST CONDITIONS			TLC272Y		
	PARAMETER	11	TEST CONDITIONS				MAX	UNIT
0.0	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	V _{IPP} = 1 V		3.6		\// -
SR		See Figure 1		V _{IPP} = 2.5 V	2.9			V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF,$	$R_L = 10 \text{ k}\Omega$,		320		kHz
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	$C_L = 20 pF$,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	$C_L = 20 pF,$		46°		

operating characteristics, V_{DD} = 10 V, T_A = 25°C

	PARAMETER	-	EST CONDITIO	NC	Т		LINUT	
	FARAWETER	•	EST CONDITIO	No	MIN	TYP	MAX	UNIT
CD	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	$C_L = 20 pF$,	V _{IPP} = 1 V	5.3			Miss
SR		See Figure 1		V _{IPP} = 5.5 V		4.6		V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2		25		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF,$	$R_L = 10 \text{ k}\Omega$,		200		kHz
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	$C_L = 20 pF$,	See Figure 3		2.2		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°		

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

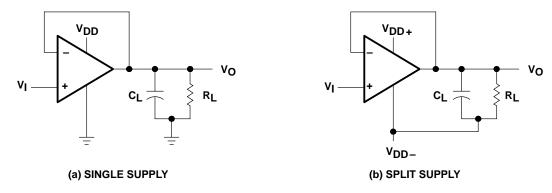


Figure 1. Unity-Gain Amplifier

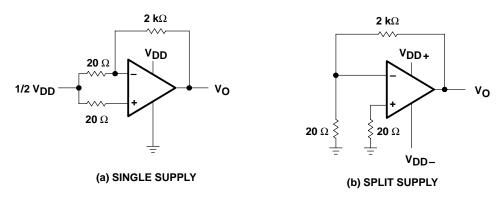


Figure 2. Noise-Test Circuit

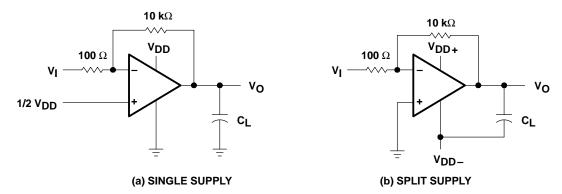


Figure 3. Gain-of-100 Inverting Amplifier

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

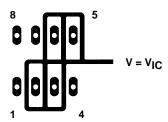


Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

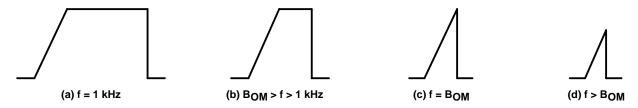
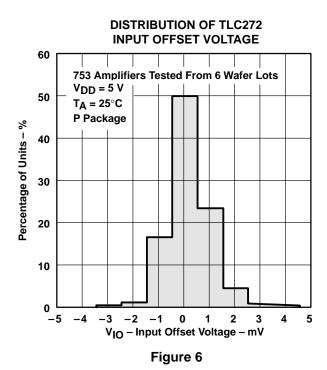


Figure 5. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
α_{VIO}	Temperature coefficient of input offset voltage	Distribution	8, 9
VOH	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
V _{OL}	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
lιο	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φт	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
٧n	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

TYPICAL CHARACTERISTICS

DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

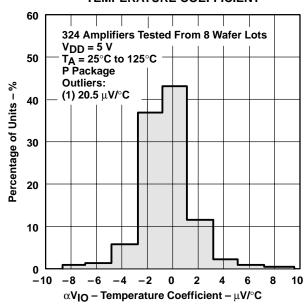


Figure 8

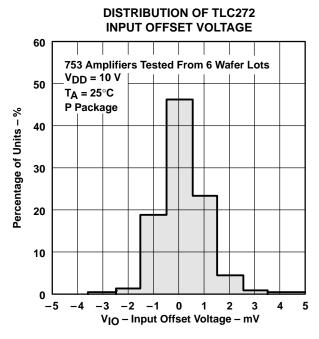


Figure 7

DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

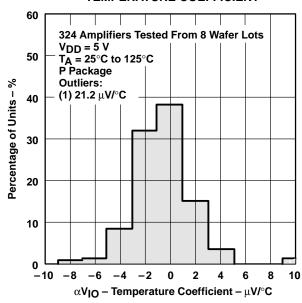
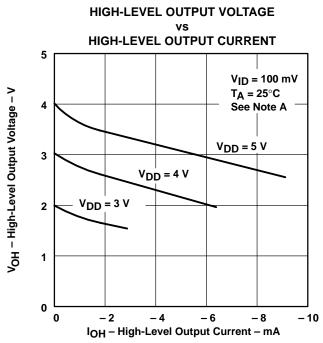
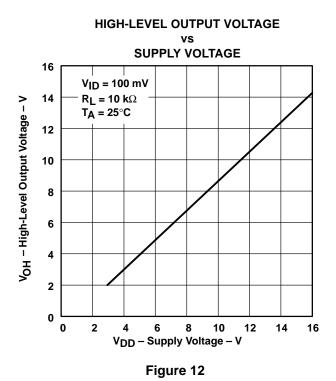




Figure 9

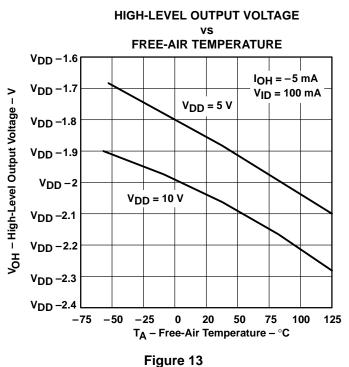

NOTE A: The 3-V curve only applies to the C version.

