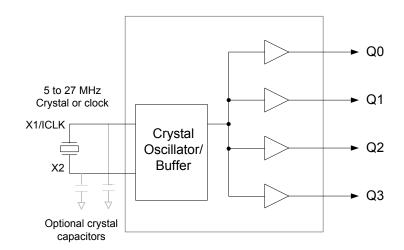


LOW SKEW 1 TO 4 CLOCK BUFFER

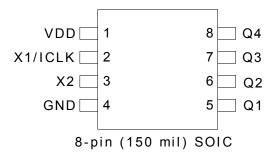
ICS556-04

Description

The ICS556-04 is a low-skew, crystal input compatible clock buffer with oscillator. This device offers the lowest skew.


See the ICS552-02 for a 1-to-8 low skew buffer. For more than eight outputs see the MK74CBxxx BuffaloTM series of clock drivers.

IDT makes many non-PLL and PLL-based low-skew output devices. Contact IDT for all of your clocking needs.


Features

- Extremely low-skew outputs (50 ps maximum)
- Packaged in 8-pin SOIC
- Operating voltages of 2.5 to 5.0 V
- Low-power CMOS technology
- Industrial temperature range
- Pb (lead) free package

Block Diagram

Pin Assignment

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	VDD	Power	Connect to +2.5 V, +3.3 V or +5.0 V.
2	X1/ICLK	Input	Crystal or clock input (5 V tolerant input). Connect to 5 to 27 MHz input.
3	X2	Input	Connect to a fundamental mode crystal. Leave open for clock input.
4	GND	Power	Connect to ground.
5	Q1	Output	Clock Output 1.
6	Q2	Output	Clock Output 2.
7	Q3	Output	Clock Output 3.
8	Q4	Output	Clock Output 3.

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of 0.01 μ F should be connected between VDD on pin 1 and GND on pin 4, as close to the device as possible. A 33 Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

To achieve the low output skew that the ICS556-04 is capable of, careful attention must be paid to board layout. Essentially, all four outputs must have identical terminations, identical loads, and identical trace geometries. If not, the output skew will be degraded. For example, using a 30Ω series termination on one output (with 33Ω on the others) will cause at least 15 ps of skew.

Crystal Information

The crystal used should be a fundamental mode (do not use third overtone), parallel resonant. Crystal capacitors should be connected from pins X1 to ground and X2 to ground to optimize the initial accuracy. The value of these capacitors is given by the following equation:

Crystal caps $(pF) = (CL - 6) \times 2$

In the equation, CL is the crystal load capacitance. So, for a crystal with a 16 pF load capacitance, two 20 pF [(16-6) x 2] capacitors should be used.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS556-04. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
Output Enable and All Outputs	-0.5 V to VDD+0.5 V
ICLK	-0.5 V to 5.5 V
Ambient Operating Temperature	-40 to +85 °C
Storage Temperature	-65 to +150° C
Junction Temperature	125° C
Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+2.375		+5.25	V

DC Electrical Characteristics

VDD=2.5 V ±5%, Ambient temperature -40 to +85 °C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		2.375		2.625	V
Input High Voltage	V _{IH}		2.0			V
Input Low Voltage	V _{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2			V
Output Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Operating Supply Current	IDD	No load, 27MHz		25		mA
Nominal Output Impedance	Z _O			20		Ω
Short Circuit Current	Ios			±28		mA

DC Electrical Characteristics (continued)

VDD=3.3 V ±5% , Ambient temperature -40 to +85 °C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.15		3.45	V
Input High Voltage	V _{IH}		2.0			V
Input Low Voltage	V_{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -25 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 25 mA			0.4	V
Output High Voltage (CMOS Level)	V _{OH}	I _{OH} = -12 mA	VDD-0.4			V
Operating Supply Current	IDD	No load, 27 MHz		35		mA
Nominal Output Impedance	Z _O			20		Ω
Short Circuit Current	Ios			±50		mA

VDD=5 V \pm5%, Ambient temperature -40 to +85 $^{\circ}$ C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		4.75		5.25	V
Input High Voltage	V _{IH}		2.0			V
Input Low Voltage	V _{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -35 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 35 mA			0.4	V
Output High Voltage (CMOS Level)	V _{OH}	I _{OH} = -12 mA	VDD-0.4			V
Operating Supply Current	IDD	No load, 27 MHz		45		mA
Nominal Output Impedance	Z _O			20		Ω
Short Circuit Current	Ios			±80		mA

Notes:

^{1.} Nominal switching threshold is VDD/2

AC Electrical Characteristics

VDD = 2.5 V \pm5%, Ambient Temperature -40 to +85 °C, unless stated otherwise

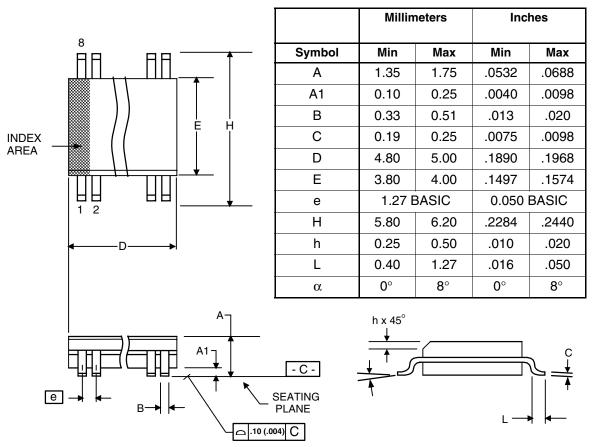
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			5		27	MHz
Output Rise Time	t _{OR}	0.8 to 2.0 V, C _L =15 pF		1.8	2.5	ns
Output Fall Time	t _{OF}	2.0 to 0.8 V, C _L =15 pF		1.8	2.5	ns
Output to output skew	Note 1	Rising edges at VDD/2		0	50	ps
Duty Cycle		Measured at VDD/2	45	50	55	%

VDD = 3.3 V ±5%, Ambient Temperature -40 to +85 °C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			5		27	MHz
Output Rise Time	t _{OR}	0.8 to 2.0 V, C _L =15 pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.0 to 0.8 V, C _L =15 pF		0.6	1.0	ns
Output to output skew	Note 1	Rising edges at VDD/2		0	50	ps
Duty Cycle		Measured at VDD/2	45	50	55	%
Phase Noise at 1MHz from carrier				-125		dBc/Hz
Clock Jitter RMS 1KHz to 1MHz					6	ps

VDD = 5 V ±5%, Ambient Temperature -40 to +85 °C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			5		27	MHz
Output Rise Time	t _{OR}	0.8 to 2.0 V, C _L =15 pF		0.3	0.7	ns
Output Fall Time	t _{OF}	2.0 to 0.8 V, C _L =15 pF		0.3	0.7	ns
Output to output skew	Note 1	Rising edges at VDD/2		0	50	ps
Duty Cycle		Measured at VDD/2	45	50	55	%


Notes: 1. Between any two outputs with equal loading.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		150		° C/W
Ambient	θ_{JA}	1 m/s air flow		140		° C/W
	θ_{JA}	3 m/s air flow		120		° C/W
Thermal Resistance Junction to Case	θ_{JC}			40		° C/W

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
556M-04ILF	556M04IL	Tubes	8-pin SOIC	-40 to +85° C
556M-04ILFT	556M04IL	Tape and Reel	8-pin SOIC	-40 to +85° C

[&]quot;LF" denotes Pb free package.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

CRYSTAL BUFFER

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/