Figure 10

HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT 16 **VID** = 100 mV 14 VOH - High-Level Output Voltage - V T_A = 25°C $V_{DD} = 16 V$ 12 10 8 $V_{DD} = 10 V$ 6 4 2 0 -15 -20 -25 -30- 35 0 IOH - High-Level Output Current - mA

Figure 11

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

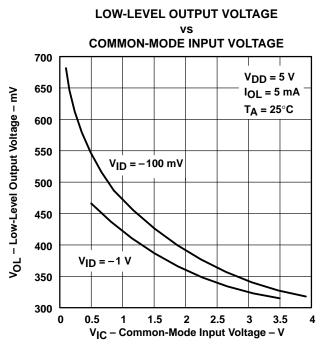


Figure 14

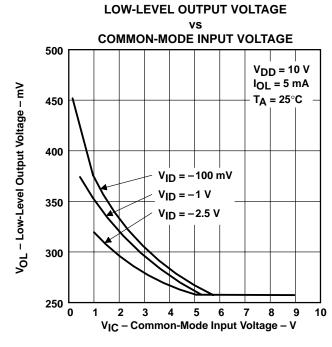


Figure 15

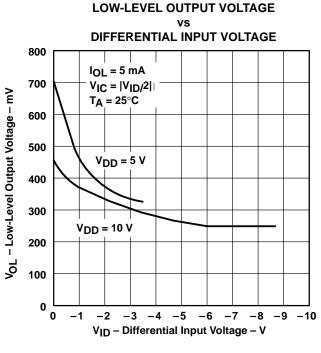
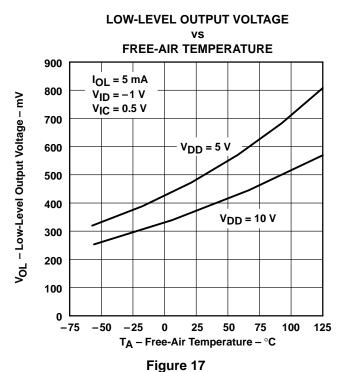
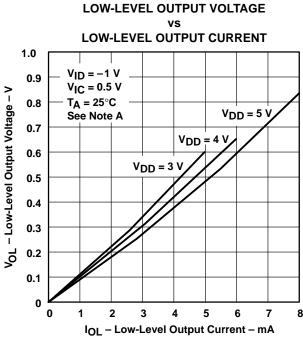




Figure 16

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

NOTE A: The 3-V curve only applies to the C version. **Figure 18**

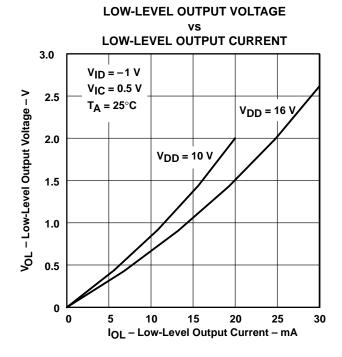
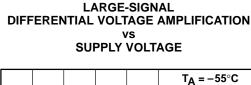
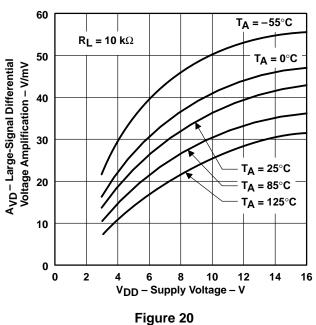




Figure 19

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

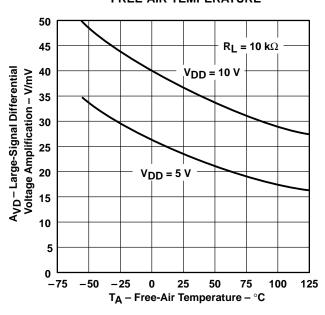
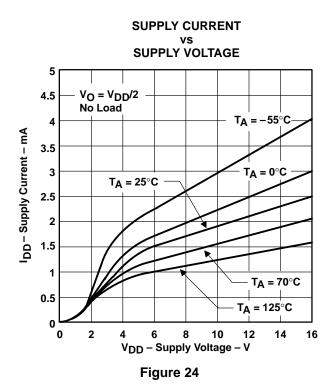


Figure 21

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

FREE-AIR TEMPERATURE 10000 IIB and IIO - Input Bias and Offset Currents - pA V_{DD} = 10 V V_{IC} = 5 V See Note A 1000 lιΒ 100 llo 10 1 0.1 - 25 65 75 85 95 105

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 22

T_A - Free-Air Temperature - °C

COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs

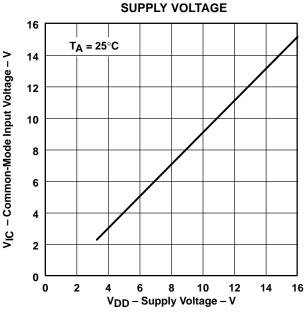


Figure 23

SUPPLY CURRENT

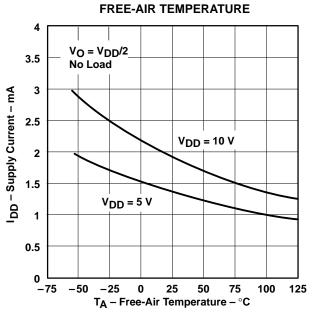


Figure 25

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

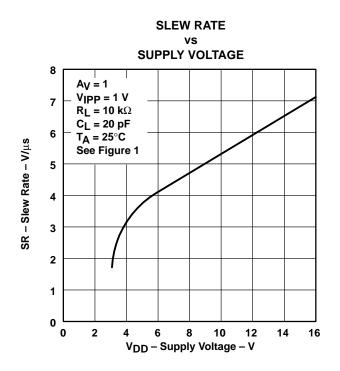


Figure 26

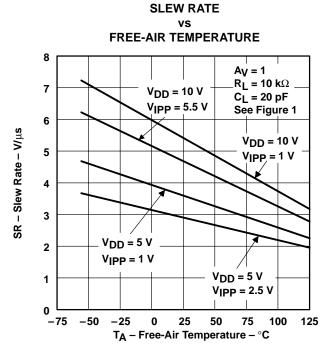
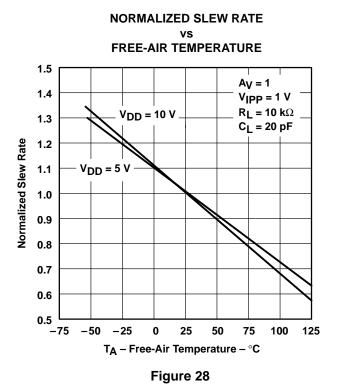
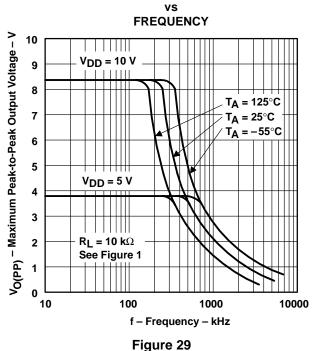
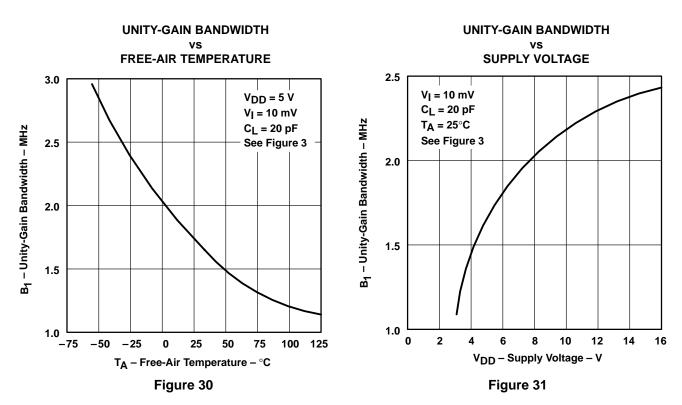




Figure 27



MAXIMUM PEAK OUTPUT VOLTAGE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

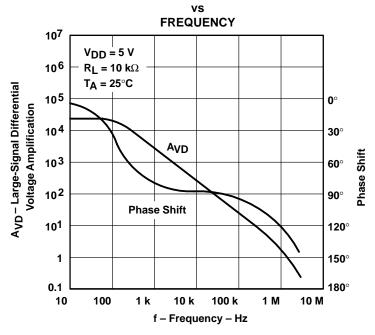
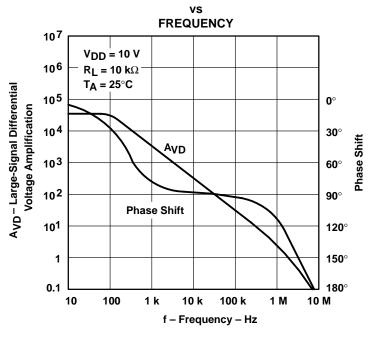
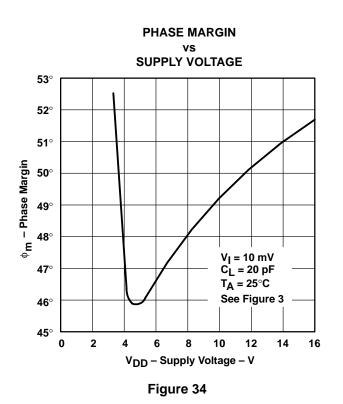
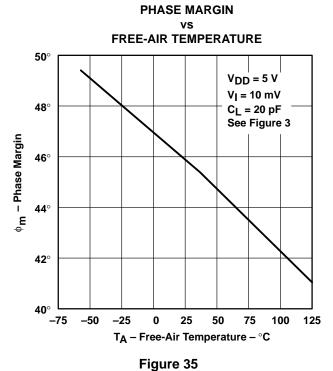
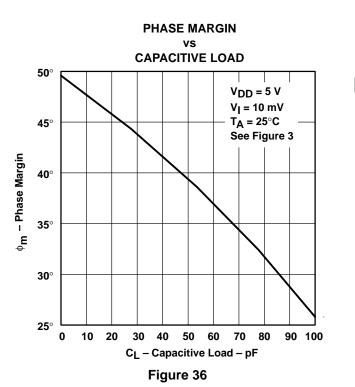


Figure 32

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT


Figure 33

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

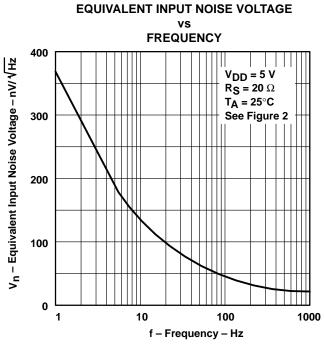


Figure 37

single-supply operation

While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

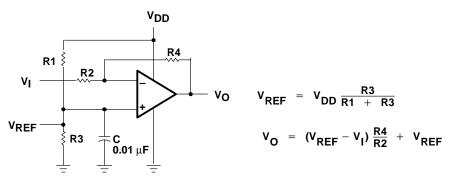


Figure 38. Inverting Amplifier With Voltage Reference

(a) 0=17...... = = 117.00== 0011 = 11....=0 (protestion)

Figure 39. Common vs Separate Supply Rails

input characteristics

The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD}-1$ V at $T_A=25^{\circ}$ C and at $V_{DD}-1.5$ V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

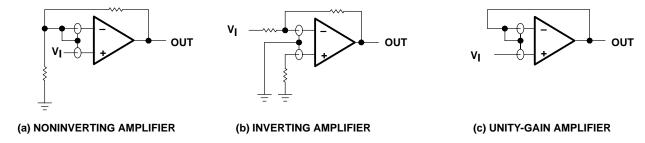


Figure 40. Guard-Ring Schemes

output characteristics

The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

output characteristics (continued)

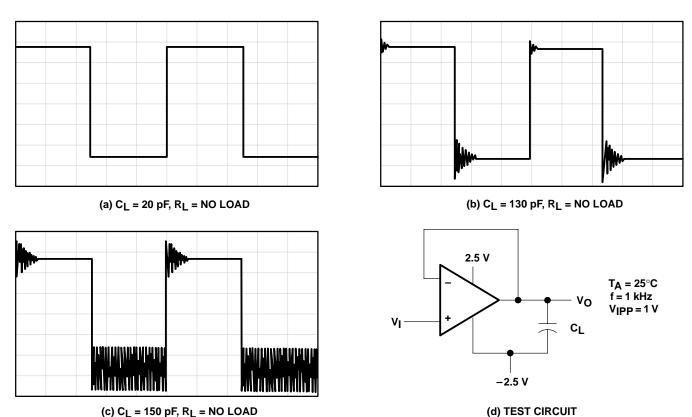
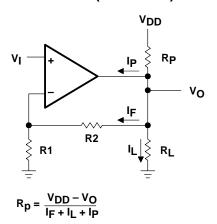



Figure 41. Effect of Capacitive Loads and Test Circuit

Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of Rp, a voltage offset from 0 V at the output occurs. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

output characteristics (continued)

 I_p = Pullup current required by the operational amplifier (typically 500 μ A)

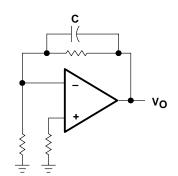


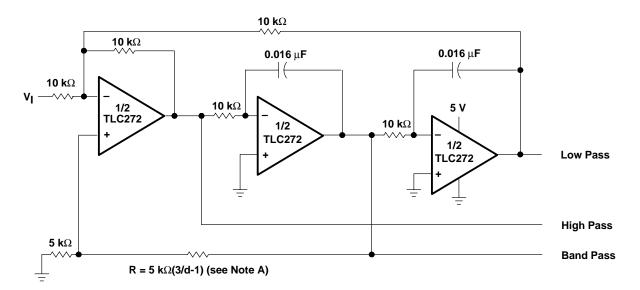
Figure 42. Resistive Pullup to Increase VOH

Figure 43. Compensation for Input Capacitance

feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection


The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

NOTE A: d = damping factor, 1/Q

Figure 44. State-Variable Filter

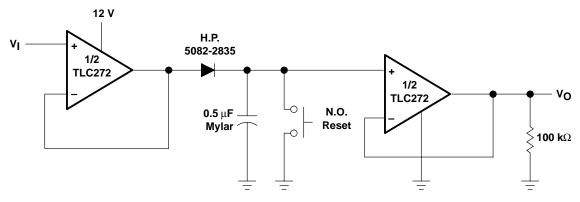
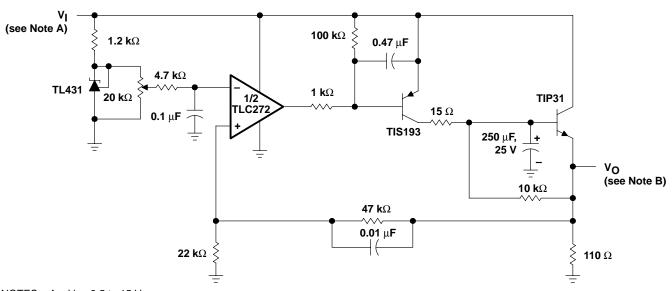
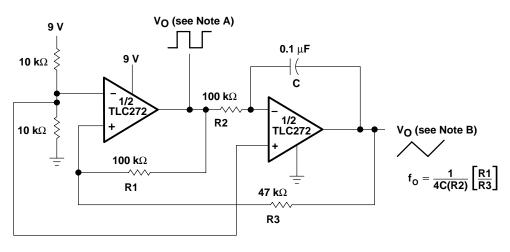




Figure 45. Positive-Peak Detector

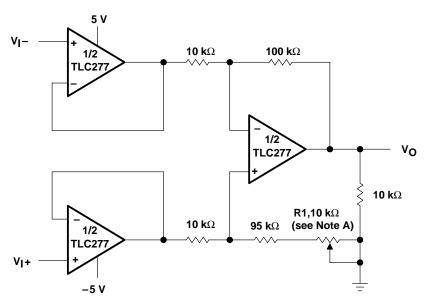

NOTES: A. $V_I = 3.5$ to 15 V B. $V_O = 2$ V, 0 to 1 A

Figure 46. Logic-Array Power Supply

NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

Figure 47. Single-Supply Function Generator

NOTE B: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier

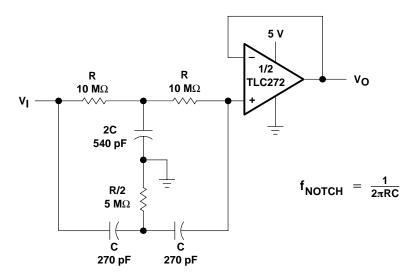


Figure 49. Single-Supply Twin-T Notch Filter

www.ti.com

com 10-Oct-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC272ACD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	
TLC272ACDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Samples
TLC272ACP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272ACP	Samples
TLC272ACPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272ACP	Samples
TLC272AID	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	
TLC272AIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Samples
TLC272AIP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272AIP	Samples
TLC272BCD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	
TLC272BCDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Samples
TLC272BCP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272BCP	Samples
TLC272BCPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272BCP	Samples
TLC272BCPS	LIFEBUY	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272B	
TLC272BID	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	
TLC272BIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272BIP	Samples
TLC272CD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	
TLC272CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272CP	Samples
TLC272CPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272CP	Samples
TLC272CPS	LIFEBUY	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272	
TLC272CPSR	LIFEBUY	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272	
TLC272CPW	LIFEBUY	TSSOP	PW	8	150	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	

PACKAGE OPTION ADDENDUM

www.ti.com 10-Oct-2023

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC272CPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272CPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272ID	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	
TLC272IDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	
TLC272IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samples
TLC272IDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samples
TLC272IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272IP	Samples
TLC272IPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272IP	Samples
TLC277CD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	277C	
TLC277CDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	277C	
TLC277CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	277C	Samples
TLC277CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC277CP	Samples
TLC277CPS	LIFEBUY	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P277	
TLC277CPSR	LIFEBUY	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P277	
TLC277ID	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2771	
TLC277IDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2771	
TLC277IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2771	Samples
TLC277IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC277IP	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

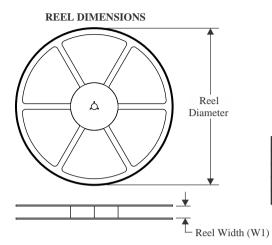
PACKAGE OPTION ADDENDUM

www.ti.com 10-Oct-2023

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

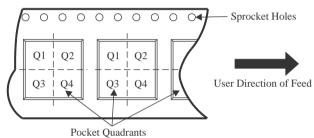
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

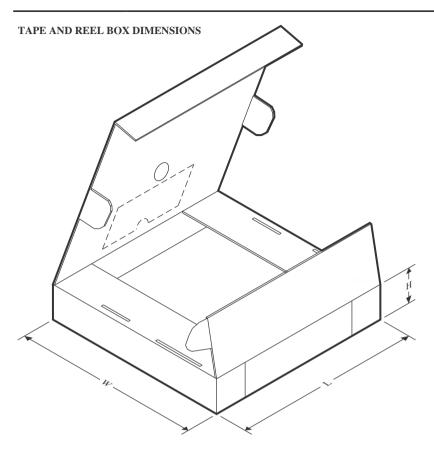
www.ti.com 28-Sep-2023


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO BO Cavity AO

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

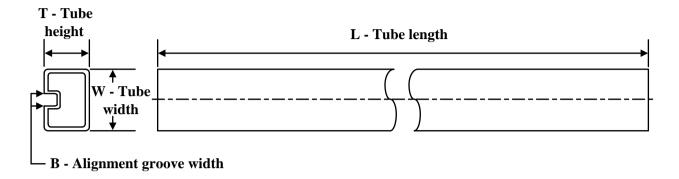
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC272ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CPSR	so	PS	8	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1
TLC272CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC272IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1
TLC277IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 28-Sep-2023


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC272ACDR	SOIC	D	8	2500	356.0	356.0	35.0
TLC272ACDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272AIDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272AIDR	SOIC	D	8	2500	356.0	356.0	35.0
TLC272BCDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272BCDR	SOIC	D	8	2500	356.0	356.0	35.0
TLC272BIDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272CDR	SOIC	D	8	2500	356.0	356.0	35.0
TLC272CDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC272CPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
TLC272IDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272IDR	SOIC	D	8	2500	356.0	356.0	35.0
TLC277CDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC277CPSR	SO	PS	8	2000	356.0	356.0	35.0
TLC277IDR	SOIC	D	8	2500	340.5	336.1	25.0

www.ti.com 28-Sep-2023

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TLC272ACD	D	SOIC	8	75	507	8	3940	4.32
TLC272ACP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272ACPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272AID	D	SOIC	8	75	507	8	3940	4.32
TLC272AIP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272BCD	D	SOIC	8	75	505.46	6.76	3810	4
TLC272BCD	D	SOIC	8	75	507	8	3940	4.32
TLC272BCP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272BCPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272BCPS	PS	SOP	8	80	530	10.5	4000	4.1
TLC272BID	D	SOIC	8	75	505.46	6.76	3810	4
TLC272BID	D	SOIC	8	75	507	8	3940	4.32
TLC272BIP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272CD	D	SOIC	8	75	507	8	3940	4.32
TLC272CP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272CPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272CPS	PS	SOP	8	80	530	10.5	4000	4.1
TLC272CPW	PW	TSSOP	8	150	530	10.2	3600	3.5
TLC272ID	D	SOIC	8	75	507	8	3940	4.32
TLC272IDG4	D	SOIC	8	75	507	8	3940	4.32
TLC272IP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC272IPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TLC277CD	D	SOIC	8	75	505.46	6.76	3810	4
TLC277CD	D	SOIC	8	75	507	8	3940	4.32
TLC277CDG4	D	SOIC	8	75	507	8	3940	4.32
TLC277CDG4	D	SOIC	8	75	505.46	6.76	3810	4
TLC277CP	Р	PDIP	8	50	506	13.97	11230	4.32
TLC277CPS	PS	SOP	8	80	530	10.5	4000	4.1
TLC277ID	D	SOIC	8	75	505.46	6.76	3810	4

PACKAGE MATERIALS INFORMATION

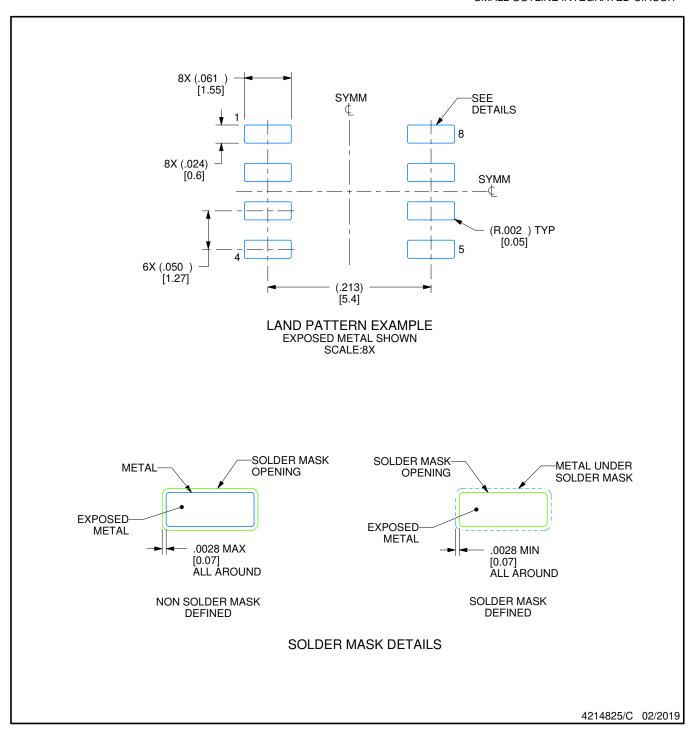

www.ti.com 28-Sep-2023

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TLC277ID	D	SOIC	8	75	507	8	3940	4.32
TLC277IDG4	D	SOIC	8	75	507	8	3940	4.32
TLC277IDG4	D	SOIC	8	75	505.46	6.76	3810	4
TLC277IP	Р	PDIP	8	50	506	13.97	11230	4.32

PACKAGE OUTLINE

SOIC - 1.75 mm max height

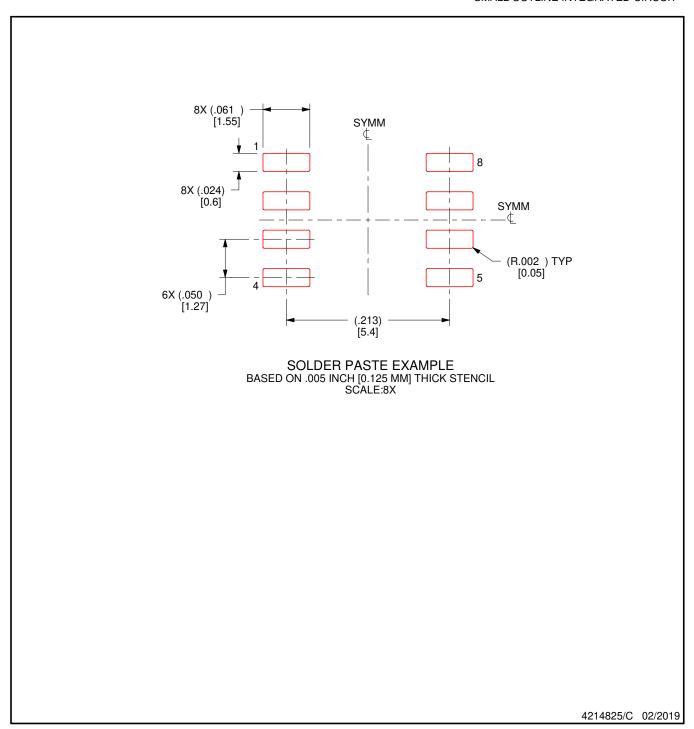
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

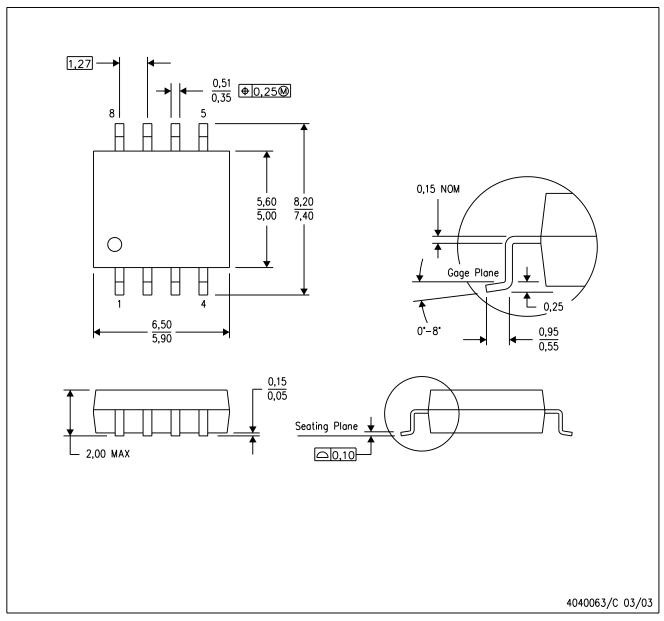
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

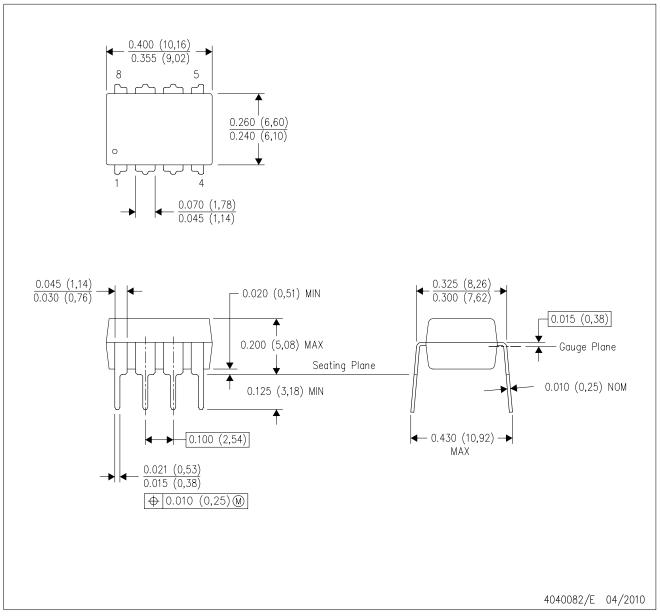
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

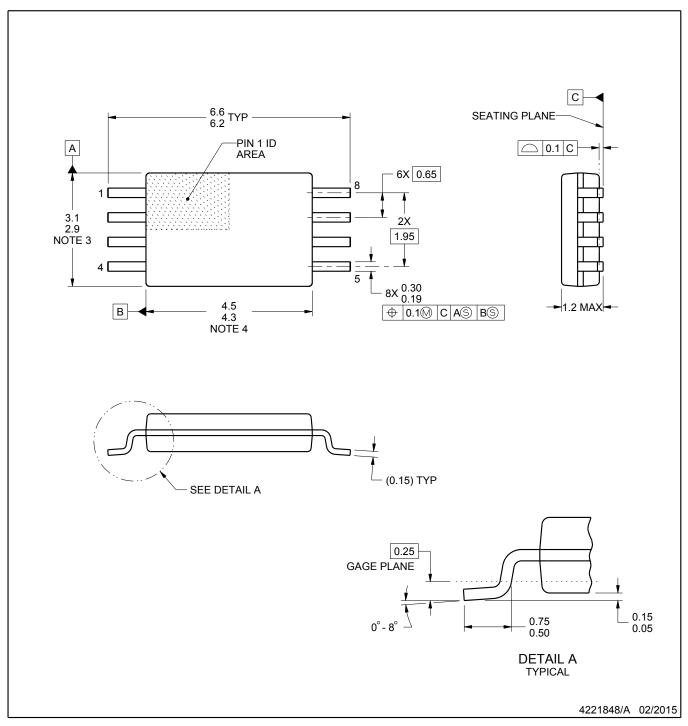
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

P (R-PDIP-T8)

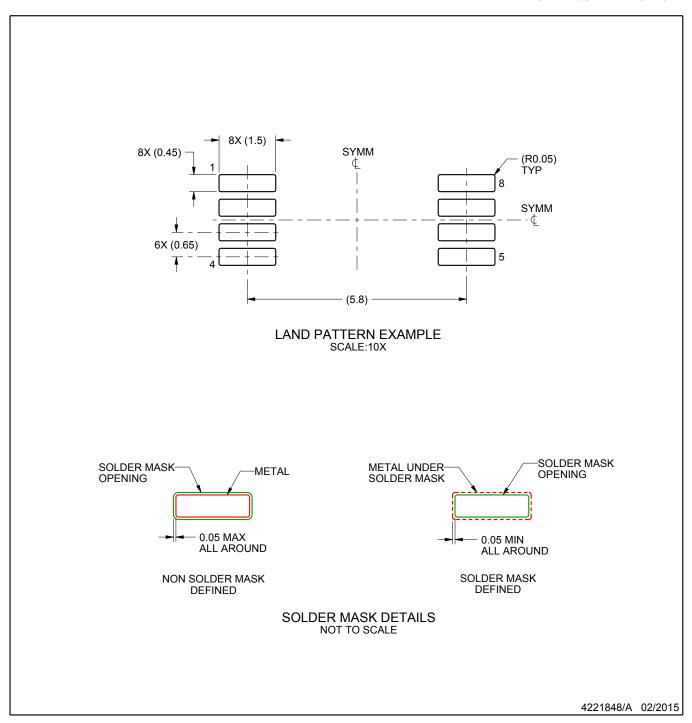
PLASTIC DUAL-IN-LINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

SMALL OUTLINE PACKAGE

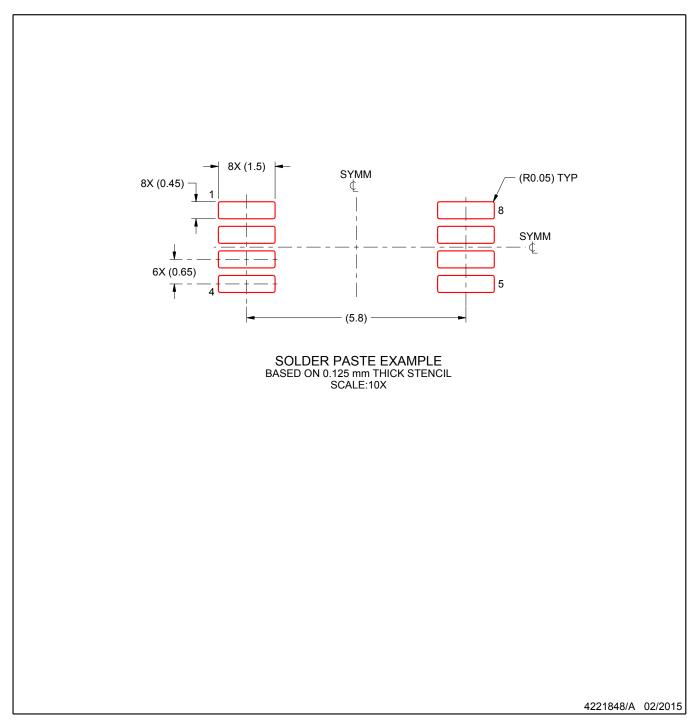
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated